第3讲蒸汽压缩式制冷的理论循环_制冷技术
制冷循环介绍

制 冷 循 环 介 绍
制 冷 循 环 介 绍
压缩机
制
低温系统
冷凝蒸发器
冷 循 环 介 绍
节流阀
蒸发器 制冷剂 R13
制 冷 循 环 介 绍
低温级R13制冷循环:蒸发温度-80度,蒸发冷凝器中冷 凝温度-25度(冷凝器); 高温级R22制冷循环:蒸发冷凝器中蒸发温度-30度(蒸发 器),冷凝温度30度;
(2-17)
在过热区,过热度越大,其等熵线的斜率 越大,根据式(2-1),得
w0 0
(2-18)
措施: 1、增加蒸发器的传热面积(有效过热) 制冷系数、制冷量变化?
制 冷 循 环 介 绍
2、压缩机吸气管道保温不好(无效过热)
制冷系数、制冷量变化?
3.回热循环 利用回热使节流前的制冷剂液体与压缩 机吸入前的制冷剂蒸气进行热交换,使 液体过冷、蒸气过热,称之为回热。
回热循环的性能指标如下: 单位制冷量
制 冷 循 环 介 绍
q' 0 h1 h4 h1 h4
单位功
(2-21)
w' h2 h1
制冷系数
(2-22)
q' 0 h1 h4 ' w' h2 h1
(2-23)
由图(2-5)可知,与无回热循环1-23-4-5-1相比较,回热循环的单位制冷 量增大了
(2-5)
q0=h1-h5=h1-h4(2-6)制 冷 循 环 介 绍
为了说明单级压缩蒸气制冷机理论循环的 性能,采用下列一些性能指标,这些性能 指标均可通过循环各点的状态参数计算出 来。 (1)单位质量制冷量q0
q0称为单位质量制冷量,习惯上取为正 值,在T-s图上用面积1-5-b-a-1代表, 而在lg p-h图上则用线段5-1表示。
第三节 单级蒸汽压缩制冷实际循环

第三节 单级蒸汽压缩制冷实际循环一、实际循环与理论循环的区别 ①实际吸气过程中,吸气管道及吸气阀门有摩擦阻力,因此,吸气压力1P 低于蒸发压力0P ,低温蒸汽进入压缩机汽缸后,将吸收缸壁热量,其比容增大,故实际吸气量减少。
②实际压缩过程不是等熵过程,而是一个多变指数不断变化的多变过程,是不可逆的。
③实际排气过程中流体要克服弹簧力,打开排气伐门,哥实际排气压力要高于冷凝压力K P 。
④实际冷凝过程和这个蒸发过程除了有流动阻力外,它们都是在有温差的情况下进行的 ⑤节流过程不是绝热节流,节流后焓值增大。
二、实际循环的简化 ①把排出管道外压力作为冷凝压力,即K P P =2,吸入管道压力即为蒸发压力01P P ='在冷凝和蒸发中压力当作不变 ② 实际压缩过程为多变压缩过程 ③节流过程为绝热节流三、实际循环的性能指标①输气系数λ :压缩机的实际输气量与理论输气量之比λ=hsv v (3-23)②单位实际压缩功:压缩机每压缩1Kg 制冷机蒸汽所消耗的功。
它是单位指示功和单位摩擦功之和。
即w s=wi+wm(3-24) w s =km i miww w ηηηη00=∙=(3-25)③指示效率:单位理论功与单位指示功之比 ii w w 0=η (3-26)④单位指示功 w i :用于压缩1Kg 蒸汽本身所消耗的功 ⑤单位摩擦功w m :压缩1Kg 蒸汽时为克服机械摩擦所消耗的功 w m=miw η (3-27)其中 m η为机械效率⑥单位制冷量 q 0=h5'1h - (kj/kg )(3-28)⑦单位实际压缩功kks h h w w ηη'120-== (kj/kg )(3-29)⑧实际循环制冷系数:k k s w q w q εεηε∙===000 (3-30)实际循环的制冷系数又称性能系数用 cop 表示⑨能效比:单位制冷量0q 与电动机的输入单位功1e w 之比,用 E.E.R 表示E.E.R=10100010e e mos e w qw q w q ηεηη⋅=⋅== (3-31)⑩实际循环热力完善度''000T T T k -⋅⋅==ηεεεβ (3-32)四、单级蒸汽制冷循环的热力计算 1.确定工作参数①蒸发温度 :对以空气为载冷剂的冷库,t 0 比空气温度低100C ,如以水或盐水为载冷剂则 t 0比载冷剂温度低4-60C ②冷凝温度 :对卧室、立式及淋水式冷凝器,用水冷却时,采用比冷凝器的冷却水进出口平均温度高5-70C 即t ()C t t k 021 752-++=(3-33)式中t 1 t 2为冷却水进口温度 当用空气冷却时,t k 比空气温度高 8-120C③吸气温度 :吸气温度取决于回气的过热度,按压缩机允许吸气温度见表3-1氟利昂制冷机吸气温度可取150C 2.热力计算图3-10 单级压缩制冷循环的图①制冷剂的循环量 G hh Q q Q -==100 (kg/s)(3-34)②压缩机实际输气量vs q Q q V Q V G v 00'10'=∙=∙= (3-35)③压缩机理论输气量 v vsh q Q v ∙==λλ(3-36)④根据循环的单位理论功0W ,可求出理论功率0N 、指示功率i N 、轴功率e NN 00W G ∙= (3-37)ii N N η0=(3-38)N Kmie N N ηη0==(3-39)⑤指示效率:00bt T T KI +=η(3-40)其中 T 0 ---绝对蒸发温度T K ---- 绝对冷凝温度 t 0----蒸发温度b----系数,对立式氨压缩机b=0.001,立式氟利昂压缩机机b=0.0025,或查有关图表。
蒸气压缩式制冷的热力学原理

➢(1)节流阀代替膨胀机 1kg制冷剂损失的膨胀功
We h3 h4' 034 '0
➢ 节流过程的不可逆损失
q'0 h4 h4' 4bb'4'4
T
3
Tk
T0 0 4'
Pk
qk 2' 2
Wc
P0
4 1'
q0
1
b' b a' a s
蒸气压缩式制冷的理论循环的T-s图
➢采用节流阀代替了膨胀机,一方面损失了膨 胀功,另一方面产生了无益气化,降低了制冷 能力,导致制冷系数有所下降。 ➢其降低的程度,称为节流损失。
lgp
pk
3 3'
2' 2
p0
4 q0
1 Wc
qk
0
h4=h3
h1 h2 h
蒸汽压缩制冷理论循环p h图
二、蒸气压缩式制冷理论循环的热力计算
(1)制冷剂单位质量制冷量q0:1kg制冷剂在蒸发器中 蒸发从被冷却介质吸收的热量。
q0=h1-h4=h1-h3 ;kJ/kg lgp
pk
3 3'
2' 2
p0
T
3 qk
2
T'k
∑w
T'0
4
1
q0
0
b
a
s
制冷循环性能指标
➢对于逆卡诺循环,制冷系数c' :
c
q0 q0 T0 W qk q0 Tk T 0
T T'k
3 qk
2
∑w
T'0
4
1
✓大小只取决于两个热源的温度; T0'↗或T k'↘ , → c' ↗
制冷理论循环

3.节流阀:
对制冷剂起节流降压作用,并调节进入蒸 发器的制冷剂流量。
4.蒸发器:
输出冷量的设备,制冷剂在蒸发器中吸收 被冷却对象的热量,从而达到制冷的目的。
液体蒸发制冷构成循环的四个基本过程是:
①制冷剂液体在低压(低温)下蒸发,成为低压 蒸气
②将该低压蒸气提高压力为高压蒸气 ③将高压蒸气冷凝,使之成为高压液体 ④高压液体降低压力重新变为低压液体,返回到 ①从而完成循环。
3.1 单级蒸汽压缩式制冷理论循环 三、制冷循环在热力性质图上的表示
3 4
B C
5
D
p
2 1A
单级蒸气压缩式制 冷系统图
A—压缩机; B—冷凝器; C—节流阀; D—蒸发器。
4
pk 3 2
5
p0 1
q0
w
h
理论循环在p-h图上的表示
总结
书本上33页的3题和4 题
3.1 单级蒸汽压缩式制冷理论循环 一、工作原理
3.1 单级蒸汽压缩式制冷理论循环
二、制冷剂热力状态图
T
P
h
C
X
S V
一点 两条线 三个区域
五种状态
六类等参线
P
h
3.1 单级蒸汽压缩式制冷理论循环 二、制冷剂热力状态图
T
S
C
X
H
P V
T H
s
一点 两条线 三个区域 五种状态 压缩式制冷循环
蒸汽压缩式制 冷的原理?
蒸汽压缩式制冷是利用液体制冷 剂汽化时吸热,蒸汽凝固时放热 的原理进行制冷的。
3.1 单级蒸汽压缩式制冷理论循环 一、工作原理
4
3
1
2
1.压缩机:
压缩和输送制冷蒸汽,并造成蒸发器中低 压、冷凝器中高压,是整个系统的心脏。
第五章 蒸汽压缩式制冷循环

三、常用制冷剂的特性
1、水(R718)
2ห้องสมุดไป่ตู้氨(R717)
氨属于无机化合物制冷剂,具有良好的 热力学性能,单位质量制冷量大。沸点:33.4℃.R717有较强的溶水性,对钢铁不腐 蚀,但含水时会腐蚀铜及其合金(磷青铜除 外),属于微溶于润滑油的制冷剂。缺点是 毒性大,有强烈的刺激性气味,会燃烧、会 爆炸。
(1)R12 分子式:CCl2F2 沸点:-29.8℃,凝固点-
155℃ (2)R22 分子式:CHClF2 沸点:-40.8℃,凝固点-
160℃ (3)R134a分子式: C2H2F4 沸点:-29.8℃,
凝固点-155℃
四、关于CFCS的替代 1、使用替代制冷剂的原因
O3+Cl→ClO+O2 ClO+O→Cl+O2 2、替代制冷剂时必须考虑的因素 (1)制冷剂在大气中存在的寿命; (2)臭氧损耗潜能ODP; (3)在逆使用的用途中,变暖影响总单量 TEWI;
具有液体过冷的制冷循环
二、吸气过热的影响
1、定义:制冷剂蒸气的温度高于同一压力下 的饱和蒸气温度称为过热。两者之间的温 差称为过热度。
2、p-h图
3、“无效”过热:制冷剂蒸气过热吸收的热 量全部来自蒸发器外。在实际制冷装置中, 为了减少有害过热,一般在吸气管道上包 扎一层隔热材料。
4、“有效”过热:制冷剂蒸气过热吸收的热 量全部来自蒸发器内被冷却介质。
主要用于大型制冷装置中。
3、氟利昂
氟利昂制冷剂是应用最广泛的制冷剂。 它无色、无味、不燃烧、毒性小。含氯原子 的氟利昂与明火接触产生剧毒的光气 (COCl2)渗透性强,单位容积制冷量小。
蒸汽压缩制冷循环

2. 制冷剂的p-h图
p
3 2Байду номын сангаас4 1 h
1-2:制冷剂在压缩机中的绝热压缩过程 2-3:制冷剂在冷凝器中的定压放热过程 3-4:制冷剂在膨胀阀中的绝热节流过程 4-1:制冷剂在蒸发器中的定压定温汽化过程
三、影响制冷系数ε的主要因素
1. 蒸发温度
p
原循环的制冷系数
h1 h4 h2 h1
热 泵
制冷装置—从低温处吸收热量,保持低温。 热泵—向高温处提供热量。 逆循环
Q1 Q2 W 1 供热系数 h W W
热泵传给高温物体的热量包括由消耗的机械功变成的热量 。所以,热泵的供热系数比工作在相同条件下制冷装置的制冷
系数大。直接用电炉取暖所消耗的能量要比用电机带动热泵消 耗的能量大得多,这是因为电炉至多只能将电能全部转化为热 能,而热泵循环不仅如此,还可将取自环境的热量一起送到需 要取暖的房间。
p
25 ℃ 3 30℃ 2
-15℃ 4
1
-5℃
h
附:单级压缩双蒸发器的制冷循环
T-s图及p-h图
高压蒸发器的蒸发压力由蒸发器后面的背压阀来控制,使之 具有较高的蒸发温度。5-6:绝热节流过程,6与8混合成状态点1 。
吸收制冷循环
由低温热源向高温热源传递热量必须消耗能量。在压缩式 制冷装置中要消耗机械功,而在吸收式制冷装置中则主要是消耗
第九节
蒸汽压缩制冷循环
• 一、蒸汽压缩制冷的理想循环 • 二、制冷剂p-h图的特征及其应用 • 三、影响制冷系数的主要因素
制冷循环 — 制冷系数 热泵循环 — 热泵系数 性能系数 COP =收益/花费的代价 h
一、蒸气压缩制冷的理想循环
空调用制冷技术-第一章_蒸气压缩式制冷的热力学原理

理论循环的假设
(3)离开蒸发器和进入压缩机的制冷剂蒸气为 蒸发压力下的饱和蒸气, 蒸发压力下的饱和蒸气,离开冷凝器和进入膨 胀阀的液体为冷凝压力下的饱和液体 (4)制冷剂在管道内流动时,没有流动阻力损失, 制冷剂在管道内流动时,没有流动阻力损失, 忽略动能变化,除了蒸发器和冷凝器内的管子外, 忽略动能变化,除了蒸发器和冷凝器内的管子外, 制冷剂与管外介质之间没有热交换 (5)制冷剂在流过节流装置时,流速变化很小, 制冷剂在流过节流装置时,流速变化很小, 可以忽略不计, 可以忽略不计,且与外界环境没有热交换
空调领域的制冷技术原理
制冷技术:
普通制冷:高于- 普通制冷:高于-120℃ ℃ 深度制冷:-120℃~20K 低温和超低温:20K以下
食品冷藏和空调用制冷技术属于普冷范围 液体气化制冷法
蒸气压缩式制冷 吸收式制冷
制冷技术的应用
空气调节 食品的冷藏链 机械、电子工业 医疗卫生事业 土木工程 体育事业 日常生活
N.L.Sadi.Carnot 1796-1832
萨迪.卡诺
1812年进巴黎查理曼大帝公立中学学习,不久以优异成绩考入巴黎工 艺学院,从师于S.-D.泊松、J.L.盖-吕萨克、A.-M.安培和D.F.J.阿喇 戈等人。1814年进工兵学校。1816年任少尉军官。1819年在巴黎任职 于总参谋部,次年请长假回家,编入预备役,继续从事他所酷爱的自 然科学的学习和研究。大概从1820年开始,他潜心于蒸汽机的研究。 1820 1824年,卡诺发表了名著《谈谈火的动力和能发动这种动力的机器》 1824 (Reflexions sur la puissance motrice du feu etsar les machines propres a developper cette puissance),但当时并没有引起人们的注意,直到 他逝世后才引起人们的重视。1827年,卡诺又被总参谋部召回服役, 并将他以上尉身份派往现役部队任军事工程师。在里昂等地经过短期 工作后,1828年卡诺永远辞去了在军队中的职务,回到巴黎继续研究 蒸汽机的理论。1830年卡诺因父亲的关系被推选为贵族院议员,但他 断然拒绝了这个职务,因为他是一个共和主义者,认为职位的世袭不 符合共和主义的思想。1832年因染霍乱病于 8月24日逝世,年仅36岁。 由于害怕传染,他的随身物件,包括他的著作、手稿,均被焚毁。
制冷技术 单级蒸气压缩式制冷循环

理论制冷循环与理想循环(逆卡诺循环)相比有两个特点
1.用膨胀阀(节流机构)代替膨胀机
2.干压缩代替湿压缩 汽液分离 蒸气过热
利:防止液滴进入压缩机气缸,产生液击、冲缸事故,损坏压缩机。 油裂解结碳
弊:造成压缩机排气温度升高,导致 轴承烧坏
1.蒸汽压缩式制冷循环的实现-四大部件的作用
逆卡诺循环实现的困难
1)压缩过程在湿蒸气区中进行的,危害性很大。( 什么是湿压缩,湿压缩的危害??)
2)膨胀机等熵膨胀不经济,不现实。因此,在实际 蒸气压缩式制冷循环中采用膨胀阀(也称节流阀 )代替膨胀机。
3)无温差的传热实际上是不可能的。因为冷凝器和 蒸发器不可能有无限大的传热面积。所以实际循 环只能使蒸发温度低于被冷却物体的温度,冷凝 温度高于冷却剂的温度。
1.85
2)已知R22的压力为0.1MPa,温度为10℃。求该状 态下R22的比焓、比熵和比体积。
2.1单级蒸汽压缩式制冷的理论循环 1.蒸汽压缩式制冷循环的实现-四大部件的作用; 2.压焓(lgp-h)图和温熵(T-S)图; 3.在特性图上表示制冷循环; 4.理论制冷循环计算。
计算题
有一逆卡诺循环,其被冷却物体(冷源)的温度恒 定为5℃,热源温度为40℃,求其制冷系数。
有一理想制冷循环,被冷却物体(冷源)的温度恒 定为5℃,环境介质(热源)的温度为25℃,两个传 热过程的传热温差均为5℃,试问: a) 逆卡诺循环的制冷系数为多少? b) 当考虑传热温差时,制冷系数又是多少?
计算题
两台制冷机的冷热源温度同为T0=260K,Tk=300K ,其制冷系数为E1=5.0,E2=4.0,试问哪台制冷机 的经济性好?若两台制冷机的冷热源温度不同:分 别为T01=260K,Tk1=300K, T02=240K, Tk2=300K,试问哪台制冷机的经济性好?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、理论制冷循环的热力计算
• 单位质量制冷量q0:1kg制冷剂在蒸发器内从被冷却物
体吸收的热量 。
q0=h1-h4 • 单位体积制冷量qv :压缩机每吸入1m3制冷剂蒸气(按
从而制冷;等压吸热。
4' 4 a
1' 1
b
s
二、压焓图(一点两线三区五态六参数)
• 等压线 — 水平线
• 等焓线 — 垂直线 • 等干度线 — 湿蒸气区域内曲线 • 等熵线 — 向右上方大斜率曲线 • 等容线 — 向右上方小斜率曲线
• 等温线 — 垂直线(液相区)→水平线(两相区)
→向右下方弯曲(过热蒸气区)
制
冷
技
术
第 3讲 单级蒸气压缩式制冷的理论循环
一、理论制冷循环
• 压缩机 :制冷系统的心脏,压缩
和输送制冷剂蒸气;等熵干压缩;
• 冷凝器:输出热量;等压放热;
理论制冷循环假设
T Tk Tk' T0' T0 0
• 节流阀 :节流降压,并调节进入
蒸发器的制冷剂流量;等焓节流;
Tk
3 3'
2 2'
T0
• 蒸发器:吸收热量(输出冷量)
消耗的压缩功 。
w0=h2-h1
• 制冷系数ε0:
q0 h1 h4 0 w0 h2 h1
• 热力完善度η : 0 h1 h4 Tk T0 c h2 h1 T0
例题:某空气调节系统需制冷量20kW,假定循环为单级蒸气压缩式
制冷理论基本循环,且选用氨作为制冷剂,工作条件为:蒸发温度 to=5℃,冷凝温度tk=40℃。试对该理论制冷循环进行热力计算。 解: h1=1460(kJ/kg) h2=1630(kJ/kg) h3=h4=380(kJ/kg) v1=0.245(m3/kg) 单位质量制冷量 q h h 1080 (kJ/kg) q 单位容积制冷量 q 4446.9 (kJ/m3) Q 质量流量 M q 0.0185 (kg/s) 体积流量 V M 0.0045 (m3/s) 单位冷凝热负荷 q h h 1250 (kJ/kg) 冷凝器热负荷 Q M q 23 (kW) 单位理论功 w h h 170 (kJ/kg) 压缩机理论耗功率QN M w 3 (kW) 理论制冷系数 N 6.67 T 273 5 热力完善度 T - T 273 40 273 5 7.94
吸气状态计),在蒸发器中所产生的制冷量 。
qv=q0 / v1=(h1-h4)/v1
• 制冷剂质量流量MR: MR=Qo / q0
• 制冷剂体积流量VR:
VR=MR*v1
• 单位冷凝负荷qk :1kg制冷剂在冷却和冷凝过程中放出
的热量 。 qk=h2-h3
• 单位理论压缩功 w0 :压缩机每压缩输送1kg制冷剂所
• 干压缩代替了湿压缩:
压缩机吸气状态为干饱和蒸气
p
pk p0 3 2
• 节流阀代替了膨胀机:
简化了设备,但会造成节流损失
4
1
• 热交换过程为等压过程,而 非等温过程
实现三个相区都能完成热交换
0
h3=h4
h1
h2 h
蒸气压缩制冷理论循环p h图
R717压焓图
R22压焓图
R134a压焓图
R717饱和液体及饱和蒸气热力性质表
三、理论制冷循环的压焓图
p 压焓图的作用:
pk p0 3 2
• 确定状态参数
• 表示热力过程
• 分析能量变化
4
1
0
h3=h4
h1
h2 h
蒸气压缩制冷理论循环p h图
四、状态点的确定
选用制冷剂的压焓图
制冷工作条件:Po和Pk
o 1 4
o
v
1
O
R
o
R
R
1
k
2
3
k
R
k
o
2
1
o
R
o
o
o
o
o
(不考虑传热温差)
o 84%
k
o
讨论:制冷理论循环中
q o w o q k 1080 170 1250
Qo N o Q k 20 3 23
符合能量守恒的基本原则
五、理论制冷循环的特点(对比理想制冷循环)