不定积分的基本公式和运算法则直接积分法
不定积分计算公式

不定积分计算公式不定积分是微积分中的重要内容之一,它是对函数的积分运算,是求导的逆运算。
在数学中,不定积分可以帮助我们求解各种函数的原函数,用符号∫来表示,被积函数称为被积表达式,积分变量叫做积分变量。
本文将介绍不定积分的计算方法和常用公式,并通过具体的例子进行说明。
一、基本公式1. 常数的不定积分当被积表达式为常数c时,不定积分为cx,其中x为积分变量,c为常数。
2. 幂函数的不定积分(a) 单项式的不定积分对于单项式x^n来说,其中n是非零整数,不定积分为(x^(n+1))/(n+1)+C,其中C为常数。
例如,∫x^3dx=(x^(3+1))/(3+1)+C=(x^4)/4+C。
(b) 反函数的不定积分当被积表达式为反函数1/x时,不定积分为ln|x|+C,其中C 为常数。
例如,∫(1/x)dx=ln|x|+C。
(c) 一般幂函数的不定积分对于一般的幂函数x^m来说,其中m不等于-1,不定积分为(x^(m+1))/(m+1)+C,其中C为常数。
例如,∫x^(-3)dx=(x^(-3+1))/(-3+1)+C=(x^(-2))/(-2)+C=-1/(2x^2)+C。
3. 指数函数的不定积分(a) e^x的不定积分为e^x+C,其中C为常数。
例如,∫e^xdx=e^x+C。
(b) a^x(lna)的不定积分为(a^x)/lna+C,其中C为常数,a不等于1。
例如,∫2^xdx=(2^x)/ln2+C。
4. 对数函数的不定积分lnx的不定积分为xlnx-x+C,其中C为常数。
例如,∫lnxdx=xlnx-x+C。
5. 三角函数的不定积分(a) sinx的不定积分为-cosx+C,其中C为常数。
例如,∫sinxdx=-cosx+C。
(b) cosx的不定积分为sinx+C,其中C为常数。
例如,∫cosxdx=sinx+C。
(c) tanx的不定积分为-ln|cosx|+C,其中C为常数。
例如,∫tanxdx=-ln|cosx|+C。
不定积分的基本公式和运算法则直接积分法

不定积分的基本公式和运算法则直接积分法一、不定积分的基本公式和运算法则1.基本公式:- 常数公式:$\int c\,dx = cx + C$,其中c为常数,C为常数。
- 幂函数公式:$\int x^n\,dx = \frac{x^{n+1}}{n+1} + C$,其中n为非零常数,C为常数。
- 指数函数公式:$\int e^x\,dx = e^x + C$,其中C为常数。
- 对数函数公式:$\int \frac{1}{x}\,dx = \ln,x, + C$,其中C为常数。
2.基本运算法则:- 常数倍法则:$\int kf(x)\,dx = k\int f(x)\,dx$,其中k为常数。
- 和差法则:$\int (f(x) \pm g(x))\,dx = \int f(x)\,dx \pm \int g(x)\,dx$。
- 乘法法则:$\int u \cdot v\,dx = \int u\,dv + \int v\,du$。
- 除法法则:$\int \frac{u}{v}\,dx=i\ln,v,+j\int\frac{dv}{v}$。
直接积分法是指根据不定积分的基本公式和运算法则,直接进行积分计算的方法。
下面介绍一些常见的直接积分法:1.用代换法进行积分:-根据被积函数的形式,选择一个合适的代换,使得原函数的形式更简单。
-对原函数进行代换,将积分转化为新的变量的积分。
- 对新的变量进行求导,计算出dx或du。
-将上述结果带入到原函数中,得到最终的积分结果。
2.用分部积分法进行积分:-对于被积函数的乘积形式,选择一个函数进行求导,选择另一个函数进行积分。
- 根据分部积分公式$\int u \,dv = uv - \int v \,du$,进行积分计算。
3.用换元法进行积分:-对于被积函数的形式,选择一个新的变量代替原来的变量,使得积分变得更简单。
-对原函数进行换元,将积分转化为新的变量的积分。
- 对新的变量进行求导,计算出dx或du。
不定积分的基本公式和直接积分法省公开课获奖课件市赛课比赛一等奖课件

(6) csc2 xdx cot x C ((cot x) csc2 x)
5 反三角函数
(1)
dx arcsin x C arccos x C 1 x2
(arcsin x) 1 ,(arccos x) 1
51
x2 51
C
2 7
7
x2
C.
(2) 2x (e x 1)dx 解: 2x (e x 1)dx (2e)x dx 2x dx
(2e)x 2x C (2e)x 2x C
ln(2e) ln 2
1 ln 2 ln 2
(3) x3 x 1dx x2 1
解:
x3 x2
x
1 x2
1 x2
dx
(2) 1 x2 arctan x C arc cot x C
(arctan
x)
1 1 x2
, (arc
cot
x)
1
1 x
2
基 (1) kdx kx C (k是常数);
本
积
(2)
xdx x1 C ( 1); 1
分
表
(3)
dx x
ln
|
x
|
C;
阐明: x 0,
1 x 2 dx
1
1 x2dx
1 x
arctan
x
C.
例2 求下列不定积分
(1) sin2
xdx 2
(2)
cos 2x cos x sin
x
dx
解
(1)原式
1
cos 2
x
dx
1 2
(1 cos
不定积分求解运算法则

不定积分求解运算法则不定积分求解是微积分中的重要内容之一,它可以用来求解函数的原函数,为我们提供了求解定积分和解微分方程等问题的基础。
在求解不定积分时,我们需要掌握一些运算法则,这些法则可以帮助我们更加高效地求解不定积分。
一、基本积分法则基本积分法则主要包括线性性、积化和差化和常数乘积的法则。
1.线性性:若f(x)和g(x)是连续函数,k为常数,则有:∫(kf(x) + g(x))dx = k∫f(x)dx + ∫g(x)dx2.积化和差化:对于连续函数f(x)和g(x),有:∫(f(x) ± g(x))dx = ∫f(x)dx ± ∫g(x)dx3.常数乘积法则:对于连续函数f(x)和常数k,有:∫k f(x)dx = k∫f(x)dx二、换元积分法则换元积分法则也称为u-置换法,它是利用复合函数的求导和求逆的关系进行积分的一种方法。
1.一元换元法则:设u=g(x)是x的可导函数,f(u)是u的原函数,则有:∫f(g(x))g'(x)dx = ∫f(u)du2.多元换元法则:对于多元函数,设u=g(x,y)和v=h(x,y)是x,y的可导函数,f(u,v)是u,v的原函数,则有:∬f(g(x, y), h(x, y))(∂(g, h)/∂(x, y))dxdy = ∬f(u, v)dudv 三、分部积分法则分部积分法是利用求导的乘积法则进行积分的方法,可以将一个积分转化为两个因子相乘的形式,从而简化计算。
1.一元分部积分法则:设u=f(x)和v=g(x)是可导函数,f'(x)和g'(x)是它们的导数,则有:∫u v' dx = uv - ∫u'v dx2.多元分部积分法则:对于多元函数,设u=f(x,y)和v=g(x,y)是可导函数,f'(x,y)和g'(x,y)是它们的导数,则有:∫∫u ∂v/∂x dA = ∮uv dy - ∫∫∂u/∂y v dA四、有理函数分解积分法则有理函数分解积分法用于求解有理函数的不定积分,即把一个有理函数表示为几个基本函数的和的形式。
不定积分的概念及其线性法则

2 x4 ) dx . 5. ( 2 sin x 3 x e x ) dx . 6. ( 2 2 1 x 1 x
cos 2 x 7. dx . cos x sin x
x 9. sin dx . 2
2
1 8. dx . 2 2 cos x sin x
10. e x 1 d x .
例 2 已知一曲线 y f ( x ) 在点( x , f ( x )) 处的 切线斜率为 sec x sin x ,且此曲线与 y 轴
2
的交点为(0,5) ,求此曲线的方程.
例2 已知一曲线 y f ( x ) 在点( x , f ( x )) 处的
sec 2 x sin x ,且此曲线与 y 轴 切线斜率为
1 cos 2 x sin2 x dx .
1 cos 2 x sin2 x dx
cos 2 x sin2 x dx 2 2 cos x sin x
[sec 2 x csc 2 x ]dx
tan x cot x C .
9. 求积分 解
2
x sin 2 dx .
二、 基本积分表 P172 (1) kdx kx C ( k 是常数) ;
( 2)
( 3) ( 4)
( 5)
( 6) (7)
x 1 x dx C ( 1) ; 1 dx x ln | x | C ; 1 1 x 2 dx arctan x C arccot x C 1 1 x 2 dx arcsin x C arccos x C cos x dx sin x C ;
y x2 C ,
不定积分的基本公式和直接积分法

第二节不定积分旳基本公式和直接积分法(BasicFormula of UndefinedIntegral andDirectIntegral)课题:1.不定积分旳基本公式2.不定积分旳直接积分法课堂类型:讲授教学目旳:纯熟掌握不定积分旳基本公式,对简朴旳函数能用直接积分法进行积分。
教学重点:不定积分旳基本公式教学难点: 直接积分法教具:多媒体课件教学措施:教学内容:一、不定积分旳基本公式由于不定积分是求导旳逆运算,因此由导数旳基本公式相应地可以得到不定积分旳基本公式。
二、不定积分旳直接积分法运用不定积分旳性质和基本公式,可以求出某些简朴函数旳不定积分,一般把这种求不定积分旳措施叫做直接积分法。
例1 求32x dx ⎰导数旳基本公式()1222()01()1()()ln 1(ln )(sin )cos (cos )sin (tan )sec (cot )csc (sec )sec tan (csc )csc cot (arcsin )1(arctan )1(arccos )1(cot )1x xx x C x x x e e a a ax xx x x x x x x x x x x x x x x x x x arc x ααα+'='='=+'='='='='=-'='=-'='=-'='=+'='=-+21(log )ln a x x x a'=不定积分旳基本公式()1222011ln ln ||cos sin sin cos sec tan csc cot sec tan sec csc cot csc arcsin arctan 1x xxxdx C dx x Cx x dx C a e dx eCa a dx C a dxx Cx xdx x C xdx x C xdx x C xdx x C x xdx x C x xdx x Cx Cdxx C xααα+==+=+≠-+=+=+=+=+=-+=+=-+=+=-+=+=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2arccos arc cot 11log ln a x C dxx C x dx x Cx a =-+=-++=+⎰⎰⎰解 31333412222312x x dx x dx x dx C x C +===⨯+=++⎰⎰⎰例2求(23cos x x dx -+⎰解(32322233233cos 3cos 3sin 5310sin 3xx dx x dx xdx x x x Cx x x C -+=-+=⨯-++=-++⎰⎰⎰⎰例3 求dx x x ⎰-23)1(解Cx x x x Cx x dxxx x dx xx x x dx x x +++-=+-=-+-=-+-=-⎰⎰⎰1||ln 332 31072 )133( 133)1(22327222323 例4 求221sin cos dx x x⎰ 解22222222221sin cos 11sin cos sin cos cos sin sec csc tan cot x x dx dx dx dx x x x x x x xdx xdx x x C+==+=+=-+⎰⎰⎰⎰⎰⎰例5 求2x x e dx ⎰ 解()()()2222ln 21ln 2xxxx x e e e dx e dx C C e==+=++⎰⎰例6 求2sin 2x dx ⎰解 21cos sin 22x x-=21cos 11sin sin 2222x x dx dx x x C -==-+⎰⎰ 例7 求()221dxx x +⎰解()222211111x xx x =-++ ()222222111111111arctan dx dx dx dx x x x x x x x Cx⎛⎫=-=- ⎪+++⎝⎭=--+⎰⎰⎰⎰例8 已知物体以速度()221/v t m s =+沿Ox 轴作直线运动,当1t s =时,物体通过旳路程为3m ,求物体旳运动方程。
不定积分的四则运算公式

不定积分的四则运算公式在数学中,不定积分是一种求解函数的原函数的操作。
也就是说,当对一个函数进行不定积分后,得到的是一个包含任意常数的函数集合。
不定积分的四则运算公式是指对不定积分进行加减乘除的操作规则。
一、加法公式:对于两个函数的和的不定积分,有以下公式:∫(f(x) + g(x))dx = ∫f(x)dx + ∫g(x)dx二、减法公式:对于两个函数的差的不定积分,有以下公式:∫(f(x) - g(x))dx = ∫f(x)dx - ∫g(x)dx三、乘法公式:对于两个函数的乘积的不定积分,有以下公式:∫f(x)g(x)dx = ∫u(x)dv(x) = u(x)v(x) - ∫v(x)du(x)其中,u(x)和v(x)是函数f(x)和g(x)的原函数。
此公式是通过积分部分法得到的。
四、除法公式:对于两个函数的商的不定积分,有以下公式:∫f(x)/g(x)dx = ∫[u(x) + v(x)]/g(x)dx = ∫u(x)/g(x)dx +∫v(x)/g(x)dx其中,u(x)和v(x)是函数f(x)和g(x)的原函数。
此公式是通过将除法转化为乘法再应用乘法公式得到的。
需要注意的是,在进行乘法和除法的不定积分时,对被积函数进行合适的变换或引入中间变量来简化计算。
五、分配律公式:在不定积分的四则运算中,也可以应用分配律。
对于表达式的不定积分,有以下公式:∫(f(x) + g(x))h(x)dx = ∫f(x)h(x)dx + ∫g(x)h(x)dx这个公式可以用于将一个积分问题拆分为多个较简单的积分问题,以简化计算过程。
六、合并同类项公式:在计算积分过程中,有时会遇到求解多个相同形式的不定积分。
可以使用合并同类项的公式进行简化。
如下所示:∫(a f(x) + b f(x))dx = (a + b) ∫f(x)dx这个公式将多个相同形式的函数合并成一个函数,并在常数项上进行求和运算。
以上是不定积分的四则运算公式,这些公式是对不定积分进行运算时常用的规则。
求不定积分的几种基本方法

求不定积分的几种基本方法不定积分是求函数的原函数的过程,也就是求导的逆过程。
下面介绍几种基本的求不定积分的方法:1.直接积分法:直接应用不定积分的定义,逐项求积即可。
这个方法适用于具备初等函数原函数的情况,例如多项式函数、指数函数、对数函数、三角函数等。
2. 分部积分法:适用于积分项为两个函数的乘积时,将其转化为一个函数的导数和另一个函数的不定积分的积的形式进行求解。
分部积分法的公式为∫u dv = uv - ∫v du,选择不同的u和dv,通过反复应用该公式,可以将原积分项转化为更简单的形式。
3.换元积分法:也称为代换积分法,适用于积分项中含有复杂的函数形式时,通过建立合适的替代变量,将原积分转化为简单的形式。
换元积分法的核心思想是对积分变量进行代换,一般采用的代换方法有三角代换、指数代换、倒代换等。
换元积分法的关键是选取合适的代换变量,使得原积分转化为更容易求解的形式。
4.幂函数积分法:当积分项中含有形如x^n(n是常数)的幂函数时,可以利用幂函数的积分性质求解。
幂函数积分法是直接求解幂函数不定积分的方法,通过对幂函数的不定积分公式进行推导,得到幂函数积分的一般公式。
5.三角函数积分法:当积分项中含有三角函数时,可以利用三角函数的积分性质求解。
三角函数积分法是根据三角函数的不定积分公式进行求解,通过对三角函数的积分公式进行推导,得到不同三角函数的不定积分形式。
6.无穷级数展开法:对于一些特殊的函数,可以通过将其展开为无穷级数的形式,然后对无穷级数逐项求积分来求解原函数。
以上是一些常见的不定积分的基本方法。
在实际求解过程中,还可以结合不同的方法灵活应用,选择最适合的方法求解不定积分。
同时,需要注意积分常数的添加和积分区间的确定,以保证求解结果的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·复习 1 原函数的定义。
2 不定积分的定义。
3 不定积分的性质。
4 不定积分的几何意义。
·引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。
·讲授新课
第二节不定积分的基本公式和运算直接积分法
一基本积分公式
由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:
以上十五个公式是求不定积分的基础,必须熟记,不仅要记右端的结果,还要熟悉左端被积函数的的形式。
求函数的不定积分的方法叫积分法。
例1.求下列不定积分.(1)dx x
⎰2
1
(2)
dx x x
⎰
解:(1)
dx x ⎰21
=2121
21x x dx C C x
-+-=
+=-+-+⎰ (2)dx x x ⎰
=C x dx x +=⎰
25
235
2
此例表明,对某些分式或根式函数求不定积分时,可先把它们化为x α
的形式,然后应用幂函
数的积分公式求积分。
二 不定积分的基本运算法则
法则1 两个函数代数和的积分,等于各函数积分的代数和,即
dx x g dx x f dx x g x f ⎰⎰⎰±=±)()()]()([
法则1对于有限多个函数的和也成立的.
法则2 被积函数中不为零的常数因子可提到积分号外,即
dx x f k dx x kf ⎰⎰=)()( (0≠k )
例2 求3(21)x x e dx +-⎰
解 3(21)x x e dx +-⎰=23
x dx ⎰+dx ⎰-x e dx ⎰
=
4
12
x x x e C +-+。
注 其中每一项的不定积分虽然都应当有一个积分常数,但是这里并不需要在每一项后面加上一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和C 写在末尾,以后仿此。
注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。
如上例由于41
()2
x x x e C '+-+=321x
x e +-,所以结果是正确的。
三 直接积分法
在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结果,这样的积分方法叫直接积分法。
例3 求下列不定积分.
(1)
1)(x dx
⎰
(2)dx x x ⎰+-1
122
解:(1)首先把被积函数
1)(x
化为和式,然后再逐项积分得
1)((1x dx x dx
+-
=--
⎰⎰
xdx dx
=
+--⎰⎰⎰⎰
51
2
2
221252
x x x x C =+--+。
注:(1)求函数的不定积分时积分常数C 不能丢掉,否则就会出现概念性的错误。
(2)等式右端的每个不定积分都有一个积分常数,因为有限个任意常数的代数和仍是一个常数,所以只要在结果中写一个积分常数C 即可。
(3)检验积分计算是否正确,只需对积分结果求导,看它是否等于被积函数。
若相等,积分结果是正确的,否则是错误的。
(2)222221122(1)11
1x x dx dx dx x x x -+-==-+++⎰⎰⎰ 222arctan 1
dx
dx x x C x =-=-++⎰⎰。
上例的解题思路是设法化被积函数为和式,然后再逐项积分,是一种重要的解题方法,须掌握。
练习 1 322
324
x x x dx x
-++⎰,2 22221(1)x dx x x ++⎰,3 4
21x dx x +⎰。
答案 1 21432ln ||2
x x x C x
-+-+, 2 1
arctan x C x
-+, 3
3
1arctan 3
x x x C -++ 例4 求下列不定积分.(1)xdx ⎰2tan (2)dx x 2
sin
2
⎰
解:(1)2
2
tan (sec 1)xdx x dx =-⎰
⎰
2sec tan xdx dx x x C =-=-+⎰⎰
(2)C x x dx x dx x
+-=-=⎰⎰sin 2
1
212cos 12sin 2
上例的解题思路也是设法化被积函数为和式,然后再逐项积分,不过它实现化和是利用三角式
的恒等变换。
练习 1
2
cot xdx ⎰
2 2cos 2x dx ⎰
3 cos 2x
dx cosx-sinx
⎰ 答案 1 cot x x C --+ 2 1
(sin )2
x x C ++ 3 sin -cos x x C +
例5 设x x f 2
2
cos )(sin =',求)(x f .
解:由于x x x f 2
2
2
sin 1cos )(sin -==',
所以x x f -='1)(,故知)(x f 是x -1的原函数,因此
C x x dx x x f +-=-=⎰2
)1()(2
.
小结 基本积分公式,不定积分的性质,直接积分法。
练习 求下列不定积分.
(1)2(12sin )x dx x
-+⎰
(2)22
12
(
)cos sin dx x x
+⎰
, (3)dt t t ⎰+2)1(,(4
)2
3
)1dt t +⎰,(5)dx x x ⎰+)6(6, (6)dx x x ⎰--2
411,(7)dx x x ⎰-)cot csc(csc ,(8)dx x x ⎰2sin 2cos , (9)2(cos sin )22t t dt +⎰,(10)dx x ⎰-)1(tan 2,(11
)e (3x x x
dx -⎰。
答案1 2cos 2ln ||x x x C +++, 2 tan -cot x x C +, 3
2
12ln ||2
t t t C +++, 4 2arcsin 3arctan t t C -+, 5
761ln 67x x C ++, 6 31
3
x x C --+, 7 cot csc x x C -++, 8 cot 2x C --+,
9 cos t t C -+, 10 tan 2x x C -+,11
(3)2arcsin 1ln3
x
e x C -++。
小结 计算简单的不定积分,有时只需按不定积分的性质和基本公式进行计算;有时需要先利用代数运算或三角恒等变形将被积函数进行整理.然后分项计算.
作业 P81:2,3 板书设计。