流体力学实验 实验一能量实验转换

合集下载

流体力学实验报告(全)

流体力学实验报告(全)

工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。

另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。

实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

<0时,试根据记录数据,确定水箱内的真空区域。

2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。

常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。

水与玻璃的浸润角很小,可认为cosθ=1.0。

于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。

流体力学基础实验指导书

流体力学基础实验指导书

流体力学基础实验指导书编写:张进审核:何国毅、史卫成南昌航空大学飞行器工程学院飞行器设计与工程系实验一不可压缩流体定常流能量方程实验(伯努利方程实验)一、实验目的要求1.验证不可压定常流的能量方程;2.通过对流体动力学诸多水力现象的实验分析研讨,进一步掌握有压管流中的能量转换特性;3.掌握流速、流量、压强等流体动力学水力要素的实验量测技能。

二、实验装置本实验的装置如图1所示:图1自循环能量方程实验装置图l 自循环供水器 2. 实验台 3 可控硅无级调速器 4 溢流板5 稳水孔板6 恒压水箱7 测压计8 滑动测量尺9测压管10 实验管道11 测压点12 毕托管13 实验流量调节阀说明:仪器测压管有两种:① 用毕托管测压管探头对准测量处的轴心位置,测量该点的总水头H ’(=Z+g u g p 22+ρ),测得轴心处速度。

须注意一般情况下H ’与断面总水头H (=Z +gv p 2g 2+ρ)不同(因一般u ≠ v ),它的水头线只能定性表示总水头变化趋势;② 普通测压管用以定量量测测压管水头(位置水头与压强水头之和)。

实验流量用阀13调节,流量由体积时间法或重量时间法测量。

三、实验原理在实验管路中沿管内水流方向取n 个过水断面。

可以列出进口断面(1)至另一断面(i )的能量方程式(i=2,3, … … ,n )Z 1+g va p 2g 2111+ρ= Z i +gv a p i i i 2g 2+ρ+h w取1a = 2a =… …= n a =1,选好基准面,从已设置的各断面的测压管中读出Z+gρp值;测出通过管路的流量,即可计算出断面平均流速v 及gav 22,从而得到各断面测管水头和总水头。

四、实验方法与步骤1.熟悉实验设备,分清哪些管是普通测压管,哪些是毕托管测压管,以及两者功能的区别。

2.打开开关供水,使水箱充水,待水箱溢流,检查调节阀关闭后所有测压管水面是否齐平。

如不平则需查明故障原因(例连通管受阻、漏气或夹气泡等)并加以排除,直至调平。

流体力学中的流体流动的能量转换

流体力学中的流体流动的能量转换

流体力学中的流体流动的能量转换流体力学是研究流体(包括液态和气态)运动规律和性质的一门学科。

而流体流动的能量转换则是研究流体在流动过程中能量的转变和转移。

在流体力学中,能量转换是一个关键的概念,它涉及到热能、动能和势能等形式的能量。

1. 动能转换在流体流动中,动能的转换十分常见。

当流体流动起来时,它具有一定的动能,这是由于流体的质量和速度决定的。

而动能的转换可以分为以下几个方面。

1.1 流体的加速和减速当流体从一个区域加速流过另一个区域时,动能会发生转换。

例如,在管道中液体流速逐渐增加,这时动能会从管道某一部分转移到另一部分。

同样地,当流体从高速区域流向低速区域时,动能也会进行转换。

1.2 流体的旋转运动流体还可以通过旋转产生动能的转换。

例如,当水从一个喷嘴中流出时,由于喷嘴的形状和水的流速,水流会形成一个旋涡,这时旋涡会带动周围的液体一起旋转,从而将动能转移到周围的流体。

1.3 流体的振荡当流体发生振荡时,动能也会转换。

例如,在波浪中,水流会随着波浪的起伏而上下运动,这时动能会从水流向周围媒质进行转移。

2. 势能转换除了动能转换外,流体流动中还存在着势能的转换。

势能是流体所具有的位置相关的能量。

2.1 重力势能转换流体在垂直高度变化的情况下,重力势能会转化为动能或压力能。

例如,当液体从一个高处倾泻而下时,它会具有较高的位置,这时重力会将其势能转化为动能或压力能。

2.2 弹性势能转换在某些情况下,流体流动中还存在弹性势能的转换。

例如,在压力蓄能器中,通过流体的压力改变来储存和释放弹性势能。

3. 内能转换在流体流动过程中,还存在着内能的转换。

内能是由于分子热运动而导致的流体所具有的能量。

3.1 热能转换当流体内部存在温度差时,热能会通过传导、对流和辐射的方式进行转换。

例如,当水受热时,其分子热运动增加,内能也相应增加,这时热能会从热源传递到周围流体中。

3.2 输运过程中的内能变化在流体输运过程中,也会伴随着内能的变化。

流体力学实验报告

流体力学实验报告

实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。

2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。

二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。

在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。

在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。

流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。

若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。

三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。

水的流量由出口阀门调节,出口阀关闭时流体静止。

四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。

思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。

流体力学实验指导书

流体力学实验指导书

流体力学实验指导书(新版)(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《水力学》实验教学指导书及报告姓名:班级:学号:唐山学院土木工程系序言水力学是应用性较强的专业技术基础课。

从学科的发展来看,水力学属于技术基础学科,实验方法和实验技术是促进其发展的重要研究手段。

由于流体运动的复杂性,水力学的研究及应用就更加离不开科学实验,其发展很大程度上取决于实验技术的进步。

因此,水力学实验是巩固和加深理论知识的学习、探求流体运动规律、解决工程实际问题的重要环节,通过实验教学,掌握各种实验方法,规范操作,提高实验技能。

一、实验教学目的:(1)观察流动现象,增强感性认识,提高实验分析能力。

(2)根据实测资料验证水力学基本理论,以加强和巩筑理论知识的学习。

(3)学会使用基本的测量仪器,掌握测量技术。

(4)培养分析实验数据,整理实验成果和编写实验报告的能力。

(5)培养严谨踏实的科学态度和合作精神,为未来进行研究和实际工作打下基础。

二、实验教学要求:(1)每次实验前,预习教材中有关内容及实验指导书,了解本次实验的目的、原理、步骤和所要验证的理论。

(2)认真听取指导教师讲解,弄清实验方法和步骤后,方能动手实验。

(3)实验中,应注意观察实验现象,细心读取实验数据,并做相应的记录,原始数据不得任意修改。

(4)实验小组内每位学生亲自动手、相互配合、共同完成实验。

(5)实验态度严肃、方法严密,一丝不苟进行操作。

(6)实验完毕应清理设备及实验室,实验设备摆放整齐。

三、实验报告要求:(1)实验报告是实验资料的总结、是实验的成果。

通过完成实验报告,可以提高分析问题的能力,要求必须独立完成并按规定时间交给指导教师。

(2)实验报告一般包括以下几项内容:①班级、姓名、同组人及实验日期。

②实验名称及实验目的。

③实验原理。

④实验装置简图及仪器。

⑤流动现象的描述及实验原始记录。

⑥计算实验结果。

机械设计中的流体力学与动力学的能量转换

机械设计中的流体力学与动力学的能量转换

机械设计中的流体力学与动力学的能量转换机械设计是一门综合性学科,它涉及到多个领域的知识与技术。

在机械设计的过程中,流体力学和动力学是两个非常重要的方面。

本文将探讨机械设计中流体力学和动力学之间的能量转换过程。

一、流体力学在机械设计中的应用流体力学是研究流体运动规律的学科,它在机械设计中扮演着重要的角色。

在机械设计中,我们常常需要研究流体介质在管道、阀门、泵等系统中的流动情况,以及在液压传动、风力发电、水力发电等装置中的应用。

在流体力学中,最常用的两个定律是质量守恒定律和动量守恒定律。

质量守恒定律指出,流体在封闭系统内的质量是不变的,即流体的质量不能被创造或破坏。

动量守恒定律则说明了流体在运动过程中的动量守恒原理,即在没有外力作用下,流体的动量在流动过程中保持不变。

在机械设计中,通过运用流体力学的知识和原理,我们可以预测液体在管道中的流速、压力损失以及流体力学特性。

这些信息对于设计高效且可靠的流体传动系统至关重要。

二、动力学在机械设计中的应用动力学是研究力的产生、作用和变化规律的学科,它在机械设计中也具有重要的地位。

在机械设计中,我们需要考虑力的大小、方向以及力的作用点,以便设计出稳定、强度合适的机械结构。

在动力学中,牛顿第二定律是最基本的法则之一。

它指出,力等于物体的质量乘以物体的加速度。

这个定律可以帮助我们计算机械系统中各个部件所承受的力、加速度及相关的动态特性。

在机械设计中,动力学的应用范围很广。

例如,在汽车设计中,我们需要考虑引擎输出的动力对车辆的推动作用,以及车辆在转弯、刹车等情况下的受力情况;在航空航天领域,我们需要研究飞机的起飞、着陆过程中的动力学特性,以及火箭发动机的工作原理等。

三、流体力学与动力学的能量转换在机械设计中,流体力学和动力学之间存在着能量转换的关系。

能量转换是指能量从一种形式转移到另一种形式的过程。

在流体力学中,我们常常使用流体的压力能和动能。

流体的压力能是指流体由于位置的高低而具有的能量,而动能则是指由于流体的运动而产生的能量。

《流体力学》实验指导书

《流体力学》实验指导书

实验(一)流体静力学综合性实验一、实验目的和要求掌握用测压管测量流体静压强的技能;通过测量静止液体点的静水压强,加深理解位臵水头、压强水头、及测管水头的基本概念;观察真空现象,加深对真空度的理解;验证不可压缩流体静力学基本方程;测量油的重度。

二、实验装臵本实验装臵如图1.1所示图1.1流体静力学综合性实验装臵图1.测压管2.带标尺测压管3.连通管4.真空测压管5.U 型测压管6.通气阀7.加压打气球8.截止阀9.油柱 10.水柱 11.减压放水阀说明:1.所有测压管液面标高均以标尺(测压管2)零度数为基准;2.仪器铭牌所注▽B 、▽C 、▽D 系测点B 、C 、D 标高;若同时取标尺零点作为静力学基本方程的基准,则▽B 、▽C 、▽D 亦为ZB 、ZC 、ZD3.本仪器中所有阀门旋柄顺管轴线为开。

4.测压管读数据时,视线与液面保持水平,读凹液面最低点对应的数据。

三、实验原理1在重力作用下不可压缩流体静力学基本方程const γpz =+或h p p γ+=0式中:z —被测点在基准面以上的位臵高度;p —被测点的静水压强,用相对压强表示,以下同;0p —水箱中液面的表面压强γ—液体容重; h —被测点的液体深度。

上式表明,在连通的同种静止液体中各点对于同一基准面的测压管水头相等。

利用液体的平衡规律,可测量和计算出连通的静止液体中任意一点的压强,这就是测压管测量静水压强的原理。

压强水头γp和位臵水头z 之间的互相转换,决定了夜柱高和压差的对应关系:h γp ∆=∆ 对装有水油(图1.2及图1.3)U 型侧管,在压差相同的情况下,利用互相连通的同种液体的等压面原理可得油的比重So 有下列关系:21100h h h γγS w+==图1.2 图1.3据此可用仪器(不用另外尺)直接测得So 。

四、实验方法与步骤1.搞清仪器组成及其用法。

包括: 1)各阀门的开关;2)加压方法 关闭所有阀门(包括截止阀),然后用打气球充气; 3)减压方法 开启筒底阀11放水4)检查仪器是否密封 加压后检查测管1、2、5液面高程是否恒定。

流体力学伯努利实验报告

流体力学伯努利实验报告

流体力学伯努利实验报告介绍流体力学伯努利实验是一种经典的实验方法,用于研究液体(或气体)在流动中的能量转换和动能变化规律。

伯努利实验基于伯努利方程,该方程描述了在不可压缩流体中,速度增大时压力会减小的现象。

通过这个实验,我们可以深入了解流体的流动特性以及能量守恒原理。

实验目的本实验的目的是研究流体力学伯努利实验的基本原理和应用,探究不同流速对压力和高度的影响,并验证伯努利定律在理论和实验方面的适用性。

实验器材1.伯努利实验装置:包括水槽、流量调节阀、U型管、压力计等。

2.测量工具:尺子、卡尺。

实验步骤1.将伯努利实验装置放置在实验台面上,并调整水槽的水位。

2.打开流量调节阀,在流道中形成水流。

3.测量不同流速下的压力和高度变化。

4.记录实验数据,并计算各项实验参数。

实验数据记录以下是实验数据的记录表格:流速 (v) /m/s 压力差(ΔP) /Pa高度差(Δh) /m0.5 100 0.21.0 200 0.41.5 300 0.62.0 400 0.82.5 500 1.0流速 (v) /m/s 压力差(ΔP) /Pa高度差(Δh) /m3.0 600 1.2数据处理与结果分析根据实验数据,我们可以计算出流速、压力差和高度差的对应值,并绘制相应的图表进行分析。

流速与压力差关系图通过将流速和压力差绘制在图表中,我们可以观察到它们之间的关系。

根据伯努利方程可知,流速增大时,压力差会减小。

流速与高度差关系图同样地,我们可以绘制出流速和高度差之间的关系图。

从伯努利方程可以看出,流速增大时,高度差也会增大。

通过实验数据的处理和分析,我们可以得出以下结论:1.伯努利方程可以用来描述流体在流动过程中的能量转换和动能变化。

2.流速和压力差呈反比关系,即流速增大时压力差减小。

3.流速和高度差呈正比关系,即流速增大时高度差增大。

结论本实验通过观察并记录流体在伯努利实验装置中的压力差和高度差随流速变化的情况,验证了伯努利原理的适用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档