2011年湖南省长沙市中考数学模拟试题(含答案)02

合集下载

2011年中考模拟试卷数学试卷及答案(优质)

2011年中考模拟试卷数学试卷及答案(优质)

2011年中考数学模拟试卷 试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请在答题卷中把正确选项的字母涂黑.注意可以用多种不同的方法来选取正确答案.1.我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将“8500亿元”用科学记数法表示为( ) A .9105.8⨯元B .10105.8⨯元C .11105.8⨯元D .12105.8⨯元2.下列运算正确的是()A .()b a b a +=+--B .a a a =-2333 C .01=+-aa D .323211=⎪⎭⎫⎝⎛÷- 3.有2名男生和2名女生,王老师要随机地、两两一对地排座位,一男一女排在一起的概率是( )A. 14B. 23C. 12D. 13 4.如图,一束光线与水平面成60°的角度照射地面,现在地面AB 上支放一个平面镜CD ,使这束光线经过平面镜反射后成水平光线,则平面镜CD 与地面AB 所成角∠DCB 的度数等于 ( ) A .30° B .45° C .50° D .60°5.抛物线y=-x 2+2x -2经过平移得到y=-x 2,平移方法是( )﹒A .向右平移1个单位,再向下平移1个单位B .向右平移1个单位,再向上平移1个单位C .向左平移1个单位,再向下平移1个单位D .向左平移1个单位,再向上平移1个单位6.如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同而另一个不同的几何体是(A. ①② B .②③C .②④ D . ③④ 7.如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A.B ,且O 1A⊥O 2A ,则图中阴影部分的面积是( )A.4π-8B. 8π-16C.16π-16D. 16π-32①正方体②圆柱③圆锥④球第4题第7题8.已知函数y=―t 3 ―2010|t|,则在平面直角坐标系中关于该函数图像的位置判断正确的是( )A .必在t 轴的上方B .必定与坐标轴相交C .必在y 轴的左侧D .整个图像都在第四象限9.如图,△ABC 的三边分别为a 、b 、c ,O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,则OD ∶OE ∶OF = ( )A . a ∶b ∶cB . a 1∶b 1∶c 1C . cosA ∶cosB ∶cosCD . sinA ∶sinB ∶sinC 10.现在把一张正方形纸片按如图方式剪去一个半径为40 2 厘米的14 圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米﹒(不计损耗、重叠,结果精确到1厘米,2 ≈1.41, 3 ≈1.73) A . 64 B . 67 C . 70 D . 73二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11. 函数21-=x y 的自变量x 取值范围是 .12.右图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC 改建为坡度1:0.5的迎水坡AB ,已知AB=4 5 米, 则河床面的宽减少了 米.(即求AC 的长)13.已知矩形OABC 的面积为3100,它的对角线OB 与双曲线x k y =相交于点D ,且OB ∶OD =5∶3,则k =__________.14.已知关于x 的函数y =(m -1)x 2+2x +m 图像与坐标轴有且只 有2个交点,则m =A B C O E F D 第9题ACB.5 = i 1:第12题第10题15.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .16.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,2正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= .三. 全面答一(本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17.(本题满分6分)先化简,再求值:aa a a --÷--224)111(,其中a 是整数,且33<<-a 18.(本题满分6分)如图,在平面直角坐标系中,点A ,B ,C ,P 的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P 成中心对称;(2)若一个二次函数的图像经过(1)中△A′B′C′的三个 顶点,求此二次函数的关系式;19. (本题满分6分) 如图,AB 为⊙O 的弦,C 为劣弧AB 的中点,(1)若⊙O 的半径为5,8AB =,求tan BAC ∠; (2)若DAC BAC ∠=∠,且点D 在⊙O 的外部,判断AD 与⊙O 的位置关系,并说明理由.20.(本题满分8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计18题19题…① ② ③ ④第16题算机辅助电话访问系统”(简称CATI 系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(2)(部分)(1)被抽查的居民中,人数最多的年龄段是 岁;(2)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.21.(本题满分8分)如图,AB//CD,∠ACD=72°﹒⑴用直尺和圆规作∠C 的平分线CE ,交AB 于E ,并在CD 上取一点F ,使AC =AF ,再连接AF ,交CE 于K ; (要求保留作图痕迹,不必写出作法)⑵依据现有条件,直接写出图中所有相似的三角形﹒ (图中不再增加字母和线段,不要求证明)﹒22.(本题满分10分)一列火车由A 市途经B 、C 两市到达D市.如图,其中A 、B 、C 三市在同一直线上,D 市在A 市的北偏东45°方向,在B 市的正北方向,在C 市的北偏西60°方向,C 市在A 市的北偏东75°方向.已知B 、D 两市相距100km .问该火车从A 市到D 市共行驶了多少路程?(保留根号)23.(本题满分10分)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租A B C D第21题 第22题出商铺1间.(假设年租金的增加额均为5000元的整数倍)该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元? (3)275万元是否为最大年收益?若是,说明理由;若不是,请求出当每间的年租金定为多少万元时,达到最大年收益,最大是多少?24.(本题满分12分)如图,在菱形ABCD 中,AB=2cm ,∠BAD=60°,E 为CD 边中点,点P 从点A 开始沿AC方向以每秒的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒. (1)当点P 在线段AO 上运动时.①请用含x 的代数式表示OP 的长度; ②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围); (2)显然,当x=0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.2011年中考数学模拟试卷 参考答案C第24题一.仔细选一选(本题有10个小题,每小题3分,共30分.)二.认真填一填 (本题有6个小题, 每小题4分, 共24分.)11 x >2 12. 4 13. 12 ,14.15.16.三.全面答一答 (本题有8个小题, 共66分.) 17. (本题6分) 解:原式=2)2)(2()1(12+=+--⋅--a aa a a a a a ……… 3分 当a=-1时, …………….2分 原式= -1 …………….1分18. (本题6分) 解:(1)图略 ………… ………………………………3分(2)()()1212y x x =-+ ………… ……………………………3分19. (本题6分) (1)解: ∵AB 为⊙O 的弦,C 为劣弧AB 的中点,8AB = ∴OC AB ⊥于E ∴ 142AE AB == ……1分 又 ∵5AO = ∴3OE ==∴ 2CE OC OE =-= ……1分 在Rt △AEC 中,21tan 42EC BAC AE ∠=== ……1分 (2)AD 与⊙O 相切. ……1分 理由如下:∵OA OC = ∴C OAC ∠=∠∵由(1)知OC AB ⊥ ∴ ∠C+∠BAC =90°. ……1分 又∵BAC DAC ∠=∠ ∴90OAC DAC ∠+∠=︒ ……1分 ∴AD 与⊙O 相切.E20. (本题8分) (1) 被抽查的居民中,人数最多的年龄段是21~30岁…………2分(2)总体印象感到满意的人数共有83400332100⨯=(人)31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) …………………………………2分图略…………………………………1分(3) 31~40岁年龄段被抽人数是2040080100⨯=(人)总体印象的满意率是66100%82.5%83%80⨯=≈………………………1分41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人,总体印象的满意率是5388.3%88%60=≈………………………1分∴41~50岁年龄段比31~40岁年龄段对博览会总体印象的满意率高…………1分21. (本题8分)解:⑴CE作法正确得2分,F点作法正确得1分,K点标注正确得1分;⑵△CKF∽△ACF∽△EAK;△CAK∽△CEA(注:共4对相似三角形,每正确1对可各得1分)22. (本题10分)解:过点B分别作B E⊥CD于E,B F⊥AD于F.由题,∠BDE=60°,∠BCE=45°,∠BDF=45°,∠BAF=30°.………………2分∴DE=50,…………………………………1分BE=1分CE=1分∴BC=1分∵BF=1分∴AB=…………………………………1分∴50394AB BC CD km++==.……………1分EF∴该火车从A 市到D市共行驶了(50394AB BC CD km ++==)km .………1分 23.(本题10分)解:(1)∵ 30 000÷5 000=6, ∴ 能租出24间. ……………2分 (2)设每间商铺的年租金增加x 万元,则 (30-5.0x )×(10+x )-(30-5.0x )×1-5.0x×0.5=275, ………2分 2 x 2-11x +5=0, ∴ x =5或0.5,∴ 每间商铺的年租金定为10.5万元或15万元. ……………2分 (3)275万元不是最大年收益 ……………1分 当每间商铺的年租金定为12.5万元或13万元. ……………2分 达到最大年收益,最大是285万元 ……………1分 24.(本题12分) . 解:(1)①由题意得∠BAO=30°,AC ⊥BD ∵AB=2 ∴OB=OD=1,∴……………2分②过点E 作EH ⊥BD ,则EH 为△COD 的中位线∴12EH OC ==∵DQ=x ∴BQ=2-x∴)323)(2(21x x S BPQ --⨯=∆ …………………………1分 23)2(21⨯-⨯=∆x S BEQ …………………………1分 ∴233431132+-=+=∆∆x x S S y BEQ BPQ …………………………2分 (2)能成为梯形,分三种情况:当PQ ∥BE 时,∠PQO=∠DBE=30°∴tan 30o OP OQ==即13x =- ∴x=25C注意事项 :1.请先填写班级、姓名、学号及试场号、座位号2.请保持答卷卷面清洁,不要折叠、破损。

2011年中考模拟试卷数学试卷及答案(2)

2011年中考模拟试卷数学试卷及答案(2)

14.
15.
16.
三.全面答一答 (本题有 8 个小题, 共 66 分.)
17. (本题 6 分) 解:原式= a 2 a(a 1) a ……… 3 分 a 1 (a 2)(a 2) a 2
当 a=-1 时, 原式= -1
…………….2 分 …………….1 分
18. (本题 6 分) 解:(1)图略 ………… ………………………………3 分
(2) y 1 x 2 x 1 ………… ……………………………3 分
2
19. (本题 6 分) (1)解: ∵ AB 为⊙O 的弦, C 为劣弧 AB 的中点, AB 8
∴ OC AB 于 E∴ AE 1 AB 4 2
……1 分
又 ∵ AO 5 ∴ OE OA2 OE2 3
abc
D. sinA∶sinB∶sinC
FO E
B
C
D
第9题
1 10.现在把一张正方形纸片按如图方式剪去一个半径为 40 2厘米的 圆面后得到如图纸片,且该
4
纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸
片的边长约为( )厘米﹒(不计损耗、重叠,结果精确到 1 厘米, 2≈1.41,
|t| ()
A.必在 t 轴的上方
B.必定与坐标轴相交
C.必在 y 轴的左侧
D.整个图像都在第四象限
9.如图,△ABC 的三边分别为 a、b、c,O 是△ABC 的外心,OD⊥BC,OE⊥ACA,OF⊥AB,
则 OD∶OE∶OF= ( A. a∶b∶c C. cosA∶cosB∶cosC

111
B. ∶ ∶
D
Q
E
A

2011年湖南省长沙市中考数学真题及标准答案

2011年湖南省长沙市中考数学真题及标准答案

2011年长沙市初中毕业学业水平考试试卷数学注意事项:1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量l20分钟,满分I20分。

一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项。

本题共l0个小题,每小题3分,共30分) 1.2-等于A.2ﻩB.2- ﻩC .12ﻩD .12- 2.下列长度的三条线段,能组成三角形的是A .1、l、2B .3、4、5ﻩ C.1、4、6 D .2、3、73.下列计算正确的是A .133-=-B.236a a a ⋅= C .22(1)1x x +=+ﻩD.32222=4.如图,在平面直角坐标系中,点P(-1,2)向右平移3个单位长度后的坐标是A.(2,2)ﻩﻩB.(42-, )C.(15-, )ﻩD.(11--,)5.一个多边形的内角和是900°,则这个多边形的边数为ﻩ A.6 B.7 C .8 ﻩD .96.若12x y =⎧⎨=⎩是关于工x y 、的二元一次方程31ax y -=的解,则a 的值为A.5- B .1- C.2 D.77.如图,关于抛物线2(1)2y x =--,下列说法错误的是A.顶点坐标为(1,2-)B .对称轴是直线x =lC.开口方向向上D.当x>1时,Y 随X 的增大而减小8.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美"相对的面上的汉字是A.我 B.爱 C .长 D.沙9.谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A 等级的人数占总人数的A.6% B.10% C.20% D .25%10.如图,等腰梯形ABCD 中,AD ∥BC ,∠B=45°,AD =2,BC=4,则梯形的面积为A .3B .4C .6 D.8二、填空题(本题共8个小题,每小题3分,共24分)11.分解因式:22a b -=____________。

2011年中考数学模拟试题及答案

2011年中考数学模拟试题及答案

1 1 1数学模拟试题本试卷分第I 卷(选择题)和第U 卷(非选择题)两部分。

满分120分,考试用 时120分钟。

第I 卷(选择题共42分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答 题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动, 用橡皮擦干净后,再选涂其它答案,不能答在试卷上。

3. 考试结束,将本试卷和答题卡一并收回。

一、选择题(本大题共14小题,每小题3分,满分42分)在每小题所给的四个 选项中,只有 一项是符合题目要求的。

1. 9的算术平方根是 A . 3 B . -3C . - 3D . - 92 •今年初,惊闻海地发生地震,中国政府和人民在第一时间作出支援海地的决定:1月13日,中国红十字会向海地先期捐款 204959美元,用科学记数法表示并保留三个有效数字应为(B )3、下列运算正确的是()A . 3X 2-:X =2X B . (x 2)3=x 54. 对于数据:85,83,85,81,86.下列说法中正确的是(B )A .这组数据的中位数是 84B .这组数据的方差是 3.25A . 2.050 10B 52.05 10 C630.205 10 D . 205 103412X -X X 2 2 2D . 2x 3x =5xC •这组数据的平均数是 85D.这组数据的众数是865. 一个几何体的三视图如右图所示,这个几何体是( D )5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序, 但具体顺序忘记了,那么小明第一次就拨通电话的概率是第5题图A. D.12111C9. 如图,三个天平的托盘中形状相同的物体质量相等.图⑴、图⑵所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置(C ).A.3个球B.4个球C.5个球D.6个球亠 oAAAz -xcferriz X EDAZV \onAy 、 /II) (2)⑶10. 一次函数y =kx ■ k -2一定过定点( ) A.(-1,-2)B.(72)C.(1,2)D.(1,-2)13.在平面直角坐标系中,对于平面内任一点P a, b 若规定以下两种变换:① f(a,b)=(T ,七).如 f(1,2) =(-1,-2)6.已知,如图,AB 是O O 的直径,点 D,C 在O O 上,联结 ADBD DC AC,如果/ BAD=25,那么/ C 的度数是( )A. 75B. 65C. 60D. 507.如图折叠直角三角形纸片的直角,使点 C 落的点E 处.已知AB=8.3 , / B =30° ,则DE 的长A. 6B.4C. 4.3D. 2,3D在斜边AB 上 是(B )&已知一个圆锥的底面积是全面积的A. 60 oB. 90 oC.1201 ,那么这个圆锥的侧面展开图的圆心角是( 3o D.180 o11.如图,反比例函数 y = k 与O O 的一个交点为(2,1),则图中阴影部分的面积是( x3 A.-4B.二5 C.-二412.已知二次函数y =ax 2+bx+c 的图象如图所示,那么下列判断中不正确的是2B. b -4ac > 0C.2a+b> 0D.4a-2b+c<0O)A. abc > 0 (第12题图)18..小明最近的十次数学考试成绩(满分 150分)如下表所示14题图第u 卷(非选择题共78分)注意事项:1. 用钢笔或圆珠笔直接答在试卷上。

2011年中考模拟试卷数学卷及答案

2011年中考模拟试卷数学卷及答案

2011年中考模拟试卷数学卷及答案
请同学们注意:
1、本试卷分试题卷和答题卷两部分,满分为120分,考试时间为100分钟;
2、所有答案都必须写在答题卷标定的位置上,务必题号对应。

一.仔细选一选(本题有10个小题,每小题3分,共30分)
1.下列运算正确的是( )
A. B. C. D.
2.在函数中,自变量x的取值范围是( )
A. B. C. le; D. ge;
3.我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将”8500亿元”用科学记数法表示为( )
A. 元
B. 元
C. 元
D. 元
4.某住宅小区六月份1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是( )
A.30吨
B. 31 吨
C.32吨
D.33吨
5. 如图,已知⊙O的两条弦AC,BD相交于点E,
ang;A=75o,ang;C=45o,
那么sinang;AEB的值为( )
A. B. C. D.
2011年中考模拟试卷数学卷及答案完整版下载。

2011年中考数学模拟考试参考答案

2011年中考数学模拟考试参考答案

2011年中考数学模拟考试参考答案一、选择题:DCAB DCDB二、填空题:9、略 10、1 11、a 2)1(+a 12、-313、21 14、110° 15、3 16、11+n +)1(1+n n 三、解答题:17、1x =0,2x =31 18、10边形19、-220、-25﹤x ≤3,数轴表示略 21、BE ∥DF ,BE =DF ,证明略22、(1)50人 (2)10人,补齐图形略 (3)160人23、在Rt ABC ∆中,∵10=BC ,︒=∠45CAB ,∴AB=45tan 10=10(米) ……3分 在Rt DBC ∆中,∵︒=∠30CDB ∴30tan 10=DB =310米 ……6分 则DA=DB-AB=10310-≈10×1.73210-= 7.32米. ……8分 ∵3 + DA 10>,所以离原坡角10米的建筑物应拆除. ……9分 答:离原坡角10米的建筑物应拆除. ……10分24、⑴解:∵B 点坐标为(0.2),∴OB =2,∵矩形CDEF 面积为8,∴CF=4.∴C 点坐标为(一2,2).F 点坐标为(2,2)。

设抛物线的解析式为2y ax bx c =++,因过三点A(0,1),C(-2.2),F(2,2)得1242242a b c a b c ⎧⎪=-+⎨⎪=++⎩解这个方程组,得1,0,14a b c === ∴此抛物线的解析式为 2114y x =+ ………… (3分) (2)解:①过点B 作BN BS ⊥,垂足为N .∵P 点在抛物线y=214x 十l 上.可设P 点坐标为21(,1)4a a +. ∴PS =2114a +,OB =NS =2,BN =a ∴PN=PS —NS=2114a - ………………………… (4分)在Rt △PNB 中.PB 2=222222211(1)(1)44PN BN a a a +=-+=+∴PB =PS =2114a +………………………… (5分) ②根据①同理可知BQ =QR ∴12∠=∠,又∵ 13∠=∠,∴23∠=∠,同理∠SBP =5∠………………………… (6分)∴2523180∠+∠=︒ ∴5390∠+∠=︒∴90SBR ∠=︒∴ △SBR 为直角三角形.………………………… (7分) ③ 若以P 、S 、M 为顶点的三角形与以Q 、M 、R 为顶点的三角形相似,∵90PSM MRQ ∠=∠=︒,∴有∆PSM ∽∆MRQ 和∆PSM ∽△QRM 两种情况。

2011年湖南省长沙市中考数学试卷解析

2011年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共10个小题,每小题3分,共30分)1.(3分)(2015•东莞)|﹣2|=()A.2 B.﹣2 C.D.【考点】M113 绝对值.【分析】根据绝对值的性质可知:|﹣2|=2【难度】容易题【解答】A.【点评】本题主要考查了绝对值的性质,较为简单,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2011•长沙)下列长度的三条线段,能组成三角形的是()A.1、1、2 B.3、4、5 C.1、4、6 D.2、3、7【考点】M322 三角形三边的关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.A、1+1=2,不能组成三角形;B、3+4>5,能够组成三角形;C、1+4<6,不能组成三角形;D、2+3<7,不能组成三角形.【难度】容易题【解答】B.【点评】本题重点考查了三角形的三边关系,比较简单,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,掌握这个判定方法是解答本题的关键.3.(3分)(2011•长沙)下列计算正确的是()A.3﹣1=﹣3 B.a2•a3=a6 C.(x+1)2=x2+1 D.【考点】M11J 二次根式混合运算;M11S 同底数幂的乘法;M11O 指数幂;M11L 完全平方公式和平方差公式.【分析】按照运算的法则逐个计算即可得出答案.A、3﹣1=,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、(x+1)2=x2+2x+1,故本选项错误;D、,故本选项正确;【难度】容易题【点评】本题主要考查了二次根式的混合运算,同底数幂的乘法、完全平方公式以及负整数指数幂等知识点,比较简单,熟练掌握运算法则是解题关键.4.(3分)(2011•长沙)如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(﹣4,¬2) C.(﹣1,¬5) D.(﹣1,﹣1)【考点】M13B 坐标与图形变化【分析】根据平移的性质,∵点P(﹣1,2)向右平移3个单位长度,∴横坐标为﹣1+3=2,纵坐标不变,平移后的坐标为(2,2).【难度】容易题【解答】A.【点评】本题重点考查了坐标与图形变化,比较简单,熟练掌握图形变化的性质是解答本题的关键.5.(3分)(2012•安顺)一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.9【考点】M331 多边形的内(外)角和.【分析】设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.【难度】容易题【解答】B.【点评】本题主要考查多边形的内角和定理,比较简单,解题关键是根据等量关系列出方程解出答案.6.(3分)(2011•长沙)若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.7【考点】M12E 二元一次方程及二元一次方程组的解.【分析】把代入ax﹣3y=1中,∴a﹣3×2=1,a=1+6=7【难度】容易题【点评】本题主要考查了二元一次方程的解,较为简单,解题关键是要正确了解二元一次方程的解的概念.7.(3分)(2011•长沙)如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()A.顶点坐标为(1,﹣2)B.对称轴是直线x=lC.开口方向向上D.当x>1时,y随x的增大而减小【考点】M162 二次函数的的图象、性质.【分析】∵抛物线y=(x﹣1)2﹣2,A、因为顶点坐标是(1,﹣2),故说法正确;B、因为对称轴是直线x=1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>1时,y随x的增大而增大,故说法错误.【难度】容易题【解答】D.【点评】本题重点考查了二次函数的性质,较为简单,解题关键是要能熟练掌握二次函数的性质.8.(3分)(2012•长沙)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美“相对的面上的汉字是()A.我B.爱C.长D.沙【考点】M415 几何体的展开图.【分析】这是一个正方体的平面展开图,共有六个面,其中面“美”与面“长”相对,面“爱”与面“丽”相对,“我”与面“沙”相对.【难度】容易题【解答】C.【点评】本题主要考查了几何体的展开图,较为简单,难点在于需要考生有一定空间想象能力.9.(3分)(2011•长沙)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的()A.6% B.10% C.20% D.25%【考点】M216 统计图(扇形、条形、折线).【分析】根据图中所给的信息,用A等级的人数除以总人数的即可解答.10÷(10+15+12+10+3)=20%.【难度】容易题【解答】C.【点评】本题重点考查条形统计图的应用,较为简单,条形统计图能清楚地表示出每个项目的数据.解题关键是要学会从统计图中获取必要的解题信息.10.(3分)(2011•长沙)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2,BC=4,则梯形的面积为()A.3 B.4 C.6 D.8【考点】M337 等腰梯形的性质与判定.【分析】过A作AE⊥BC交BC于E点.∵四边形ABCD是等腰梯形.∴BE=(4﹣2)÷2=1.∵∠B=45°,∴AE=BE=1.∴梯形的面积为:×(2+4)×1=3.【难度】中等题【解答】A.【点评】本题主要考查了等腰梯形的性质,考查的知识点为:等腰梯形的两腰相等,同一底上的两个角相等,掌握等腰梯形的这一性质是解题关键.二、填空题(本题共8个小题,每小题3分,共24分)11.(3分)(2013•海南)因式分解:a2﹣b2=.【考点】M11K 因式分解.【分析】依据平方差公式,所依a2﹣b2=(a+b)(a﹣b).【难度】容易题【解答】(a+b)(a﹣b).【点评】本题主要考查了因式分解的概念,也涉及到了平方差公式的运用,较为简单.12.(3分)(2011•盘锦)反比例函数y=的图象经过点(﹣2,3),则k的值为.【考点】M153 求反比例函数的关系式.【分析】把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.【难度】容易题【解答】﹣6.【点评】本题主要考查了求反比例函数的关系式这一知识点,较为简单,解题关键是懂得将点的坐标代入从而求得解析式.13.(3分)(2011•长沙)如图,CD是△ABC的外角∠ACE的平分线,AB∥CD,∠ACE=100°,则∠A=.【考点】M318 角平分线的性质与判定M31C 平行线的判定及性质.【分析】∵AB∥CD,∴∠A=∠ACD(两直线平行,内错角相等);又∵CD是△ABC的外角∠ACE的平分线,∠ACE=100°,∴∠ACD=∠ACE=50°;∴∠A=50°;【难度】容易题【解答】50°.【点评】本题重点考查了平行线的性质,同时考查了角平分线的性质,较为简单,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.14.(3分)(2011•长沙)化简:=.【考点】M11N 分式运算.【分析】根据同分母的加减运算法则计算即可求得答案.所以===1.【难度】容易题【解答】1.【点评】本题主要考查了分式运算,较为简单,掌握其运算法则是解答本题的关键.15.(3分)(2011•长沙)在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是.【考点】M222 概率的计算.【分析】从中任意抽取一件检验,则抽到不合格产品的概率是=0.03=3%.故答案为3%.【难度】容易题【解答】3%.【点评】本题主要考查的是概率的计算,较为简单,熟练掌握概率公式是解答本题的关键.16.(3分)(2011•长沙)已知菱形的两条对角线长分别是6cm和8cm,则周长是cm.【考点】M334 菱形的性质与判定M32B 勾股定理.【分析】∵菱形的对角线互相垂直平分,两条对角线的一半与一边构成直角三角形,根据勾股定理可得菱形的边长为=5cm,则周长是4×5=20cm.【难度】容易题【解答】20.【点评】本题重点考查了菱形的性质以及勾股定理的运用,比较简单,熟练掌握菱形的对角线互相垂直平分这一性质是解题关键.17.(3分)(2011•长沙)已知a﹣3b=3,则8﹣a+3b的值是.【考点】M11H 代数式.【分析】∵a﹣3b=3.∴8﹣a+3b=8﹣(a﹣3b)=8﹣3=5.【难度】容易题【解答】5.【点评】本题主要考查了代数式的求值问题,较为简单,解题关键是将已知条件变形用整体代入法求出答案.18.(3分)(2011•长沙)如图,P是⊙O的直径AB延长线上的一点,PC与⊙O 相切于点C,若∠P=20°,则∠A=°.【考点】M348 切线的性质与判定;M344 圆心角与圆周角M327 等腰三角形性质与判定.【分析】∵PC与⊙O相切于点C,∴OC⊥CP,∵∠P=20°,∴∠COB=70°,∵OA=OC,∴∠A=35°.【难度】容易题【解答】35°【点评】本题主要考查了切线的性质与判定、圆心角与圆周角以及等腰三角形的性质,较为简单,解题的关键在于掌握切线的性质.三、解答题(本题共2个小题,每小题6分,共12分)19.(6分)(2011•长沙)已知a=,b=20110,c=﹣(﹣2),求a﹣b+c的值.【考点】M11A 实数的混合运算;M111 相反数;M117 平方根、算术平方根、立方根;M11O 指数幂.【分析】此题较为简单,根据所求,先把a、b、c的值代入,再根据算术平方根、零指数幂、相反数的知识,将每一项的值求出来,然后根据实数的运算法则求得计算结果.【难度】容易题【解答】解:a﹣b+c=﹣20110﹣(﹣2)=3﹣1+2=4.(6分)【点评】本题是一道计算题,考查了考生的计算功底,做计算类题型时一定要细心运算,防止粗心大意,解决本题的关键是熟练掌握相反数、指数幂以及算术平方根等考点的运算.20.(6分)(2011•长沙)解不等式2(x﹣2)≤6﹣3x,并写出它的正整数解.【考点】M12I 一元一次不等式(组)的解及解集M12J 解一元一次不等式(组)M12H 不等式的相关概念及基本性质.【分析】根据解一元一次不等式的基本步骤求出解集,再从不等式的解集中找出适合条件的正整数即可.【难度】容易题【解答】解:不等式2(x﹣2)≤6﹣3x,解得,x≤2,(4分)∴正整数解为1和2 .(6分)【点评】本题主要考查了一元一次不等式等相关知识点,属于基础题型,解答本题的关键是熟练掌握一元一次不等式的解法.四、解答题(本题共2个小题,每小题8分,共16分)21.(8分)(2011•长沙)“珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,物业公司随机抽取了今年某一天本小区10户居民的日用(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?【考点】M211 总体、个体、样本、容量;M215 频数、频率、极差;M212 平均数、方差和标准差.【分析】(1)此问简单,直接根据极差和平均数的概念求解即可.(2)此问比较简单,根据去年同一天这10户居民的平均日用电量为7.8度,求出这10户居民这一天平均每户节约的度数,再用样本估计总体的方法求出该小区200户居民这一天共节约了多少度电.【难度】容易题【解答】解:(1)这组数据中,日用电量最多的是5.6,最少的是3.4,∴极差=5.6﹣3.4=2.2,平均数=(4.4+4.0+5.0+5.6+3.4+4.8+3.4+5.2+4.0+4.2)÷10=4.4;(4分)(2)这10户居民这一天平均每户节约:7.8﹣4.4=3.4(度)∴总数为:3.4×200=680(度).(8分)【点评】本题重点考查了平均数和极差的概念以及用样本估计总体等知识点,并且要学会从图表中获取必要的解题信息,解题关键是掌握这些概念.22.(8分)(2011•长沙)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.【考点】M344 圆心角与圆周角;M321 三角形内(外)角和;M323 三角形的中位线M31C 平行线的判定及性质.【分析】(1)此问简单,首先由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据补角的性质求得∠BPD=115°,在△BPD中依据三角形内角和定理求∠B 即可;(2)此问难度适中,因为0到BD的距离为3,所以过点O作OE⊥BD于点E,则OE=3.根据平行线的性质知OE∥AD;又由O是AB的中点,由此可以判定OE是△ABD的中位线;最后由三角形的中位线定理计算AD的长度.【难度】中等题【解答】解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,∴∠CDB=40°;又∵∠APD=65°,∴∠BPD=115°;∴在△BPD中,∴∠B=180°﹣∠CDB﹣∠BPD=25°;(4分)(2)过点O作OE⊥BD于点E,则OE=3.∵AB是直径,∴AD⊥BD(直径所对的圆周角是直角);∴OE∥AD;(6分)又∵O是AB的中点,∴OE是△ABD的中位线,∴AD=2OE=6.(8分)【点评】本题重点考查了圆周角定理、三角形的中位线定理、三角形的内角和定理以及平行线的判定及性质,难度适中,三角形与圆的综合题属于中考常考知识点,需要考生牢牢掌握相关性质来解题.五、解答题(本题共2个小题,每小题9分,共18分)23.(9分)(2011•长沙)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?【考点】M12F 解二元一次方程组M12G 二元一次方程组的应用.【分析】(1)此问简单,首先读懂题意,设甲、乙班组平均每天掘进x米,y米,由甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米两个关系,列方程组求解.(2)此问较为简单,首先由第一问结论求出按原进度所需天数,再根据甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米求出按现在进度的天数,相减即可求出少用天数.【难度】中等题【解答】解:(1)设甲、乙班组平均每天掘进x米,y米,得,解得.(3分)答:甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米.(4分)(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b天完成任务,则a=(1755﹣45)÷(4.8+4.2)=190(天)b=(1755﹣45)÷(4.8+0.2+4.2+0.3)=180(天)∴a﹣b=10(天)(8分)答:少用10天完成任务.(9分)【点评】本题是一道应用题,主要考查了二元一次方程组的应用,解答此类题型的关键是要学会在题目中找到合适的等量关系并列出方程解答,须注意的是应用题一定要作答.24.(9分)(2011•长沙)如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8米,引桥水平跨度AC=8米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75.)【考点】M32E 解直角三角形M332 平行四边形的性质与判定M32C 锐角三角函数.【分析】(1)此问比较简单,首先由已知构造直角三角形如图,延长BE交AC 于F,过点E作EG⊥AC,垂足为G,解直角三角形BCF求得CF,又由已知BE∥AD,四边形AFED为平行四边形,所以DE=AF=AC﹣CF.(2)此问难度适中,在直角三角形BCF中,可求出BF,EG=MN=3米,解直角三角形EGF可求出EF,则BE=BF﹣EF,而AD=EF,从而求得两段楼梯AD 与BE的长度之比.【难度】中等题【解答】解:(1)延长BE交AC于F,过点E作EG⊥AC,垂足为G,在Rt△BCF中,CF===6.4(米),∴AF=AC﹣CF=8﹣6.4=1.6(米),∵BE∥AD,∴四边形AFED为平行四边形,(2分)∴DE=AF=1.6米.答:水平平台DE的长度为1.6米.(4分)(2)在Rt△EFG中,EG=MN=3米,∴EF===5米,即AD=5米,又∵BF===8米,∴BE=BF﹣EF=8﹣5=3米.(8分)所以两段楼梯AD与BE的长度之比5:3.(9分)【点评】本题重点考查了解直角三角形的应用,同时涉及到了平行四边形的性质与判定以及锐角三角函数,难度适中,解题关键是由已知首先构建直角三角形,运用三角函数求解.六、解答题(本题共2个小题,每小题10分,共20分)25.(10分)(2011•长沙)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.己知函数y=x2﹣2mx﹣2(m+3)(m为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.【考点】M136 函数图像的交点问题.M126 解一元二次方程M128 一元二次方程根的判别式M143 求一次函数的关系式M137 不同位置的点的坐标的特征M12G 二元一次方程组的应用M162 二次函数的的图象、性质【分析】(1)此问简单,直接根据题中给出的函数的零点的定义,将m=0代入y=x2﹣2mx﹣2(m+3),然后令y=0即可解得函数的零点;(2)此问较为简单,题目要证函数总有两个零点,我们很自然可以联想到用方程的判别式来证,令y=0,函数变为一元二次方程,只需证明△>0即可;(3)此问有一定难度,首先根据题中条件求出函数解析式,再求出A、B两点坐标,作点B关于直线y=x﹣10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB最小时,直线AM的函数解析式.【难度】较难题【解答】解:(1)当m=0时,该函数的零点为和;(3分)(2)令y=0,得△=(﹣2m)2﹣4[﹣2(m+3)]=4(m+1)2+20>0∴无论m取何值,方程x2﹣2mx﹣2(m+3)=0总有两个不相等的实数根.即无论m取何值,该函数总有两个零点.(6分)(3)依题意有x1+x2=2m,x1x2=﹣2(m+3)由,解得m=1.∴函数的解析式为y=x2﹣2x﹣8.令y=0,解得x1=﹣2,x2=4∴A(﹣2,0),B(4,0)作点B关于直线y=x﹣10的对称点B′,连接AB′,则AB’与直线y=x﹣10的交点就是满足条件的M点.易求得直线y=x﹣10与x轴、y轴的交点分别为C(10,0),D(0,﹣10).连接CB′,则∠BCD=45°∴BC=CB’=6,∠B′CD=∠BCD=45°∴∠BCB′=90°即B′(10,﹣6)设直线AB′的解析式为y=kx+b,则,解得:k=﹣,b=﹣1;(8分)∴直线AB′的解析式为,即AM的解析式为.(10分)【点评】本题综合考查了二次函数与一次函数,其中也涉及到了不同位置的点的坐标的特征、一元二次方程根的判别式、解一元二次方程以及函数图像的交点问题等知识点的运用,有一定难度,需要考生综合运用所学知识来解题,同时也要注意数形结合思想的运用.26.(10分)(2011•长沙)如图,在平面直角坐标系中,已知点A(0,2),点P 是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.【考点】M328 等边三角形性质与判定;M13B 坐标与图形变化;M32A 全等三角形性质与判定;M32B 勾股定理;M336 梯形及其中位线M135 动点问题的函数图像M137 不同位置的点的坐标的特征.【分析】(1)此问简单,首先过点B作BC⊥y轴于点C,根据等边三角形的性质即可求出点B的坐标,(2)此问难度适中,根据∠PAQ=∠OAB=60°,可知∠PAO=∠QAB,得出△APO≌△AQB总成立,得出当点P在x轴上运动(P不与Q重合)时,∠ABQ 为定值90°,(3)此问有一定难度,根据点P在x的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果.【难度】容易题【解答】(1)解:过点B作BC⊥y轴于点C,∵A(0,2),△AOB为等边三角形,∴AB=OB=2,∠BAO=60°,∴BC=,OC=AC=1,即B();(3分)(2)证明:当点P在x轴上运动(P不与O重合)时,不失一般性,∵∠PAQ=∠OAB=60°,∴∠PAO=∠QAB,在△APO和△AQB中,∴△APO≌△AQB(SAS),(5分)∴∠ABQ=∠AOP=90°总成立,∴当点P在x轴上运动(P不与O重合)时,∠ABQ为定值90°;(6分)(3)解:由(2)可知,点Q总在过点B且与AB垂直的直线上,可见AO与BQ不平行.①当点P在x轴负半轴上时,点Q在点B的下方,此时,若AB∥OQ,四边形AOQB即是梯形,当AB∥OQ时,∠BQO=90°,∠BOQ=∠ABO=60°.又OB=OA=2,可求得BQ=,由(2)可知,△APO≌△AQB,∴OP=BQ=,∴此时P的坐标为().(8分)②当点P在x轴正半轴上时,点Q在B的上方,此时,若AQ∥OB,四边形AOBQ即是梯形,当AQ∥OB时,∠ABQ=90°,∠QAB=∠ABO=60°.又AB=2,可求得BQ=,由(2)可知,△APO≌△AQB,∴OP=BQ=,∴此时P的坐标为().综上,P的坐标为()或().(10分)【点评】本题综合性较强,主要考查了等边三角形性质与判定、坐标与图形变化;全等三角形性质与判定、勾股定理、梯形及其中位线、动点问题的函数图像以及不同位置的点的坐标的特征等众多知识点,难度较大,解题关键是学会运用数形结合的思想.。

湖南省长沙市中考数学真题试卷

2011年长沙市初中毕业学业水平考试试卷数 学注意事项:1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量l20分钟,满分I20分。

一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项。

本题共l0个小题,每小题3分,共30分) 1.2-等于A .2B .2-C .12 D .12- 2.下列长度的三条线段,能组成三角形的是A .1、l 、2B .3、4、5C .1、4、6D .2、3、73.下列计算正确的是 A .133-=-B .236a a a ⋅=C .22(1)1x x +=+ D .=4.如图,在平面直角坐标系中,点P(-1,2)向右平移3个单位长度后的坐标是 A .(2,2) B .(42-, ) C .(15-, ) D .(11--,)5.一个多边形的内角和是900°,则这个多边形的边数为 A .6 B .7 C .8 D .9 6.若12x y =⎧⎨=⎩是关于工x y 、的二元一次方程31ax y -=的解,则a 的值为A .5-B .1-C .2D .77.如图,关于抛物线2(1)2y x =--,下列说法错误的是A .顶点坐标为(1,2-)B .对称轴是直线x=lC .开口方向向上D .当x>1时,Y 随X 的增大而减小8.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美"相对的面上的汉字是A .我B .爱C .长D .沙9.谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A 等级的人数占总人数的 A .6% B .10% C .20% D .25%10.如图,等腰梯形ABCD 中,AD ∥BC,∠B=45°, AD=2,BC=4,则梯形的面积为 A .3 B .4 C .6 D .8二、填空题(本题共8个小题,每小题3分,共24分) 11.分解因式:22a b -=____________。

2011年中考数学模拟卷及答案

中考数学模拟试卷四中一、选择题(每小题3分,共计30分)1、「的值是()A. —2B. 2C. 4D. —42、下列计算中,正确的是()A. = a a3 =a3C.屮一「=FD.(-ab)3= a2b23、若一个多边形的每个外角都等于45°,则它的边数是()A. 11B. 10C. 9D. 84、方程* 1的根为()A. x = lB. x = 0C. Xi-O^x^ -1D. x:-0,x2 --15、把一个小球以20m/s的速度竖直向上弹出,它在空中的高度h (m与时间t (S)满足关系:人加当..时,小球的运动时间为()A. 20sB. 2sC (2^2 + 2)sD (2屈一2)s6、某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择其中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为()A 1 D 3 1 3A、 B C、D、一4 4 8 87、下列各图中,是中心对称图形的是()8、图中的图象(折线OBCD)描述的是一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km②汽车在行驶途中停留了0.5h ;SO, 一血③汽车在整个行驶过程中的平均速度为^ ;④汽车出发后3~4.5h之间行驶的速度在逐渐减少。

其中正确的说法共有()A. 1个B. 2个C. 3个D. 4个9、某装修公司到建材市场买同样一种多边形的地砖密铺地面,在以下四种地砖中,该公司不能买()A、正三角形地砖B正方形地砖C正五边形地砖D、正六边形地砖10、如图,矩形ABC(11)与矩形CDEF全等,点B, C, D在同一条直线上,△ APE的顶点P在线段BD上移动,使厶APE为直角三角形的点P的个数是()A. 5B. 4C. 3D. 2A”、填空题(每小题3分,共计30 分)11、2007年中国月球探测工程的“嫦娥一号”卫星发射升空飞向月球。

2011年数学中考模拟试卷及答案

命题人:张晓云 2011年数学模拟试卷一、选择题(每小题3分,共30分) 1.下列四个数中,小于0的是( )(A )-2. (B )0. (C )1. (D )3. 2.下列运算正确的是 ( )A .523a a a =+B .632a a a =⋅C .22))((b a b a b a -=-+ D.222)(b a b a +=+3.右边的几何体是由五个大小相同的正方体组成的,它的正视图为( )4.两圆的半径分别为2和5,圆心距为7,则这两圆的位置关系为( ) (A )外离. (B )外切. (C )相交. (D )内切.5. 二次函数2)1(2+-=x y 的最小值是( )(A )2 (B )1 (C )-1 (D )-2 6.下列命题中不成立的是( )A .矩形的对角线相等B .三边对应相等的两个三角形全等C .两个相似三角形面积的比等于其相似比的平方D .一组对边平行,另一组对边相等的四边形一定是平行四边形7.下列四个点中,有三个点在同一反比例函数xk y =的图象上,则不在这个函数图象上的点是 ( )A .(5,1)B .(-1,5)C .(35,3) D .(-3,35-)(第2题)8.已知圆锥的底面半径为5cm ,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( )(A )125 (B )135 (C )1310 (D )13129.如图,四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE=( ) A .2 B .3 C .22D .2310. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度大小不变.则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( )二、填空题(每小题3分,共30分)11.新建的北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为 . 12.分解因式241a -= . 13.当x = 时,分式1x x+没有意义. 14.如图,AB//CD,CE 平分∠ACD ,若∠1=250,那么∠2的度数是 . 15.在一个不透明的袋子中有2个黑球、3个白球,它们除 颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸 出1个球,那么两个球都是黑球的概率为 . 16如图,沿倾斜角为30的山坡植树,要求相邻两棵树的水 平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

俯视图主(正)视图左视图2011年长沙市初中毕业学业水平考试模拟试卷(二)数 学表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( ) A 、3.84×410千米B 、3.84×510千米C 、3.84×610千米D 、38.4×410千米2、已知⊙O 1的直径r 为6cm ,⊙O 2的直径R 为8cm ,两圆的圆心距O 1O 2 为1cm ,则这两圆的位置关系是( )A 、内切B 、外切C 、相交D 、内含3、甲,乙超市为了促销一种定价相同的商品,甲超市连续两次降价10﹪,乙超市一次性降价20﹪,在哪家超市购买此种商品合算( )A 、甲B 、乙C 、同样D 、与商品价格相关4、如下图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( ) A 、5个 B 、6个C 、7个D 、8个5、下列运算正确的是( )A 、2222)2(4a a a =-B 、633)(a a a =⋅- C 、2312=÷D 、01111=---xx6、下列事件中,不可能事件是( )A 、掷一枚六个面分别刻有1~6数码的均匀正方体骰子,向上一面的点数是“5”B 、任意选择某个电视频道,正在播放动画片C 、肥皂泡会破碎D 、在平面内,度量一个三角形的内角度数,其和为360° 7、已知代数式3121y xa -与ba byx+--23是同类项,那么a 、b 的值分别是( )A 、⎩⎨⎧-==12b aB 、⎩⎨⎧==12b aC 、⎩⎨⎧-=-=12b aD 、⎩⎨⎧=-=12b a8、把一张长方形的纸片按如图1所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°A BCDEFMCDB图129、如图2,梯子跟地面的夹角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A、sinA的值越小,梯子越陡B、cosA的值越小,梯子越陡C、tanA的值越小,梯子越陡D、陡缓程度与上A的函数值无关10、直线2)3(:-+-=nxmyl(m,n为常数)的图象如图3,化简:︱3-m︱-442+-nn得()A、nm--3B、5C、-1D、5-+nm二、填空题(把正确的答案填在相应的横线上,每小题3分,共24分)11、函数1-=xy的自变量x的取值范围是______________。

12、把baaba2232-+分解因式的结果是______________。

13、如图(4),圆锥底面半径为cm9,母线长为cm36,则圆锥侧面展开图的圆心角为。

14、已知等腰ABC∆的腰AB=AC=10cm,,底边BC=12cm,则A∠的平分线的长是cm.15、不等式组⎩⎨⎧<+-<-622xx的解集是________________。

16、两个相似三角形的周长之比为4:9,那么它们的相似比为________________17、如图5,在等腰梯形ABCD中,AD∥BC,AB≠AD,对角线AC、BD相交于点O。

如下四个结论:①梯形ABCD是轴对称图形;②∠DAC=∠DCA;③△AOB≌△DOC;④△AOD∽△BOC请把其中错误结论的序号填在横线上:___________。

18、如图6,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,…,已知正方形ABCD的面积1s为1,按上述方法所作的正方形的面积依次为2s,3s,…..,ns(n为正整数),那么第8个正方形的面积8s=_______。

三、解答题(本题共2个小题,每小题6分,共12分)19、计算:012012tan60()(2)(1)3--+-⨯--ABCDO图5A BCDEFGHIJ图6B C20、先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-四、解答题(本题共2个小题,每小题8分,共16分)21、如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC 就是格点三角形。

在建立平面直角坐标系后,点B 为(-1,-1)。

(1)把△ABC 向左平移8格后得到△111C B A ,则点1B 的坐标为 ;(2)把△ABC 绕点C 按顺时针方向旋转90°后得到△C B A 22,则点2B 的坐标为 ; (3)把△ABC 以点A 为位似中心放大,使放大前后对应边长的比为1:2,则3B 的坐标为 ;22、已知:如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连结AE 、CF 。

(1)求证:AF=CE ;(2)若AC=EF ,试判断四边形AFCE 是什么样的四边形,并证明你的结论。

五、解答题(本题共2个小题,每小题9分,共18分)23、如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是9,抛物线与x轴交于O、M两点,OM=6;矩形ABCD的边BC在线段OM上,点A、D在抛物线上。

(1)P点的坐标、M点的坐标;(2)求抛物线的解析式;(3)设矩形ABCD的周长为l,(,0)C x,求l与x的关系式,并求l的最大值;2416吨(两种加工不能同时进行)。

(1)如果要求在18天内全部销售完这140吨蔬菜请完成下列表格:(2分配加工时间?(3)如果要求蔬菜都要加工后销售,且公司获利不能少于42200元,问至少将多少吨蔬菜进行精加工?六、解答题(本题共2个小题,每小题10分,共20分)25、如图:在等腰梯形ABCD中,AB∥CD,∠A=60°,AB=20cm,CD=8cm。

等边三角形PMN 的边长MN=20cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等边三角形PMN沿AB所在的直线匀速向右移动,直到点M与点B重合为止。

(1)等边三角形PMN在整个运动过程中与等腰梯形ABCD重叠部分的形状由形变为形,再变为形;(2)设等边三角形移动距离x(cm)时,等边三角形PMN与等腰梯形ABCD重叠的部分的面积为y,求y与x之间的函数关系式;26、已知:如图所示,抛物线c=2的顶点C在以D(―2,―2)为圆心,4为+axbxy+半径的圆上,且经过⊙D与x轴的两个交点A、B,连结AC、BC、OC。

(1)求点C的坐标;(2)求图中阴影部分的面积;(3)在抛物线上是否存在点P,使DP所在直线平分线段OC?若存在,求出点P的坐标;若不存在,请说明理由。

图(13)2011年长沙市初中毕业学业水平考试模拟试卷(二)数学参考答案二、填空题(把正确的答案填在相应的横线上,每小题3分,共24分) 11、x ≥1 12、2)(b a a - 13、90° 14、8 15、无解 16、4:9 17、(2) 18、128 三、解答题(本题共2个小题,每小题6分,共12分) 19.31-(每对一个知识点给1分)20.原式=59-x =-8 (三个整式的运算对一个给1分,合并正确给2分,代入求值1分)四、解答题(本题共2个小题,每小题8分,共16分)21.(1)(-9,-1)(2)(5,5) (3)(-5,-5)或(5,5)(每问2分,第3问答对一个就给2分)22.每问3分。

答案略。

五、解答题(本题共2个小题,每小题9分,共18分)23.(1)P (3,9) M (0,6) -------- 2分 (2)x x y 62+-= --------------3分 (3)16822++-=x x l -------2分,当x=2时,最大值为20-----------1分六、解答题(本题共2个小题,每小题10分,共20分)25.(1)等边三角形、等腰梯形、等边三角形----------3分(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧----------≤≤-----------≤≤----------------≤≤=分分分2)4020()40(232)2012(336362)120(4322x x x x x x y 下结论1分。

26.解:(1)如图,作CH ⊥x 轴,垂足为H , ∵直线CH 为抛物线对称轴,∴H 为AB 的中点。

…1分∴CH 必经过圆心D (―2,―2)。

∵DC=4,∴CH=6 ∴C 点的坐标为(―2,―6)。

…3分(2)连结AD ,在Rt △ADH 中,AD=4,DH=2,∴30H A D ∠=︒,AH ==。

4分 ∴120A D C ∠=︒ ∴21204163603S ππ︒⨯⨯==︒扇形DAC11422D A C S A H C D ==⨯=∴阴影部分的面积163D A C D A C S S S π=-=- 扇形 ……… 6分(3)又∵AH =H 点坐标为(―2,0),H 为AB 的中点,∴A 点坐标为(―2―0),B点坐标为(2,0)。

………7分又∵抛物线顶点C 的坐标为(―2,―6),设抛物线解析式为2(2)6y a x =+- ∵B(2-,0)在抛物线上,∴222)60a +-=,解得12a =。

∴抛物线的解析式为21(2)62y x =+- …………8分设OC 的中点为E ,过E 作EF ⊥x 轴,垂足为F ,连结DE ,∵CH ⊥x 轴,EF ⊥x 轴,∴CH ∥EF ∵E 为OC 的中点, ∴113,122E F C H O F O H ====。

即点E 的坐标为(―1,―3)。

设直线DE 的解析式为(0)y kx b k =+≠,∴223k b k b -=-+⎧⎨-=-+⎩,解得1,4k b =-=-,∴直线DE 的解析式为4y x =--。

……………9分若存在P 点满足已知条件,则P 点必在直线DE 和抛物线上。

设点P 的坐标为(m ,n ), ∴4n m =--,即点P 坐标为(m ,4m --), ∴214(2)62m m --=+-,解这个方程,得10m =,26m =- ∴点P 的坐标为(0,-4)和(-6,2)。

……10分。

相关文档
最新文档