第14章整式的乘除练习
初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()nm mn aa = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法常考例题精选1.(2015·襄阳中考)下列运算正确的是( ) =3 ·a2=a3C.(-a3)2=a5÷a2=a32.(2015·烟台中考)下列运算中正确的是( ) +2a=5a2 B.(-3a3)2=9a6÷a2=a3 D.(a+2)2=a2+43.(2015·遵义中考)计算(−12ab2)3的结果是( )3 23218184.(2015·沈阳中考)下面的计算一定正确的是( ) +b3=2b6 B.(-3pq)2=-9p2q2·3y5=15y8÷b3=b35.(2015·凉山州中考)下列各式正确的是( )=(−a)2=(−a)3=|−a2|=|a3|6.(2015·长春中考)计算:7a2·5a3= .7.(2015·广州中考)分解因式:x2+xy= .8.(2015·东营中考)分解因式2a2-8b2= .9.(2015·无锡中考)分解因式:2x2-4x= .10.(2015·连云港中考)分解因式:4-x2= .11.(2015·盐城中考)分解因式a2-9= .12.(2015·长沙中考)x2+2x+1= .13.(2015·临沂中考)分解因式4x-x3= .14.(2015·安徽中考)分解因式:x2y-y= .15.(2015·潍坊中考)分解因式:(a+2)(a-2)+3a= .16.(2015·遂宁中考)为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照下面的规律,摆第(n)个图案,需用火柴棒的根数为.17.(2015·潍坊中考)当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)18.(2015·牡丹江中考)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.19.(2015·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.1.(2015·徐州)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.下列计算错误的是( )A.(5-2)0=1 B.28x4y2÷7x3=4xy2C.(4xy2-6x2y+2xy)÷2xy=2y-3x D.(a-5)(a+3)=a2-2a-153.(2015·毕节)下列因式分解正确的是( )A.a4b-6a3b+9a2b=a2b(a2-6a+9) B.x2-x+14=(x-12)2C.x2-2x+4=(x-2)2D.4x2-y2=(4x+y)(4x-y)4.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( ) A.2 B.4 C.6 D.85.若m=2100,n=375,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定6.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.67.计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9C.a2-b2+6b-9 D.a2+b2-2ab+6a+6b+98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +2b)(a -b)=a 2+ab -2b 29.若x 2+mx -15=(x -3)(x +n),则m ,n 的值分别是( ) A .4,3 B .3,4 C .5,2 D .2,510.(2015·日照)观察下列各式及其展开式: (a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a +b)10的展开式第三项的系数是( ) A .36 B .45 C .55 D .6611.计算:(x -y)(x 2+xy +y 2)= .12.(2015·孝感)分解因式:(a -b)2-4b 2= .13.若(2x +1)0=(3x -6)0,则x 的取值范围是 .14.已知a m =3,a n =2,则a 2m -3n = .15.若一个正方形的面积为a 2+a +14,则此正方形的周长为 .16.已知实数a ,b 满足a 2-b 2=10,则(a +b)3·(a -b)3的值是 .17.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a -4b +13=0,则c为.18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n个等式为.19.计算:(1)(2015·重庆)y(2x-y)+(x+y)2; (2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘方公式计算:(1)982; (2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2015·随州)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a +b)(a +b)=2a 2+3ab +b 2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方法另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形.26. 定义2a b a b *=-,则(12)3**= .。
人教版八年级数学八年级上册 第14章 整式的乘除与因式分解 单元训练题(无答案)

人教版初二数学八年级上册 第14章 整式的乘除与因式分解 单元训练题1. 计算(-12xy 2)3,结果正确的是( ) A.16x 3y 5 B .-18x 3y 6 C.16x 3y 6 D .-18x 3y 5 2.已知x 2-2=y ,则x(x -3y)+y(3x -1)-2的值是( )A .-2B .0C .2D .43. 计算(a 2)3÷(a 2)2的结果是( )A .aB .a 2C .a 3D .a 44. 下列计算结果正确的是( )A .-3x 2y ·5x 2y =2x 2yB .-2x 2y 3·2x 3y =-2x 5y 4C .35x 3y 2÷5x 2y =7xyD .(-2x -y)(2x +y)=4x 2-y 25. 在一个边长为12.75 cm 的正方形纸板内,割去一个边长为7.25 cm 的正方形,剩下部分的面积等于( )A .100 cm 2B .105 cm 2C .108 cm 2D .110 cm 26. 下列各式正确的是( )A.⎝ ⎛⎭⎪⎫13x +y 2=19x 2+23xy +y 2 B.(2a -3b)2=4a 2-6ab +9b 2 C.(-x -y)2=-x 2+2xy -y 2 D.(a 2-b 2)(a +b)(a -b)=a 4+b 47.计算:(16a 3-12a 2+4a)÷(-4a)等于( )A.-4a 2+3aB.4a 2-3aC.4a 2-3a +1D.-4a 2+3a -18.下列因式分解错误的是( )A.1-16a 2=(1+4a)(1-4a)B.x 3-x =x(x 2-1)C.a 2-b 2c 2=(a +bc)(a -bc) D.49m 2-0.01n 2=(0.1n +23m)(23m -0.1n) 9.将下列多项式分解因式,结果中不含因式x -1的是( )A.x 2-1B.x(x -2)+(2-x)C.x 2-2x +1D.x 2+2x +110.计算:852-152=( )A.70B.700C.4900D.700011.如果多项式y 2-2my +1是完全平方式,那么m 的值是( )A.1B.-1C.±1D.±212.已知(x +a)(x +b)的乘积中不含x 的一次项,则a ,b 满足的条件是( )A.a =0B.a =bC.b =0D.a +b =013. 若a m =8,a n =2,则a m +2n =________,a m -n =________.14. (23)2014×(1.5)2015÷(-1)2016=________. 15. 已知(m -n)2=8,(m +n)2=2,则m2+n2=________.16. 如果长方形的长为(4a2-2a +1),宽为(2a +1),那么这个长方形的面积为________.17. 如果长方形的长为(4a2-2a +1),宽为(2a +1),那么这个长方形的面积为________.18. 已知10m =2,10n =3,则103m +2n =________,103m -2n =________.19. 计算:(1)(a +2b)(a -2b)-12b(a -8b);(2)(x +y -z)(x -y +z);(3)⎝ ⎛⎭⎪⎫-45a 5b 3+34a 3b 4-910a 2b 5÷35ab 3.20.把下列各式因式分解.(1)4x 3-16xy 2;(2)(x 2-2x)2+2(x 2-2x)+1.21.先化简,再求值.(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =-1;(2)已知x 2-4=0,求代数式x(x +1)2-x(x 2+x)-x -7的值.22.实数x ,y 满足|x +y -3|+(2x -5y +1)2=0,求(xy 2)2(-xy)3的值.23.已知a +b =2,ab =1,求a 2+b 2和(a -b)2的值.24.已知x -y =2,y -z =2,x +z =14.求x 2-z 2的值.25. 已知a(a -1)-(a 2-b)=2,求a 2+b 22-ab 的值.26.如图,某市有一块长为(3a +b)米,宽为(2a +b)米的长方形地,规划部门计划将阴影部分进行绿化,中间修建一座雕塑,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.。
《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)

《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
(完整版)第十四章---整式乘除及因式分解(知识点+题型分类练习).doc

A. x2 x 3 x5
B. x 2 x3 x6
C. (x 2 ) 3 x5
D. x 5 x3 x 2
11. 下列计算正确的是()
A. a 2a 3a2
B. a2 a3 a5
C. a3 a 3
D. ( a)3 a3
12.下列运算正确的是 ( ).
A. a3a3 2 a6
B.a6 a 3a3
影部分的周长和是()
A.4mcm
B.4ncm
C.2 ( m+n)cm
D.4 ( m- n) cm
考点 4、计算
1. 如果
a8 写成下列各式,正确的共有()
① a 4 a 4;② (a 2 ) 4;③ a16 a2;④ ( a 4 ) 2;⑤ (a 4 ) 4;⑥ a20 a12;⑦ a4 a4;⑧ 2a8 a 8 a8
(完整版)第十四章---整式乘除及因式分解(知识点+题型分类练习).doc
整式乘除及因式分解
知识点梳理
一、幂的运算:
1、同底数幂的乘法法则: a m ? a n a m n(m, n都是正整数)同底数幂相乘,底数不变,指数相加。注意
底数可以是多项式或单项式。
2、幂的乘方法则:(a m ) n a mn(m, n都是正整数)幂的乘方,底数不变,指数相乘。如:( 35 )2 310
2.( 2016?上海)下列单项式中,与a2b 是同类项的是()
A. 2a2b B . a2b2 C . ab2 D .3ab 3.( 2015?崇左)下列各组中,不是同类项的是()
A. 52与 25 B .﹣ ab 与 ba C .0.2a 2b 与﹣a2b D . a2b3与﹣ a3b2 4.( 2015?柳州)在下列单项式中,与2xy 是同类项的是()
《好题》初中八年级数学上册第十四章《整式的乘法与因式分解》经典题(含答案)

一、选择题1.下列运算正确的是( )A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅= B解析:B【分析】 分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可.【详解】解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意;C .844x x x ÷=,故本选项不合题意;D .325326x x x ⋅=,故本选项不合题意.故选:B .【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.2.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7B .18C .5D .9C 解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键. 3.下列因式分解正确的是( )A .24414(1)1m m m m -+=-+B .a 2+b 2=(a +b )2C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x )D解析:D【分析】把各式分解得到结果,即可作出判断.【详解】 解: A 、()224412-1-+=m m m ,原选项错误,不符合题意;B 、a 2+b 2不能分解,不符合题意;C 、x 2-16y 2=(x +4y )(x -4y ),原选项错误,不符合题意;D 、-16x 2+1=(1+4x )(1-4x ) ,原选项正确,符合题意;故选:D .【点睛】此题考查了运用公式法分解因式,熟练掌握因式分解的方法是解本题的关键.4.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .210B 解析:B【分析】所求式子变形后,将已知等式变形代入计算即可求出值.【详解】25y x -=∴ 25x y -=-()2236x y x y --+ ()()2=322x y x y --- =()()2535--⨯-=25+15=40故选:B【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.5.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关C解析:C【分析】根据幂的乘方和积的乘方的运算法则求解即可.【详解】a 2x+3y =(a x )2(a y )3=32⨯23=9⨯8=72,【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答此题的关键. 6.长和宽分别为a ,b 的长方形的周长为16,面积为12,则22 a b ab +的值为( ) A .24B .48C .96D .192C解析:C【分析】根据已知条件长方形的长与宽之和为8,长与宽之积为12,然后分解因式代入即可.【详解】∵长方形的周长为16,∴8a b +=,∵面积为12,∴12ab =,∴()22 12896a b ab ab a b +=+=⨯=, 故选:C .【点睛】本题考查的是因式分解的应用,以及长方形周长和面积的计算,熟练掌握长方形的周长和面积的计算公式是解答本题的关键.7.下列运算中错误的是( ).A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+1C 解析:C【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可.【详解】解:A:()()4444443381n n n a ba b a b --=--=- ,故答案正确; B:()41444n nn n a b a b +++=+ ,故答案正确; C:()()232262623427108n n n a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n n n n x x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确. 故选:C .【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.8.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.9.已知x ,y ﹣1,则xy 的值为( )A .8B .48C .D .6D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 10.下列运算正确的是( ).A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --= D解析:D【分析】根据整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算并判断.【详解】A 、235x x x =,故该项错误;B 、2222x x x +=,故该项错误;C 、22(2)4x x -=,故该项错误;D 、358(3)(5)15a a a --=,故该项正确;故选:D .【点睛】此题考查整式的计算,正确掌握整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算法则是解题的关键. 二、填空题11.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a 小正方形的边长为b 故阴影部分的面积是:AE•BC+AE•BD =AE (BC+BD )=(AB ﹣解析:30【分析】直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案.【详解】解:设大正方形的边长为a ,小正方形的边长为b , 故阴影部分的面积是:12AE •BC +12AE •BD =12AE (BC +BD ) =12(AB ﹣BE )(BC +BD ) =12(a ﹣b )(a +b )=12(a 2﹣b 2) =12×60 =30.故答案为:30.【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.12.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.13.若x 2+4x-4=0,则3(x-2)2-6(x+1)(x-1)的值为_________.6【分析】原式利用完全平方公式平方差公式化简去括号整理后将已知等式代入计算即可求出值【详解】解:∵x2+4x-4=0即x2+4x=4∴原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12 解析:6【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【详解】解:∵x 2+4x-4=0,即x 2+4x=4,∴原式=3(x 2-4x+4)-6(x 2-1)=3x 2-12x+12-6x 2+6=-3x 2-12x+18=-3(x 2+4x )+18=-12+18=6. 故答案为:6.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.14.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】 本题考查幂的运算,解题的关键是掌握幂的运算法则.15.若2a x =,3b x =,则32a b x -=___________.【分析】根据同底数幂除法逆运算及积的乘方逆运算解答【详解】∵∴故答案为:【点睛】此题考查整式的运算公式:积的乘方计算及同底数幂除法计算正确掌握计算公式并熟练应用是解题的关键 解析:89【分析】根据同底数幂除法逆运算及积的乘方逆运算解答.【详解】∵2a x =,3b x =,∴32a b x -=3232328()()239a b a b xx x x ÷=÷=÷=, 故答案为:89. 【点睛】此题考查整式的运算公式:积的乘方计算及同底数幂除法计算,正确掌握计算公式并熟练应用是解题的关键.16.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.17.已知4222112x x +-⋅=,则x =________3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键. 18.分解因式:2221218ax axy ay -+=_________.【分析】先提取公因式再利用完全平方公式继续分解即可【详解】故答案为:2a(x-3y)2【点睛】本题考查了用提公因式法和公式法进行因式分解一个多项式有公因式首先提取公因式然后再用其他方法进行因式分解同解析:22(3)a x y -【分析】先提取公因式2a ,再利用完全平方公式继续分解即可.【详解】222ax 12axy 18ay -+222(6)9a x xy y =-+22(3)a x y =-,故答案为:2a(x-3y)2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.若210a a +-=,则43222016a a a a +--+的值为______.【分析】原式变形为由已知得到整体代入即可求解【详解】已知得:故答案为:【点睛】本题考查了代数式求值熟练掌握整体代入法是解题的关键解析:2015【分析】原式变形为()22222016aa a a a +--+,由已知得到21a a +=,整体代入即可求解. 【详解】已知得:21a a +=, 43222016a a a a +--+()22222016a a a a a =+--+2222016a a a =--+()22016a a =-++ 12016=-+2015=.故答案为:2015.【点睛】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.20.已知()()()214b c a b c a -=--且a ≠0,则b c a +=__.2【分析】由可得:去分母整理可得:从而得到:于是可得答案【详解】解:故答案为:2【知识点】本题考查的是整式的乘法运算完全平方公式的应用因式分解的应用非负数的性质代数式的值利用平方根的含义解方程掌握以解析:2【分析】 由()()()214b c a b c a -=--可得:()()()21,4b c bc a b c a bc -+=--+去分母整理可得:()220,b c a +-=从而得到:2,b c a +=于是可得答案.【详解】解: ()()()21,4b c a b c a -=-- ()()()21,4b c bc a b c a bc ∴-+=--+ ()()22444b c bc ac a bc ab bc ∴-+=--++,()()22440,b c a a b c ∴++-+=()220,b c a ∴+-=20,b c a ∴+-=2,b c a ∴+=∴ 2=2,b c a a a+= 故答案为:2.【知识点】本题考查的是整式的乘法运算,完全平方公式的应用,因式分解的应用,非负数的性质,代数式的值,利用平方根的含义解方程,掌握以上知识是解题的关键.三、解答题21.计算:4a 2·(-b )-8ab ·(b -12a ). 解析:28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+ab ab a b=28ab -.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.22.某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为500元(不含套餐成本).试销售一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.(1)若每份套餐售价定为9元,则该店每天的利润为 元;若每份套餐售价定为12元,则该店每天的利润为 元;(2)设每份套餐售价定为x 元,试求出该店每天的利润(用含x 的代数式表示,只要求列式,不必化简);(3)该店的老板要求每天的利润能达到1660元,他计划将每份套餐的售价定为:10元或11元或14元.请问应选择以上哪个套餐的售价既能保证达到利润要求又让顾客省钱?请说明理由.解析:(1)1100元,1740元;(2)当10x ≤时,利润为(5)400500x -⨯-;当10x >时,利润为[](5)400(10)40500x x ---⨯-;(3)选择11元,能保证达到利润要求又让顾客省钱.【分析】(1)根据题意,列出算式,即可求解;(2)分两种情况:当10x ≤时,当10x >时,分别列出代数式,即可;(3)把x=10,11,14分别代入第(2)小题的代数式,即可得到答案.【详解】解:(1)由题意得:(9-5)×400-500=1100(元),(12-5)×[400-(12-10)×40]-500=1740(元),故答案是:1100元,1740元;(2)当10x ≤时,利润为(5)400500x -⨯-,当10x >时,利润为[](5)400(10)40500x x ---⨯-;(3)∵当x =10时,(105)4005001500-⨯-=(元), 当x =11时,[](115)400(1110)405001660---⨯-=(元),当x =14时,[](145)400(1410)405001660---⨯-=(元), ∴当x =11或14时,利润均为1660元.∵11<14,∴选择11元,能保证达到利润要求又让顾客省钱.【点睛】本题考查的是代数式的实际应用,解题的关键是根据题目中的数量关系列出代数式. 23.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.解析:22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()2320x y ++-=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.解析:(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.25.因式分解:(1)382a a -(2)()()24129x y x y +-+-解析:(1)()()22121a a a +-;(2)()2332x y -+ 【分析】(1)首先提取公因式2a ,再利用平方差公式分解因式得出答案;(2)原式利用完全平方公式分解即可.【详解】解:(1)8a 3-2ab 2=2a (4a 2-1)=2a (2a+1)(2a-1),(2)原式=[3(x-y )+2]2=(3x-3y+2)2.【点睛】本题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.26.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积:方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.解析:(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40【分析】(1)利用两种方法表示出大正方形面积即可;(2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值;【详解】解:(1)方法一:()2a b +;方法二:222a b ab ++;故答案为:(a +b )2;a 2+2ab +b 2;(2)()2222a b a b ab +=++;(3)∵162ab =,()264a b +=, ∴224ab =, ∴()222240a b a b ab +=+-=.【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.27.分解因式:(1)325x x -;(2)(3)2(3)m a a -+-.解析:(1)(5)(5)x x x +-;(2)(3)(2)a m --.【分析】(1)先提公因式x ,再利用平方差公式进行分解,即可得出结果;(2)先将多项式进行变形,再利用提公因式法进行分解,即可得出结果.【详解】解:(1)325x x -2(25)x x =-(5)(5)x x x =+-;(2)(3)2(3)m a a -+-(3)2(3)m a a =---(3)(2)a m =--.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能根据多项式的特点准确选择分解方法是解题的关键.28.观察下列两个等式:22111121213,55322⨯=+-⨯=+-,给出定义如下:我们称使等式23ab a b =+-成立的一对有理数a ,b 为“海山有理数对”,记为(),a b ,如:()112,1,5,2⎛⎫ ⎪⎝⎭,都是“海山有理数对”. (1)数对()()2,1,1,1--中是“海山有理数对”的是_____________;(2)若()3n ,是“海山有理数对”,则n =_____________;(3)若()m,2是“海山有理数对”,求()223221m m m ⎡⎤---⎣⎦的值.解析:(1)(-1,1);(2)3;(3)-1【分析】(1)根据公式列式计算即可判断;(2)根据公式列方程解答即可;(3)根据公式列方程求出221m m -=,再代入代数式计算即可.【详解】(1)∵221(2)13-⨯+≠--,211(1)13-⨯+≠--,∴数对()()2,1,1,1--中是“海山有理数对”的是(-1,1);故答案为:(-1,1);(2)由题意得:2333n n =+-,解得n=3,故答案为:3;(3)由题意得:2223m m =+-,∴221m m -=,∴原式=22(342)m m m --+=22342m m m -+-=23(2)2m m --+=312-⨯+=-1.【点睛】此题考查新定义,有理数的混合运算,整式的混合运算,求代数式的值正确理解题意中的计算公式正确列式是解题的关键.。
八年级数学上册第十四章整式的乘除综合训练试题

尚西中学2021-2021学年八年级数学上册第十四章整式的乘除综合训练一、判断正误:对的画“√〞,错的画“×〞(1)(a-b)(a+b)=a2-b2;〔〕 (2)(b+a)(a-b)=a2-b2;〔〕(3)(b+a)(-b+a)=a2-b2;〔〕 (4)(b-a)(a+b)=a2-b2;〔〕(5)(a-b)(a-b)=a2-b2. 〔〕 (6)(a+b) 2=a2+b2;〔〕(7)(a-b) 2=a 2-b 2;〔〕 (8)(a+b) 2=(-a-b) 2〔〕二、选择题1.以下各式中,相等关系一定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x2-6C.(x+y)2=x2+y2D.6(x-2)+x(2-x)=(x-2)(x-6)2.以下运算正确的选项是( )A.x2+x2=2x4B.a2·a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y23.以下计算正确的选项是( )A.(-4x)·(2x2+3x-1)=-8x3-12x2-4xB.(x+y)(x2+y2)=x3+y3C.(-4a-1)(4a-1)=1-16a2D.(x-2y)2=x2-2xy+4y24.(x+2)(x-2)(x2+4)的计算结果是( )A.x4+16B.-x4-16C.x4-16 -x42-1991×1993的计算结果是( )A.1B.-1C.2D.-2n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )7.x 2〔x 2-16〕+a =〔x 2-8〕2,那么a 的值是〔 〕8.假如4a 2-N·ab+81b 2是一个完全平方式,那么N 等于〔 〕 〔A 〕18 〔B 〕±18 〔C 〕±36 〔D 〕±64 9.方程〔x +1〕(x +2)—(x —2)(x —3)=0的根为〔 〕 A .21x =B .x =1C .x =2D .x =3 10.假设〔x +m 〕(x +n ) = 862+-x x ,那么〔 〕A .m ,n 同时为负B .m ,n 同时为正C .m ,n 异号D .m ,n 异号且绝对值小的为正 三、填空题1.( )(5a +1)=1-25a 2,(2x-3) =4x 2-9,(-2a 2-5b)( )=4a 4-25b 2×101=( )( )= 〔a +2b 〕2=a 2+_______+4b 2. 3.〔3a -5〕2=9a 2+25-_______.〔2x -______〕2=____-4xy +y 2. 4.〔3m 2+_______〕2=_______+12m 2n +________. 5.x 2-xy +________=〔x -______〕2. 6.49a 2-________+81b 2=〔______+9b 〕2. 7.(x-y+z)(-x+y+z)=[z+( )][ ]=z 2-( )2. x 2+kx+25是另一个多项式的平方,那么k= .9.(a +b)2=(a -b)2+ ,a 2+b 2=[(a +b)2+(a -b)2]( ), 10.a 2+b 2=(a +b)2+ ,a 2+b 2=(a -b)2+ . 四、用乘法公式计算(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1) (3) (x+6)2〔4〕 (y-5)2(5) (-2x+5)2(6) (34x-23y)2(7) (y+3x)(3x-y) (8) (-2+ab)(2+ab)(9) (2x-3)2(10) (-2x+3y)(-2x-3y) (11) (12m-3)(12m+3) (12) (13x+6y)2(13) (y+2)(y-2)-(y-1)(y+5) (14) (x+1)(x-3)-(x+2)2+(x+2)(x-2) (15) (a+2b-1)2(16) (2x+y+z)(2x-y-z) (17) 22)2()2()2)(12(+---+-x x x x(18)1241221232⨯- 〔19〕(2x +3)(2x -3)-(2x-1)2 〔(20) (2x +y +1)(2x +y -1)五、才能提升1.m 2+n 2-6m+10n+34=0,求m+n 的值 2.a +a 1=4,求a 2+21a 和a 4+41a的值.3. (a +b)2=60,(a -b)2=80,求a 2+b 2及a b 4. (2a +2b+1)(2a +2b-1)=63,求a +b 的值.5.解不等式(1-3x)2+(2x-1)2>13(x-1)(x+1) 6.)的值求12()12)(12)(12(242++++n7.的值求22222212979899100-+⋯⋯+-+-8. 问题:你能比拟20002001和20212000的大小吗?为理解决这个问题,写出它们的一般形式,即比拟n 1+n 和(n +1)n的大小〔n 是自然数〕,然后我们从分析n =1,n =2,n =3,…这些简单情形入手,从中发现规律,经过归纳猜测得出结论:〔1〕通过计算,比拟以下各组中两个数的大小〔在横线上填写上“<〞“>〞“=〞号〕. ①12__21;②23__32;③34__43;④45__54;⑤56__65. 〔2〕从第〔1〕题的结果经过归纳,可以猜测出n1n +和(n +1) n的大小关系是_____.〔3〕根据上面归纳猜测得到的结论,试比拟以下两个数的大小:20002001___20212000.9.〔1〕分别计算出〔x +2〕(x +3), (x –2)(x –3),(x +2)(x –3) ,(x –2)(x +3)的结果,比拟所得的结果有什么异同?从这异同之中,你能发现什么?请用你所发现的结论直接做下面的填空:①(x +1)(x +4) =______x 2+ _____x + ________ ②(m –2)(m +3) =____m 2+____m +____③(y +4)(y –5) = ____y 2+_____y +__________ ④(x + a )(x + b ) =____x 2+_____x +_____ 用多项式与多项式相乘的法那么验证一下④中结论. 〔2〕问题:你能很快算出19952吗?为理解决这个问题,我们考察个位上的数为5的自然数的平方,任意一个个位数为5的自然数可写成10n+5,即求〔10n+5〕2的值,〔n为自然数〕,你试分析n=1,n=2,n=3,……这些简单情况,从中探究其规律,并归纳,猜测出结论.①通过计算,探究规律:152=225可以写成100×1〔1+1〕+25 252=625可以写成100×2〔2+1〕+25 352=1225可以写成100×3〔3+1〕+25……752=5625可以写成____________852=7225可以写成____________……②由上面结果归纳猜测得:〔10n+5〕2=______________.③利用②中结论算出19952=_______.10. 〔1〕计算:①〔a–1〕(a+1)= ___________________②(a–1)(a2+a+1)=__________________③(a–1)(a3+a2+a+1) =______________(2)根据〔1〕的计算,你发现了什么规律,并用公式表示出来.〔3〕运用你发现的规律,直接写出下题的结果〔a–1〕(a4+a3+a2+a+1) =____________〔a–1〕(a6+a5+a4+a3+a2+a+1) =____________假设〔a–1〕m=a8–1,那么m= _____________(4)仿照〔1〕〔2〕〔3〕,你能否由〔a+b〕、〔a+b〕2、〔a+b〕3的结果,发现〔a+b〕4、〔a+b〕5的结果?请尝试一下。
八年级-第14章-整式的乘法与因式分解精选全文完整版
可编辑修改精选全文完整版八年级 第14章 整式的乘法与因式分解知识点集结1、 幂的运算同底数幂的乘法幂的乘方积的乘方2、 整式的乘法单项式乘以单项式单项式乘以多项式多项式乘以多项式3、 整式的除法:同底数幂的除法、单项式除以单项式 、多项式除以单项式4、 乘法公式: 平方差公式、完全平方公式5、 因式分解:提公因式法公因式法(十字相乘法)二、考点的引发、思维的拓展考点一:幂的运算在幂的运算中含有同底数幂的乘法、幂的乘方和积的乘方三种运算,要注意选准运算性质是关键。
(一) 同底数幂的乘法法则:a m ·a n =a m+n (m ,n 都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
例1:计算(1)84)21()21( (2)(-3)2×(-3)7变式1:计算(1)106·105·10 (2)x 3·x m(3)(a+b)4·(a+b) (4)x 2·(-x)5例2:2×24-22×23 变式1:m 7·m+m 3·m 2·m 3例3:(1)若26=24·2x 则 x=_______(2)2m =3 , 2n =4, 求2m+n 的值。
变式1、若6422=-a ,则a= ;变式2、若8)3(327-=⨯n ,则n= .变式3、计算()[]()[]m n x y y x 2322--变式4、若32=n a ,则n a 6= .(二)幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==例4:变式1、例5、若 ,2a m = 则=m 3a _____. ;)y ()4(;)a )(3(;)b )(2(;)10)(1(234m 23327-2342)a (a a )5(+•3242(6)()()x x ⋅42])y x )[(7(+变式1、若 3m ,2m y x == 则 =+y x m ____, =+y 2x 3m =______.变式2、若(-2)² ·24= (a ³)²,则a =______(三)积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
人教版数学八年级上册 第14章《整式乘除与因式分解》同步练习及答案(14.3)
第14章《整式乘除与因式分解》同步练习(§14.3)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.计算:103_________.a a ÷=2.计算: 3532(3)(0.5)_________.m n m n -÷-=3.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为______.4.一个三角形的面积是c b a 433,一边长为2abc ,则这条边上的高为______.5.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,… 根据你发现的规律,计算:2222122334(1)n n ++++=⨯⨯⨯⨯+… (n 为正整数). 6.计算:2010232_______,________a a x x ÷=÷=7.使等式1)5(93=-+m 成立时,则m 的取值是_____.8.已知多项式3x 3+ax 2+3x +1能被x 2+1整除,且商式是3x +1,那么a 的值是 .9.已知10m =3,10n =2,则102m -n = .10.小宇同学在一次手工制作活动中,先把一张矩形纸片按图-1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图-2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是_____.二、选择题(每题3分,共24分)11.下列计算中正确的是( )A .248x x x =÷B .55a a a =÷C .23y y y =÷D .224)()(x x x -=-÷-第一次折叠 图-1 第二次折叠 图-2 (第10题)12.若n 221623=÷,则n 等于( )A .10B .5C .3D .613.下面是小林做的4道作业题:(1)ab ab ab 532=+;(2)ab ab ab -=-32;(3)ab ab ab 632=⋅;(4)3232=÷ab ab .做对一题得2分,则他共得到( ) A .2分 B .4分 C .6分 D .8分14.(2008辽宁省大连市)若x =b a -,y =b a +,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a -15.如果8a 写成下列各式,正确的共有( )①44a a +;②42)(a ;③216a a ÷;④24)(a ;⑤44)(a ;⑥1220a a ÷;⑦44a a ⋅;⑧8882a a a =-A .7个B .6个C .5个D .4个16.已知2239494b b a b a n m =÷,则( ) A .3,4==n m B .1,4==n m C .3,1==n m D .3,2==n m17.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x 18.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+三、解答题(共46分)19.(8分)计算(1)2242)()(ab ab ÷; (2))4()7124(22333a b a b a a -÷-+-.20.(6分)先化简,后求值.x y x y x y x 2)])(()[(2÷--+-,其中5.1,3==y x21.(8分)小明与小亮在做游戏时,两人各报一个整式,小亮报的整式作为除式,要求商式必须为2xy ,(1)若小明报的是)2(23xy y x -,小亮应报什么整式?(2)若小明报23x ,小亮能报出一个整式吗?说说你的理由.22.(8分)已知:A =x 2,B 是多项式,小明同学是个小马虎,在计算A +B 时,误把B +A 看作了AB ÷,结果得x x 212+,求B +A 的值.23.(7分)一个单项式的平方与5632123y x y x --的积为,求这个单项式.24.(9分)我们约定:b a b a 1010÷=⊗,如1010103434=÷=⊗(1)试求:410312⊗⊗和的值.(2)试求:4319105212⊗⊗⨯⊗和(3)想一想,)()(c b a c b a ⊗⊗⊗⊗和是否相等,验证你的结论.参考答案一、填空题1.67)(,m a a - 2.36n ,41052⨯ 3.xy x y 44323-+- 4.323b a 5.21n n + 6.20085,a x 7.m =-3 8.1 9.92 10.1cm二、选择题11.C 12.A 13.C 14.D 15.C 16.A 17.C 18.D三、解答题19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)y x -221;(2)小亮不能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)不相等。
第十四章整式的乘除与因式分解单元测试2024—2025学年人教版数学八年级上册
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________题号12345678910答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x ﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc ﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。
【人教版】八年级上册:第14章《整式的乘除与因式分解》全套习题课件
ORGANICS COMPANY
方法技能: 1.不要把幂的乘方与同底数幂的乘法混淆,其相同点是底数不变, 不同点是幂的乘方是指数相乘,同底数幂的乘法是指数相加. 2.推广:[(am)n]p=amnp(m,n,p都是正整数). 3.逆用:amn=(am)n=(an)m(m,n都是正整数). 易错提示: 对幂的乘方法则理解不透而出错.
15.(习题11变式)求图中阴影部分的面积. 解:S阴影=(a+3a+3a+3a+a)×(1.5a+2.5a)-2×3a×2.5a=29a2
BEST FOR You
ORGANICS COMPANY
16.先阅读小明的解题过程,然后回答问题:
计算:(x4)2+(x2)4-x·(x2)2·x3-(-x)3·(-x2)2·(-x).
You
ANY
知识点2:同底数幂的乘法法则的逆用 5.已知ax=4,ay=8,则ax+y的值为( D ) A.4 B.8 C.12 D.32 6.m16可以写成( B ) A.m8+m8 B.m8·m8 C.m2·m8 D.m4·m4
1 7.已知 5y+2=a,则 5y=___2_5_a___.
BEST FOR You
BEST FOR You
ORGANICS COMPANY
(3)[(x-y)2]3=__________.
知识点2:幂的乘方法则的逆用 5.计算2m·4n的结果是( D ) A.(2×4)m+n B.2·2m+n C.2n·2mn D.2m+2n 6.若3×9m×27m=321,则m的值为( B ) A.3 B.4 C.5 D.6 7.若x2n=2,则x6n=__8__;若ax=2,ay=7,则a2x+y=__2_8_.
BEST FOR You