蒸汽压缩式制冷
蒸气压缩式制冷原理

蒸气压缩式制冷原理首先是压缩阶段。
蒸气压缩机是蒸气压缩式制冷器中的核心部件,它负责将低温低压的蒸汽抽入,通过压缩使其温度和压力增加。
这样,蒸汽的温度和压力就达到了高于室温和大气压的状态。
接下来是冷凝阶段。
经过压缩后,蒸汽进入冷凝器,这里蒸汽与冷凝介质(通常是空气或水)接触,通过传热使蒸汽冷却并凝结成液体。
冷凝过程中会释放出大量的热量,正是因为这个原理,所以冷凝器通常放在室外,以便将热量排出去。
然后是膨胀阶段。
冷凝成液体的介质通过膨胀阀进入蒸发器,此时液体的温度和压力都较低。
在蒸发器内部,液体与外界的物质(通常是空气或水)进行传热交换,从而使液体再次变为蒸汽。
在这个过程中,液体吸收了来自外部环境的热量,使得蒸发器的温度会降低。
最后是蒸发阶段。
在蒸发器中,液体通过吸热变为蒸汽,并且将吸收的热量带走。
由于液体蒸发时需要吸收大量的热量,因此蒸发器是制冷装置中温度最低的部分。
蒸发阶段中产生的蒸汽再次进入蒸气压缩机,循环再利用。
通过以上四个阶段的循环,制冷装置可以不断地将室内的热量排出去,并将室内的温度降低。
基本上所有蒸气压缩式制冷器,如空调和冰箱,都是根据这个原理来工作的。
然而,需要注意的是,蒸气压缩式制冷原理只是一种变温装置,而不是真正的制冷。
它通过将热量从一个地方转移至另一个地方,从而使一个地方降温,但它本身并不是自己生产冷气的。
所以,蒸气压缩式制冷设备需要一个外部冷源(如冷凝介质)来使蒸汽冷凝并释放热量,从而实现制冷效果。
总之,蒸气压缩式制冷原理是一种使用蒸汽的物态变化来实现制冷的方法。
通过蒸汽压缩、冷凝、膨胀和蒸发四个阶段的循环,室内的热量可以被排出去,从而实现制冷。
这种制冷原理被广泛应用于空调、冰箱等空调制冷设备中。
蒸汽压缩式制冷四大件

蒸汽压缩式制冷四大件常见的制冷系统是蒸汽压缩式制冷,它由四部分组成,分别为压缩机,冷凝器,节流装置,蒸发器组成。
构成由下图所示。
其他类型的制冷不一定有四大件,或少,或多。
比如半导体制冷,就只有制冷块,两换热器组成。
如下图:制冷块构成吸收式制冷就多的多,如下图:吸收式冰箱及其原理图。
为此,讲制冷四大件,主要针对蒸汽压缩式制冷这模式使用。
一、制冷的核心,压缩机:压缩机分类图1 活塞式活塞压缩机比较常见,大大小小都有,其制造工艺成熟,适用范围广,能量调节方便,被广泛使用在各种制冷场合。
其利用活塞往复运动,对气体进行压缩,又叫往复式压缩机。
原理结构如下图:开启式原理开启式机器半封闭全封闭2螺杆机由于螺杆的旋转运动代替了活塞式的往复运动,使整个压缩过程可持续进行,故运转平稳,无跳动现象。
机器振动小,基础简单,适用于高速运转;螺杆有很好的刚性和强度,无吸排气阀片,可允许湿蒸汽或液态制冷剂进入机体,无液击危险,同时采用高效转子型线和齿数比,无余隙运转;用高压缩比,用滑阀结构进行能量调节,在10%~100%内无级调节;机器易损件少,运行周期长,维修次数少;适用于多种制冷剂,由于喷油润滑,一般可不设油泵,润滑系统可大大简化;冷却好,排温低,一般在100℃以下,运行可靠,操作方便,结构简单,可以使用经济器,使用单级机就可以实现双级压缩的功能,提高低温工况下的制冷量和制冷系数。
但加工组装困难,精度要求高,噪音大,造价高。
在冷库,空调中都有广泛运用。
开启式螺杆压缩机3 离心式:离心机,通过叶轮高速旋转,压缩气体,特点是冷量大,与透平机联合效率更佳,适合于高温,大冷量场合。
负荷在30%至100%之间无极调整,低负荷时容易喘震。
广泛运用于中央空调,化工,纺织业。
离心式结构图半封闭离心机组开启式离心机组4 旋转式(涡旋机)广泛用于家用空调车用空调,运行平稳,调速方便,体积小。
冷量一般较小。
涡旋压缩机结构汽车空调用柱塞压缩机二、冷凝器:冷凝器(Condenser),为制冷系统的机件之一,属于换热器的一种,能把气体或蒸气转变成液体,将管子中的热量,以很快的方式,传到管子附近的介质中(空气,水等)。
第五章 蒸汽压缩式制冷循环

三、常用制冷剂的特性
1、水(R718)
2ห้องสมุดไป่ตู้氨(R717)
氨属于无机化合物制冷剂,具有良好的 热力学性能,单位质量制冷量大。沸点:33.4℃.R717有较强的溶水性,对钢铁不腐 蚀,但含水时会腐蚀铜及其合金(磷青铜除 外),属于微溶于润滑油的制冷剂。缺点是 毒性大,有强烈的刺激性气味,会燃烧、会 爆炸。
(1)R12 分子式:CCl2F2 沸点:-29.8℃,凝固点-
155℃ (2)R22 分子式:CHClF2 沸点:-40.8℃,凝固点-
160℃ (3)R134a分子式: C2H2F4 沸点:-29.8℃,
凝固点-155℃
四、关于CFCS的替代 1、使用替代制冷剂的原因
O3+Cl→ClO+O2 ClO+O→Cl+O2 2、替代制冷剂时必须考虑的因素 (1)制冷剂在大气中存在的寿命; (2)臭氧损耗潜能ODP; (3)在逆使用的用途中,变暖影响总单量 TEWI;
具有液体过冷的制冷循环
二、吸气过热的影响
1、定义:制冷剂蒸气的温度高于同一压力下 的饱和蒸气温度称为过热。两者之间的温 差称为过热度。
2、p-h图
3、“无效”过热:制冷剂蒸气过热吸收的热 量全部来自蒸发器外。在实际制冷装置中, 为了减少有害过热,一般在吸气管道上包 扎一层隔热材料。
4、“有效”过热:制冷剂蒸气过热吸收的热 量全部来自蒸发器内被冷却介质。
主要用于大型制冷装置中。
3、氟利昂
氟利昂制冷剂是应用最广泛的制冷剂。 它无色、无味、不燃烧、毒性小。含氯原子 的氟利昂与明火接触产生剧毒的光气 (COCl2)渗透性强,单位容积制冷量小。
蒸汽压缩式制冷原理

蒸汽压缩式制冷原理
蒸汽压缩式制冷原理是一种常见的制冷方式,广泛应用于家用空调、商用冷藏
设备以及工业制冷设备中。
该原理利用了蒸汽的物理特性,通过压缩、冷凝、膨胀和蒸发等过程,实现了制冷效果。
下面我们将详细介绍蒸汽压缩式制冷原理的工作过程和关键组件。
首先,蒸汽压缩式制冷原理的工作过程可以分为四个主要步骤,压缩、冷凝、
膨胀和蒸发。
在这个过程中,制冷剂(通常是氟利昂或氨)在制冷循环系统中不断循环流动,完成制冷作用。
在压缩阶段,制冷剂以低压状态进入压缩机,经过压缩机的工作,制冷剂的压
力和温度都会显著提高。
接着,制冷剂进入冷凝器,在冷凝器中,制冷剂通过与外界环境交换热量的方式,使其温度下降,从而变成高压液态制冷剂。
随后,高压液态制冷剂通过膨胀阀进入蒸发器,在蒸发器中,制冷剂受到蒸发
器内部低压环境的影响,从而发生蒸发过程,吸收周围的热量,使得蒸发器内部温度下降。
最后,制冷剂以低压气态状态再次进入压缩机,重复上述循环过程。
在整个蒸汽压缩式制冷原理中,压缩机、冷凝器、蒸发器和膨胀阀是四个关键
的组件。
压缩机负责将低压制冷剂压缩成高压状态,冷凝器用于将高压液态制冷剂冷凝成高压液态制冷剂,蒸发器则是用来将高压液态制冷剂蒸发成低压气态制冷剂,而膨胀阀则用来控制制冷剂的流量和压力。
总的来说,蒸汽压缩式制冷原理通过不断循环利用制冷剂的物理特性,实现了
从低温到高温的热量传递过程,从而达到制冷的效果。
这种原理简单、可靠,因此被广泛应用于各种制冷设备中。
以上就是关于蒸汽压缩式制冷原理的详细介绍,希望能对大家有所帮助。
蒸汽压缩式制冷系统的组成

蒸汽压缩式制冷系统的组成蒸汽压缩式制冷系统是一种常用于制冷和空调系统中的技术。
它的核心是压缩机,该压缩机通过压缩制冷剂,将其转化为高压高温的气体,然后通过冷凝器将其冷却,使其变成高压液体,最后通过蒸发器降温蒸发,产生冷量,从而完成制冷循环。
以下是蒸汽压缩式制冷系统的主要组成。
1. 压缩机:蒸汽压缩式制冷系统的核心部件,主要用于将低温低压的制冷剂压缩成高温高压的气态制冷剂,从而提高制冷效率。
压缩机的类型有很多种,包括活塞式压缩机、螺杆式压缩机、离心式压缩机等。
2. 冷凝器:压缩机压缩制冷剂后,产生的高温高压气体通过冷凝器散热,从而使其冷却成高压液态制冷剂。
冷凝器一般为管式或板式换热器,通常采用风冷或水冷方式散热。
3. 蒸发器:蒸发器是制冷系统中完成制冷的关键部件。
它将高压液态制冷剂通过节流装置降压成低压液态,在蒸发器内通过换热,与空气或冰水进行接触,从而产生冷量。
蒸发器一般为管式或板式的换热器。
4. 膨胀阀:膨胀阀负责在制冷系统中降低制冷剂的压力,使其从高压液态制冷剂转变为低压液态制冷剂,从而实现制冷的目的。
目前广泛采用的是电子膨胀阀和电磁膨胀阀。
5. 制冷剂:制冷剂是蒸汽压缩式制冷系统中完成制冷的重要介质。
一般采用氟利昂等环保制冷剂。
6. 油分离器:制冷系统中经常需要使用润滑油,因此需要设置油分离器来分离出油和制冷剂,防止油滞留在制冷系统中,影响制冷效果和运行稳定性。
7. 管道和阀门:管道和阀门是蒸汽压缩式制冷系统中的重要组成部分。
它们负责将制冷剂从一个部件输送到另一个部件,同时也需通过控制阀门来调整制冷系统的运行状态和效率。
综上所述,蒸汽压缩式制冷系统是一种由多个部件组成的复杂系统,其中压缩机、冷凝器、蒸发器、膨胀阀、制冷剂、油分离器、管道和阀门等部件相互协作,共同完成制冷和空调的功能。
随着制冷技术的不断发展,蒸汽压缩式制冷系统也在不断优化和改进,以提高其效率和环保性能。
蒸汽压缩式制冷的原理和工况

蒸汽压缩式制冷的原理和工况
蒸汽压缩式制冷系统是由压缩机、冷凝器、节流装置、蒸发器等四个主要部分组成。
当压缩机在进行工作的时候,会对进入压缩机的制冷剂气体进行压缩,经过压缩之后,低压会变成高压的状况,而气体此时会因为压缩而温度提升,进入冷凝器内对压缩机排出的高温高压气态制冷剂进行冷却,使其放热。
在温度和压力之下,气态的制冷剂会变成高压业态制冷剂,放出来的热量会起到冷却的作用。
高压业态制冷剂进入节流膨胀阀进行节流膨胀,压力降低以保证冷凝器与蒸发器之间的压差,便于节流后的低压液态制冷剂在要求的低压下进人蒸发器。
低压液体从周围介质吸收热量后蒸发为气体,而这周围介质可以是空气、水或其他物质。
制冷剂蒸发吸热,呈低压气态后再进入压缩机内进行压缩,从而完成了一个制冷循环,如此连续进行不断的循环而达到制冷的目的。
蒸汽压缩式制冷具有多方面的特点,第一是制冷温度范围是比较大的,在零下150度的温度下都可以正常来使用。
第二单机的容量大,规格多,有多个容量,用户在具体挑选的时候,可以根据自身的需求来挑选,能满足个性化的需求。
第三中小容量的设备结构比较紧凑,能在空调、食品冷藏等领域当中使用。
在外界环境温度比较低的状况下,综合性能会变得不太理想,所以说可靠性并不是很高,成本也会随着增加不少。
设备运行需要使用专门的制冷剂,而有的制冷剂会对环境造成一定的污染。
蒸汽压缩式制冷原理

蒸汽压缩式制冷原理蒸汽压缩式制冷系统是目前应用最为广泛的一种制冷方式,其原理简单而高效。
在蒸汽压缩式制冷系统中,蒸汽被压缩成高压蒸汽,然后通过冷凝器冷却成液态,并通过膨胀阀进行节流,形成低压蒸汽,最终吸收热量完成制冷循环。
下面将详细介绍蒸汽压缩式制冷原理的具体过程。
首先,蒸汽从蒸发器中吸收热量,并被蒸发成低压蒸汽。
在这个过程中,蒸汽从低温低压状态变为低温高压状态,吸收了大量的热量,使蒸发器内的物体得到降温。
这一步是制冷循环的起点,也是整个制冷过程中最关键的一步。
接着,低温低压的蒸汽被压缩机吸入,压缩机将低温低压的蒸汽压缩成高温高压的蒸汽。
在这一步骤中,蒸汽的温度和压力都得到了显著的提高,这也是制冷循环中消耗能量最多的一步。
压缩机的工作使得蒸汽的内能增加,成为高温高压蒸汽。
然后,高温高压的蒸汽通过冷凝器,被冷却成为高压液态。
在冷凝器中,蒸汽释放出大量的热量,通过冷却水或者风冷进行散热,使得蒸汽的温度迅速下降,从而变成高压液态。
这一步骤使得蒸汽的状态发生了明显的改变,从气态变为液态,也是整个制冷过程中的关键一环。
最后,高压液态蒸汽通过膨胀阀进行节流,变成低温低压的蒸汽,重新回到蒸发器中吸收热量,完成整个制冷循环。
膨胀阀的作用是使高压液态蒸汽迅速膨胀,降低温度和压力,使得蒸汽重新回到低温低压状态,为下一个循环做好准备。
蒸汽压缩式制冷系统通过不断循环这一系列步骤,实现了制冷的目的。
在这个过程中,蒸汽的状态不断发生变化,热量的吸收和释放也在不断进行,从而实现了对物体的制冷效果。
总的来说,蒸汽压缩式制冷原理是通过蒸汽的压缩、冷凝、膨胀等步骤,不断循环实现对物体的制冷。
这种制冷方式简单高效,应用广泛,是现代制冷技术中的重要组成部分。
通过对蒸汽压缩式制冷原理的深入了解,可以更好地掌握制冷技术的核心原理,为相关领域的工作和研究提供重要的理论支持。
蒸汽压缩式制冷技术的原理及应用

蒸汽压缩式制冷技术的原理及应用1. 引言蒸汽压缩式制冷技术是一种常见且广泛应用于空调、冷柜和汽车空调等领域的制冷技术。
本文将介绍蒸汽压缩式制冷技术的原理和应用。
2. 蒸汽压缩式制冷技术的原理蒸汽压缩式制冷技术基于蒸发和冷凝过程,利用压缩机将低压低温的蒸汽压缩成高压高温的蒸汽。
具体原理如下:2.1 蒸发过程蒸汽压缩式制冷技术中的蒸发过程是制冷循环的第一步。
在蒸发器中,低压低温的制冷剂吸收外部热量,从而蒸发成为低压蒸汽。
2.2 压缩过程经过蒸发过程产生的低压蒸汽被压缩机吸入,通过压缩机的工作,使蒸汽的压力和温度升高。
这个过程通常伴随着能量的输入。
2.3 冷凝过程高压高温的蒸汽进入冷凝器,通过与外部环境接触,释放热量并冷凝成高压液体制冷剂。
2.4 膨胀过程高压液体制冷剂通过膨胀阀降压,变成低压低温的制冷剂,循环回到蒸发器中进行下一轮制冷循环。
3. 蒸汽压缩式制冷技术的应用3.1 空调蒸汽压缩式制冷技术是家用和商用空调系统中常用的制冷技术。
空调系统通过蒸汽压缩循环来降低室内温度,提供舒适的环境。
3.2 冷藏冷冻蒸汽压缩式制冷技术被广泛应用于冷柜、冷库和冷冻车等冷藏冷冻设备中。
利用蒸汽压缩循环,可控制冷藏环境的温度,确保食品和药品等易腐败物品的质量和安全性。
3.3 汽车空调蒸汽压缩式制冷技术也被广泛应用于汽车空调系统中。
通过使汽车内部空气经过冷却和除湿过程,提供舒适的驾驶环境。
3.4 工业应用蒸汽压缩式制冷技术在许多工业领域也有应用。
例如,电子设备生产中的温度控制、制药行业中的冷凝设备和冷却塔、石化行业的冷却器等。
4. 结论蒸汽压缩式制冷技术通过压缩、蒸发、冷凝和膨胀等过程,实现了制冷循环。
该技术被广泛应用于空调、冷藏冷冻和汽车空调等领域,为我们的生活和工作提供了便利。
在今后的发展中,随着节能减排需求的增加,蒸汽压缩式制冷技术也会进一步优化和改进,以提高能效和节约能源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简化后的实际循环在lg p-h图上的表示
3.3.2实际因素对理想循环性能的影响
在实用上,根据实际条件对循环往往 要作一些改进,以便提高循环的热力完善 度。在单级制冷机循环中,这一改进主要 有液体过冷、吸气过热及由此而产生的回 热循环。
1. 液体过冷 将节流前的制冷剂液体冷却到低于 冷凝温度的状态,称为过冷。
q' 0 h1 h4 ' w' h2 h1
与无回热循环1-2-3-4-5-1相比较,回 热循环的单位制冷量增大了
q0 h4 h4 h1 h1 c p0 t R
但单位功也增大了 h1 ) ( h2 h1 ) w0 w' w0 ( h2
2-3-4表示制冷剂在冷凝压力pk下的等压冷却、冷凝过程
5
4
p
, k 3 (2) 2
5-6表示制冷剂在等焓下的节流过程
p
0
6-1表示制冷剂在蒸发压力p0下的等压汽化过程
6
,
1-2表示实际增熵压缩过程
1 1 1-1表示蒸气的过热过程 h
实际循环可表示为图中的1-1-2-3-4-5-6-1
图3-10
4)制冷剂在设备及管道内流动时, 存在着流动阻力损失,且与外界有热 量交换。 5)实际节流过程不完全是绝热的等 焓过程,节流后的焓值有所增加。 6)制冷系统中存在着不凝性气体。
图3-9
实际循环在T-s图(a)和lg p-h图(b)上的表示
简化后的实际循环
Lg p
4-5表示制冷剂在冷凝压力下的过冷过程
h1 h4 h4 h4 h2 h1
c t 0 h2 h1
2.吸入蒸气的过热
压缩机吸入前的制冷剂蒸气的温度高 于吸气压力下制冷剂的饱和温度时,称 为过热。具有吸气过热的循环,称为过 热循环。
图3-13过热循环在T-s图(a)和lgp-h图(b)上的表示
1
c p0
t R
如果要使回热循环的单位容积 制冷量及制冷系数比无回热循环高, 其条件应是
t R 1 t R 1 q0 T0 c p0
即
c p0 T0 q0
3.其它影响
热交换及压力损失对制冷循环的影响 不凝性气体对制冷循环的影响
冷凝、蒸发过程传热温差对循环性能的影响
3.3.4 单级蒸气压缩式制冷变工况特性
q' 0 q0 c p0 t R
循环的单位功可近似地表示成
t R T1 w' w0 w0 1 T0 T0
单位容积制冷量和制冷系数可表示成
q' 0 q 0 c p 0 t R q0 q' v qv t R v1' t R 1 v1 1 T0 T 0 c p0 1 t R q 0 q 0 q0 ' 0 t R t R 1 w0 1 T0 T 0
3.2.3 单级蒸气压缩式制冷理论循环
2.理论循环过程在压焓图上的表示
1)制冷系统的压缩过程
2)制冷系统的冷凝过程 3)制冷系统膨胀过程
4)制冷系统蒸发过程
图3-7理论循环在T-s图(a)和lnp-h图(b)上的表示
3.理论循环特性 (1)单位制冷量q0
压缩蒸气制冷循环单位制冷量可按 式(3-13)计算。
第3章 蒸汽压缩式制冷
3.1 蒸气压缩式制冷循环
(一) 单级蒸气 压缩式制冷循环
1.朗肯循环 2.劳伦茨循环 3.跨临界循环
(二)多级蒸气压缩式制冷循环
(三)复叠式蒸气压缩式制冷循环
3.1.1 蒸气压缩制冷的典型循环
1.朗肯循环
空调、制冷、食品冷藏温度范 围大量使用的循环
基本朗肯循环 有回热的朗肯循环
蒸发温度越低
(6)热力完善度
单级压缩蒸气制冷机理论循环的热力完善 度按定义可表示为
0 h1 h4 T4 T0 c h2 h1 T0
这里ε c为在蒸发温度(T0)和压缩机排 气温度(T2)之间工作的逆卡诺循环的制冷 系数。热力完善度愈大,说明该循环接近可 逆循环的程度愈大。
q0 h1 h4
(2)单1 v1
(3)理论比功w0 对于单级蒸气压缩制冷机的理论循环来说, 理论比功可表示为
w0 h2 h1
单级压缩蒸气制冷机的理论比功也是随制 冷剂的种类和制冷机循环的工作温度而变的。
(4)单位冷凝热qk
单位(1kg)制冷剂蒸气在冷凝器中放出的热 量,称为单位冷凝热。 单位冷凝热包括显热和潜热两部分
三区:
气相区 液相区 两相区
五态:
八线:
3.2.3单级蒸气压缩式制冷的理论循环
1.单级理论循环的假设条件:
(1)压缩过程为等熵过程,即在压缩 过程中不存在任何不可逆损失 (2)在冷凝器和蒸发器中,制冷剂 的冷凝温度等于冷却介质的温度,蒸发 温度等于被冷却介质的温度,且冷凝温 度和蒸发温度都是定值
铭牌上标示的制冷量和功率一般是在标准工 况下的值,如为空调专用,则为空调工况。
高温工况 名义工况(新) 中温工况 低温工况 最大压差工况:用来考核压缩机零件强 度、 排气温度、油温、电机绕组温度。 最大轴功率工况:用来考核压缩机噪声、 振动,并依此选配电动机。
1)单位质量制冷量
q 0 h1 - h 4 h1 - h 3 401.555 - 243.114 158.441kJ/ kg
2)单位容积制冷量
q 0 158.441 qv 2426kJ/m3 v1 0.0653
3)质量流量
Q0 55 qm 0.347kg/s q 0 158.441
T
朗肯循环图例
2
3
4
1
图3-1
基本朗肯循环
S
循环T—S图:1—2 压缩过程 2—3 冷却冷凝过程 3—4 节流过程 4—1 蒸发吸热过程
T
2
3 3’
4
1’
1 S
图3-2 有回热的朗肯循环 T—S图: 1‗—2 压缩过程 2—3 冷凝过程 3—3‘ 液体过冷过程 3'—4 节流过程 4 —1 蒸发过程 1—1' 吸气过热过程
3.1.2 劳伦茨循环
朗肯循环的主要特征 有两个定压定温的相变过程与纯质制冷 剂及共沸混合制冷剂的压力特性相适应。 劳伦茨循环 循环中的两个相变过程变成伴随有降 温的定压凝结和伴随有升温的定压蒸发。
T
2
3 1
4
S
图3-3 劳伦茨循环
劳伦茨循环图例
3.1.3 跨临界循环 定义 将CO2作为制冷剂用于空调制冷的温度 范围时,由于CO2的临界温度低(仅30℃), 排热将在超临界区进行。而吸热则在临界 点以下进行,整个循环跨越临界点。
得到低温低压制冷剂
制冷剂液体吸热、蒸发、制冷
3.1.2 单级蒸气压缩式制冷理论循环
单级蒸汽压缩式制冷理论循环组成:
制冷压缩机 冷凝器 节流器 蒸发器
单级蒸气压缩式制冷循环,是指制冷剂在一次循环 中只经过一次压缩,最低蒸发温度可达-40~-30℃。 单级蒸气压缩式制冷广泛用于制冷、冷藏、工业生 产过程的冷却,以及空气调节等各种低温要求不太 高的制冷工程。
我国活塞式制冷压缩机标准 GB10875--89中规定了不同制冷机使 用温度在高温、中温和低温的不同温 度范围。
1. 制冷工况
压缩机的制冷量和轴功率等参数随工况条件变 化,为了衡量、比较压缩机性能,制定公认的温度 条件(名义工况),作为压缩机制冷量选用和比较的标 准。
名义工况(旧)
标准工况
空调工况
图3-15有效过热的过热度对制冷系数的影响
3.回热循环
利用回把热使节流前的制冷剂液体与压 缩机吸入前的制冷剂蒸气进行热交换,使液体 过冷、蒸气过热,称之为回热。 若不计回热器与环境空气之间的热交换, 则液体过冷的热量等于使蒸气过热的热量,其 热平衡关系为
h4 h4 h1 h1
图3-16 回热循环在T-s图(a)和lgp-h图(b)上的表示
3.3 单级蒸气压缩式制冷实际循环 3.3.1 实际循环
1)制冷压缩机的压缩过程不是等熵过程, 且有摩擦损失。 2)实际制冷循环中压缩机吸入的制冷剂往 往是过热蒸气,节流前往往是过冷液体,即 存在气体过热、液体过冷现象。 3)热交换过程中,存在着传热温差,被冷 却介质温度高于制冷剂的蒸发温度,环境冷 却介质温度低于制冷剂冷凝温度。
例 题
例1-1 假定循环为单级蒸气压缩 式制冷的理论循环,蒸发温度t0=10℃,冷凝温度tk=35℃,工质为 R22,循环的制冷量Q0=55kW, 试对该循环进行热力计算。
例 题
解
由图可知, h2=435.2 kJ/kg, t2=57℃
点1:t1=t0= 10℃, p1=p0=0.3543MPa, h1=401.555kJ/kg, v1=0.0653m3/kg 点3:t3=tk=35℃, p3=pk=1.3548MPa, h3=243.114 kJ/kg,
3.1.3 单级蒸气压缩式制冷循环的工作过程
制冷剂的变化过程(flash)
3.2.2 制冷剂状态图
一点:
临界点C 液相区、 两相区、 气相区。 过冷液状态、 饱和液状态、 湿蒸气状态、 饱和蒸气状态、 过热蒸气状态。 等压线p(水平线) 等焓线h(垂直线) 饱和液线x=0, 饱和蒸气线x=1, 无数条等干度线x 等熵线s 等比体积线v 等温线t
带有过冷的循环,叫做过冷循环。 采用液体过冷对提高制冷量和制冷 系数都是有利的。
图3-11
过冷循环在T-s图(a)和lgp-h图(b)上的表示
与无过冷的循环1-2-3-4-5-1相比,过 冷循环的单位制冷量的增加量为