《随机信号分析基础》总复习提

合集下载

随机信号分析 第一章随机信号基础2

随机信号分析   第一章随机信号基础2

y
o
(x,y)
x
利用分布函数,对任意实数 x1 x 2 , y1 y2 则
P( x1 X x2 , y1 Y y2 ) F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 )
y o
( x1, y2 ) ( x1, y1)
F ( x ) f ( t )dt

x
F(x)
=

0
x0
0 x 1
x
tdt tdt
0 1
x
0
1
(2 t )dt
1 x 2
x2
1

x0 0, x2 , 0 x 1 2 F ( x) x2 2x 1 , 1 x 2 2 1, x2
多维随机变量及其分布
由于从二维推广到多维一般无实质性的困难,我们重点 讨论二维随机变量 .
二维随机变量用(X,Y)表示下面着重讨论二维 r.v(X,Y),多维随机变量可类推。
二维随机变量(X,Y) X和Y的联合分布函数
一维随机变量X X的分布函数
F ( x ) P( X x )
F ( x , y) P ( X x , Y y) x, y
4.F ( x , y ) F ( x 0 , y ), F ( x , y ) F ( x , y 0 );
即F(x,y)对每个自变量都是右连续的。
5.对任意实数 x1 x2 , y1 y2
,有
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 ) 0.

《随机信号分析》复习课(第一章-第四章)

《随机信号分析》复习课(第一章-第四章)

F (x, y) P{X x,Y y}
y
(x, y)
x
0
1.4 多维随机变量及分布
f (x, y) 2F (x, y) xy
f (x, y) 0
xy
F(x, y)
f (x, y)dxdy
f (x, y)dxdy 1
f X (x)
f (x, y)dy
fY ( y)
f (x, y)dx
J
dx dy
对于任意单调函数 g(x) :fY ( y) f X (x) J xg1( y)
如果 g(x) 不是单调函数:
fY ( y) f X (x1) J1 f X (xn ) J n
其中 x1 h1 ( y) … xn hn ( y) , Jk dxk / dy
1.6 随机变量的函数
《随机信号分析》复习课(第一章-第四章)
重点内容
绪论 随机变量基础 重点:随机变量的函数
第二章 随机过程的基本概念 重点: 平稳随机过程的概念,随机过程的功率谱密度 ,高斯过程
第三章 随机过程的线性变换 重点:随机过程线性变换的冲激响应法和频谱法, 白噪声通过线性系统,随机过程线性变换后的概率 分布
x2 f (x)dx
x1
1.3 随机变量的分布函数与概率密度
f (x)
1
2
exp
(x )2 2 2
X ~ N(, 2)
x
FX (x)
1 2
exp
(
x ) 22
2
dx
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-4 -3 -2 -1

第2章 随机信号分析复习

第2章 随机信号分析复习
如果将 F 看成是 F 经过一个网络的输出,则有

F jF sgn F H

那么传输函数为 H j sgn e 即:
j / 2U
H e
j
/ 2 0 / 2 U /2 0
希尔伯特滤波器幅度-频率和相位-频率特性
2018/10/9 29
希尔伯特变换特例
ˆ (t ) sin t f (t ) cos t , f ˆ (t ) cos t f (t ) sin t , f
若m(t ) M ( )为截至频率为 f 的低通信号,
H 1
希尔伯特变换的物理意义是将信号f(t)的所频率 成分都相移90o,而幅度保持不变。具有这种特 性的网络称之为希尔伯特滤波器。
2018/10/9 28
即:
/ 2 0 / 2 U /2 0
H 1
本章内容
1 2
确知信号的分析 卷积与相关
3
4 5
希尔伯特变换
确定信号通过线性系统的传输 随机信号通过线性系统的传输
1
2018/10/9
信号和系统分类
一、信号的分类:
确知信号 随机信号 周期信号 非周期信号
二、系统分类
线性系统 非线性系统 时不变系统 时变系统
2018/10/9
2
信号的频谱分析
1、傅里叶级数
通常记做 f (t ) F
2018/10/9 7
特例:冲激函数δ (t)
F (t ) (t )e jt dt e j 0 1

《随机信号分析》总复习1

《随机信号分析》总复习1

2020/10/24
34
2.4.2 互相关函数及其性质
联合平稳随机过程互相关函数性质
(3)若X(t)和Y(t)是联合平稳的,则 Z(t)=X(t)+Y(t) 也是平稳的,且
举例:两个均值和方差大致相同的随机过程 ,相关性差异很大
2.2.2 随机过程的数字特征
协方差函数
也是相关性的描述 K X (t1,t2 ) E{[ X (t1) mX (t1)][X (t2 ) mX (t2 )]} 如果 K X (t1,t2 ) 0 ,则称 X (t1) 和 X (t2 )不相关。
x1...xN y1yM
如果
f XY (x1,..., xN , t1,..., tN , y1,..., yM , t'1 ,..., t'M ) f X (x1,..., xN , t1,..., tN ) fY ( y1,..., yM , t'1 ,..., t'M )
则称X(t) 和Y(t) 是相互独立的
y g(x)
Y g(X)
1.6 随机变量的函数
一维随机变量函数的分布
若 g(x) 为单调连续上升函数,x g 1( y)
FY ( y)=P{Y y} P{g( X ) y}=P{X g 1( y)} FX (g 1( y))
求导,得
fY
( y)
fX
(x)
dx dy
,雅可(Jacco)比
n)
2020/10/24
20
2.2.1 随机过程的概率分布
二维概率分布:
X (t1)及 X (t2 )为同一随机过程上的随机变量
FX (x1, x2 , t1, t2 ) P{X (t1) x1, X (t2 ) x2}

《随机信号基础》练习题

《随机信号基础》练习题

《随机信号分析》练习题一、 概念题1.叙述随机试验的三个条件。

2.写出事件A 的概率P(A)所满足的三个条件。

3.何谓古典概型?其概率是如何计算的? 4.两个事件独立的充要条件。

5.两个随机变量独立的充要条件。

6.两个随机过程的独立是如何定义的?7.随机变量X 服从正态分布,写出其概率密度函数表达式,并说明其中各个参数的意义。

8.简述一维随机变量分布函数F (x )的性质。

9.已知连续型随机变量X 的分布特性,分别用分布函数)(x F X 和概率密度函数)(x f X 表示概率}{21x X x P ≤<。

10. 随机变量X 的特征函数)(μX C 是如何定义的?写出由)(μX C 计算k阶矩)(k X E 的公式。

11.设X 1,X 2,…,Xn 为相互独立的随机变量,其特征函数分别为C 1(μ),C 2(μ),…,Cn(μ),设∑==n i i X Y 1,则C Y (μ)=?12. 对于一般的复随机变量,其数学期望、方差、协方差各是实数还是复数?13. 写出随机过程X(t)的n 维分布函数定义式。

14. 简述随机过程宽平稳性与严平稳性的区别。

15. 平稳过程与各态历经过程有何关系?16. 设平稳随机过程X(t)的自相关函数为R X (τ),X(t)依均方意义连续的条件是?17. 已知平稳随机过程X(t)、Y(t)的相关时间分别为X τ和Y τ,若X τ>Y τ,说明X(t) 与Y(t)的起伏程度那个较大?18. 两个随机过程广义联合平稳的条件是什么?19. 平稳随机过程)(t X 的功率谱密度)(ωX G 的物理意义是什么?)(ωX G 与物理谱密度有何关系?20. 白噪声的功率谱密度和自相关函数有何特点? 21. 简述维纳-辛钦定理并写出其表达式。

22. 何为线性系统?23. 写出希尔伯特变换器的频率响应、幅频响应和相频响应表达式。

24. 写出窄带过程的准正弦表达式和莱斯表达式。

随机信号分析期末总复习提纲重点知识点

随机信号分析期末总复习提纲重点知识点

第 一 章1.1不考 条件部分不考△雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况)△随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58)△ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61()()()()()()()221()211222211,,exp 22exp ,,exp 22T Tx m X XXX X n n XT T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E ejM U σπσμ---⎡⎤--⎢⎥==-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=-==-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦C C C u u r u u ru u r u u r u u r u u r L u r u ru u r u r L另外一些性质: []()20XY XY X YX C R m m D X E X m ⎡⎤=-=-≥⎣⎦第二章 随机过程的时域分析1、随机过程的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机过程的概率密度P74、特征函数P81。

(连续、离散)一维概率密度、一维特征函数 二元函数4、随机过程的期望、方差、自相关函数。

(连续、离散)5、严平稳、宽平稳的定义 P836、平稳随机过程自相关函数的性质:0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88222()()()()()(0)()X X XX X X X X XXC R m R R R R τττρτσσ--∞==-∞=非周期相关时间用此定义(00()d τρττ∞=⎰)8、两个随机过程之间的“正交”、“不相关”、“独立”。

《随机信号处理》重点题目题型及相关知识点简介

《随机信号处理》重点题目题型及相关知识点简介

《随机信号处理》重点题⽬题型及相关知识点简介第⼀组上台讲解题⽬(第2、7题)2. 复随机过程0()()j t Z t e ω+Φ=,式中0ω为常数,Φ是在(0,2)π上均匀分布的随机变量。

求:(1)[()()]E Z t Z t τ*+和[()()]E Z t Z t τ+;(2)信号的功率谱。

解: (1)0000[()][]201[()()]212j t j t j j E Z t Z t e e d e d e ωτωπωτωττππ+∞++Φ-+Φ*-∞+=Φ=Φ=?000[()][]2[(2)2]2(2)201[()()]212120j t j t j t j t j E Z t Z t e e d e d ee d ωτωπωτπωττπππ+∞++Φ+Φ-∞++Φ+Φ+=Φ=Φ=Φ=(2)00()[()]{[()()]}[]2()Z Z j S F R F E Z t Z t F e ωτωττπδωω*==+==-备注:主要考察第⼆章P37,功率谱计算,第⼀步求期望⽤数学积分⽅法,得到[()()]E Z t Z t τ*+即输出的⾃相关,对其进⾏傅⾥叶变换就得信号的功率谱。

7. ⼀零均值MA(2)过程满⾜Yule-Walker ⽅程:试求MA 参数: 0b ,1b ,2b解:由于对于零均值MA(q)过程⽽⾔,均值为0,令⽅差为1,其⾃相关函数220(0)qx k k r b ωσ==∑222012011202321b b b b b b b b b ++=+==220(0)qx k k r b ωσ==∑(公式:3.2.5)2,0()0,qk k l k l x b b l qr l l q ωσ-=?≤≤?=??>?∑ ()(),1x x r l r l q l =--≤≤-(公式:3.2.6)则可得:22201011210(0)(1)()q x q q x q x b b b r b b b b b b r b b r q -++=++==故由题意知,MA(2)过程的⾃相关函数为(0)3,(1)(1)2,(2)(2)12x x x x x r r r r r k ==-==-=?> 由此不难求得MA(2)过程的功率谱22122()()232kx xk s z r k zz z z z ---=-==++++∑(公式:2.4.14)其因式分解为:122()(1)(1)x s z z z z z --=++++根据功率谱分解定理2**()()(1/)x s z Q z Q Z σ=(公式:2.5.2a ),⽐较得传输函数:12()1Q z z z --=++ 即0121,1,1b b b ===备注:本题主要考察MA 模型满⾜Yule-Walker ⽅程的模型参数求解,根据P54页3.2.6求得⾃相关函数值,由P38页2.4.14求得复功率谱密度,因式分解,与P39页2.5.2a ⽐较得出结果。

随机信 分析基础习题

随机信 分析基础习题


E
Tlim
1 2T
X
T
(
,

)
2

lim 1 T 2T
E
XT (, ) 2
Gx(ω)被称为随机过程X(t)的功率谱密度函数,功率谱密 度是从频率角度描述随机过程X(t)的统计特性的最主要的 数字特征。
4.1 功率谱密度 随机过程
随机过程X(t)的平均功率为:

2GX
( )[1
e
j
2
e
j
]
2GX ()(1 cos )
4.16 解:
由题可知,A,B为实常数,X (t)和Y(t)是宽联合平稳的
(2)当平稳过程含有对应于离散频率的周期分量时,该成 分就在频域的相应频率上产生δ-函数。
4.2 功率谱密度与自相关函数之间的关系 典型的傅氏变换
(t)

1

cos0t

sin(t / 2)
2 t / 2
ea

ea cos0
1 , 1
E s2 (t)dt 1

2
S( ) d

2
时域内信号ቤተ መጻሕፍቲ ባይዱ能量等于频域内信号的能量
S () 2
4.1 功率谱密度 随机过程
随机信号的能量一般是无限的,但是其平均功率是有限的。 因此可推广频谱分析法,引入功率谱的概念。
GX () E[GX (, )]
的功率谱密度的表达式.
4 (4) 1 2 j 6
×
该表达式含有虚部,不是实函数,所以不 是正确的功率谱密度表达式
4.4 解:先求出自相关函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论基础
1.概率空间、概率(条件概率、全概率公式、贝叶斯公式)
2.随机变量的定义(一维、二维实随机变量)
3.随机变量的描述:
⑴统计特性
一维、二维概率密度函数、一维二维概率分布函数、边缘分布
概率分布函数、概率密度函数的关系
⑵数字特征
一维数字特征:期望、方差、均方值(定义、物理含义、期望和方差的性质、三者之间的关系)
二维数字特征:相关值、协方差、相关系数(定义、相互关系)
⑶互不相关、统计独立、正交的定义及其相互关系
4.随机变量函数的分布
△雅柯比变换(随机变量函数的变换一维随机变量函数的单值和双值变换、二维随机变量函数的单值变换)
5、高斯随机变量
一维和二维概率密度函数表达式
高斯随机变量的性质
△随机变量的特征函数及基本性质

随机信号的时域分析
1、随机信号的定义
从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广
2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?
3、随机信号的统计特性分析:概率密度函数和概率分布函数(一维、二维要求掌握)
4、随机信号的数字特征分析(定义、物理含义、相互关系)
一维:期望函数、方差函数、均方值函数。

(相互关系)
二维:自相关函数、自协方差函数、互相关函数、互协方差函数(相互关系)
5、严平稳、宽平稳
定义、二者关系、判断宽平稳的条件、平稳的意义、联合平稳定义及判定
6、平稳随机信号自相关函数的性质:
0点值,偶函数,均值,相关值,方差
7、两个随机信号之间的“正交”、“不相关”、“独立”。

(定义、相互关系)
8、高斯随机信号
定义(掌握一维和二维)、高斯随机信号的性质
9、各态历经性
定义、意义、判定条件(时间平均算子、统计平均算子)、平稳性与各态历经性的关系直流分量、直流平均功率、总平均功率、交流平均功率
随机信号的频域分析
1、随机信号是功率信号,不存在傅里叶变换,在频域只研究其功率谱。

功率谱密度的含义,与总平均功率的关系
2、一般随机信号功率谱计算公式与方法
3、平稳随机信号的功率谱密度计算方法
维纳—辛钦定理
⑴平稳随机信号,()()X X P R ωτ↔
⑵两个联合平稳的实随机过程,()()()()12j XY
XY j XY XY P R e d R P e d ωτωτωτττωωπ∞--∞∞-∞⎧=⎪⎨⎪=⎩
⎰⎰ 要熟记常见信号的傅里叶变换和傅里叶变换性质,并且熟练应用。

求随机信号总平均功率的两种方法。

4、白噪声
定义、数字特征、不相关特性、带宽、功率
什么事加性高斯白噪声 带宽、功率)
5、带限白噪声(低通和带通带限白噪声) (定义、数字特征、相关特性、功率谱密度、
随机信号通过线性系统的分析
1、线性系统的基本理论 稳定的物理可实现系统
2、 随机信号通过线性系统分析
时域分析
0()()()()()(0)
()()()()()()X Y X Y Y XY X YX X Y m h d R R h h P R R R h R R h m ττττττττττττ∞
==*-*==*-=*⎰
输入平稳、高斯、各态历经,输出也是平稳、高各态历经,且输入输出联合平稳。

频域分析
3、 白噪声通过线性系统
线性系统的结论:双侧随机信号()X t 输入物理可实现系统
若输入()X t 是宽平稳的,则系统输出()Y t 也是宽平稳的,且输入与输出联合平稳 若输入()X t 是严平稳的,则输出()Y t 也是严平稳的。

若输入()X t 是宽各态历经的,则输出()Y t 也是宽各态历经的
若线性系统输入为高斯过程,则输出为高斯分布
若系统输入信号的等效噪声带宽远大于系统的带宽,则输出接近于高斯分布
(输入白噪声的情况)
()220(0)(0)()()()()()()()()()()()()11()()()22Y X Y X X XY X YX X Y Y X m m H H h d P P H P H H P H P P H P P P d H P d ττωωωωωωωωωωωωωωωωωππ∞∞∞-∞-∞=⋅===-=⋅⎧⎨=-⋅⎩==⎰⎰⎰
窄带随机信号
1、什么是窄带随机信号?
2、窄带随机信号的表达式如何表示?(包络相位表达式、正交分解表达式)
3、窄带随机信号的包络、相位、同相分量、正交分量之间的关系
4、零均值平稳高斯随机信号的同相分量、正交分量的统计特性
5、零均值平稳高斯随机信号的包络、相位的一维分布
6、随相正弦波加窄带高斯噪声合成信号的包络和相位的一维分布。

(信噪比大小的讨论)
7、高斯分布、瑞利分布和莱斯分布的联系和区别。

相关文档
最新文档