非晶硅太阳电池的原理

合集下载

非晶硅太阳电池

非晶硅太阳电池

三、非晶硅太阳能电池尽管单晶硅和多晶硅太阳能电池经过多年的努力已取得很大进展,特别是转换效率已超过20%,这些高效率太阳能电池在空间技术中发挥了巨大的作用。

但在地面应用方面,由于价格问题的影响,长久以来一直受到限制。

太阳能电力如果要与传统电力进行竞争,其价格必须要不断地降低,而这对单晶硅太阳能电池而言是很难的,只有薄膜电池,特别是下面要介绍的非晶硅太阳能电池最有希望。

因而它在整个半导体太阳能电池领域中的地位正在不断上升。

从其诞生到现在,全世界以电力换算计太阳能电池的总生产量的约有1/3是非晶硅系太阳能电池,在民用方面其几乎占据了全部份额。

1、非晶态半导体与晶态半导体材料相比,非晶态半导体材料的原子在空间排列上失去了长程有序性,但其组成原子也不是完全杂乱无章地分布的。

由于受到化学键,特别是共价键的束缚,在几个原子的微小范围内,可以看到与晶体非常相似的结构特征。

所以,一般将非晶态材料的结构描述为:“长程无序,短程有序”。

晶硅的结构模型很多,左面给出了其中的一种,即连续无规网络模型的示意图。

可以看出,在任一原子周围,仍有四个原子与其键合,只是键角和键长发生了变化,因此在较大范围内,非晶硅就不存在原子的周期性排列。

在非晶硅材料中,还包含有大量的悬挂键、空位等缺陷,因而其有很高的缺陷态密度,它们提供了电子和空穴复合的场所,所以,一般说,非晶硅是不适于做电子器件的。

1975年,研究人员通过辉光放电技术分解硅烷,得到的非晶硅薄膜中含有一定量的氢,使得许多悬挂键被氢化,大大降低了材料的缺陷态密度,并且成功地实现了对非晶硅材料的p型和n 型掺杂。

电导激活能的变化说明了材料的费米能级随着掺杂浓度的变化而被调制,表明确实可以对非晶硅进行掺杂以控制它的导电类型和导电能力。

2、非晶硅太阳能电池的特点及发展历史It wasn't until 1974 that researchers began to realize that amorphous silicon could be used in PV devices by properly controlling the conditions under which it was deposited and by carefully modifying its composition. Today, amorphous silicon is commonly used for solar-powered consumer devices that have low power requirements (e.g., wrist watches and calculators).非晶硅太阳能电池的特点非晶硅太阳能电池之所以受到人们关注和重视,是因为它具有以下优点:1、非晶硅具有较高的光吸收系数。

非晶硅太阳电池

非晶硅太阳电池

非晶硅太阳电池非晶硅太阳电池,也被称为非晶硅薄膜太阳电池,是一种利用非晶硅材料制成的光伏电池。

非晶硅太阳电池具有柔性、轻薄和低造价等优点,适用于一些特殊场合和应用领域。

本文将从非晶硅材料的特性、非晶硅太阳电池的结构和工作原理、非晶硅太阳电池的优缺点以及应用领域等方面进行详细介绍。

非晶硅是一种非晶态的硅材料,其原子结构杂乱无序,与晶体硅相比,非晶硅具有更高的能量转换效率和更低的制造成本。

非晶硅太阳电池通常由玻璃或塑料基底、透明导电薄膜、非晶硅光伏层、背电极和接线等部分组成。

非晶硅太阳电池使用非晶硅材料作为光伏层,其中掺杂了少量的杂质元素,使得材料具有较高的光电转换效率。

非晶硅太阳电池的工作原理主要基于光伏效应,即光子入射到非晶硅光伏层上后被吸收,释放出电子和空穴,并在电场的作用下分别流向背电极和透明导电薄膜,从而形成电流。

非晶硅太阳电池的光伏转换效率与光伏层的材料性能、光伏层的厚度、非晶硅材料的电学性质等因素密切相关。

非晶硅太阳电池具有以下优点:首先,非晶硅太阳电池可以制备成柔性和轻薄的结构,适应各种复杂的曲面和形状,具有更广阔的应用空间;其次,非晶硅太阳电池的制造成本较低,生产工艺简单,可以实现大规模生产和应用;此外,非晶硅太阳电池在低光强和低温环境下具有较高的光电转换效率,适用于一些特殊应用领域。

然而,非晶硅太阳电池也存在一些缺点:首先,非晶硅太阳电池的光电转换效率相比于其他材料的太阳电池要低一些;其次,非晶硅太阳电池对光强和温度的变化较为敏感,在高温和强光环境下效果较差;另外,非晶硅太阳电池的使用寿命较短,一般在10年左右。

非晶硅太阳电池在一些特殊领域有广泛应用。

例如,在电子设备领域,非晶硅太阳电池可以用于制备柔性和可折叠的光伏电池组件,为电子设备提供可持续的电力;在建筑领域,非晶硅太阳电池可以嵌入到建筑材料中,如玻璃幕墙、屋顶瓦片等,实现建筑一体化太阳能利用;此外,非晶硅太阳电池还可以应用于一些便携式充电设备、户外太阳能供电系统等领域。

太阳能电池材料的种类、原理和特点

太阳能电池材料的种类、原理和特点

太阳能电池是一种将太阳能直接转换为电能的装置,它是太阳能光伏发电系统的核心部件之一。

太阳能电池材料的种类、原理和特点是影响太阳能电池性能和应用领域的关键因素。

本文将围绕这一主题展开讨论,以便为读者深入了解太阳能电池提供全面的了解。

一、太阳能电池材料的种类太阳能电池材料可以分为晶体硅、非晶硅、多晶硅、柔性薄膜电池材料等几种主要类型。

1. 晶体硅晶体硅是太阳能电池最常用的材料之一,它主要由单晶硅和多晶硅两种类型,其中单晶硅的电池效率较高,但成本较高,多晶硅则相对便宜一些。

2. 非晶硅非晶硅是一种非晶态材料,是将硅薄片进行涂覆和烧结而成的,其电池效率较低,但成本较低,适合一些需要成本控制的应用场景。

3. 多晶硅多晶硅电池是利用多晶硅片制成,其性价比相对较高,广泛应用于家用光伏电站和商业光伏电站中。

4. 柔性薄膜电池材料柔性薄膜电池是一种新型的太阳能电池材料,主要由非晶硅材料、铜铟镓硒等化合物材料制成,具有柔性、轻薄、便于携带等优点,是未来太阳能电池发展的方向。

二、太阳能电池材料的原理太阳能电池是利用光电效应将太阳能直接转换为电能的装置。

不同类型的太阳能电池材料有着不同的工作原理。

1. 晶体硅晶体硅太阳能电池的工作原理是通过P-N结构实现的。

当太阳光照射在P-N结上时,光子的能量被硅中的电子吸收并激发,使得电子跃迁到导带中,形成光生电子和空穴。

这些光生电子和空穴会在P-N结的作用下分离,从而形成电流,从而实现将太阳能光能转化为电能。

2. 非晶硅非晶硅太阳能电池利用非晶硅薄膜吸收太阳光的能量,并将其转化为电能。

其工作原理与晶体硅相似,但非晶硅的材料结构不规则,电子的运动方式也有所不同。

3. 柔性薄膜电池材料柔性薄膜电池材料利用非晶硅、铜铟镓硒等化合物材料,通过薄膜沉积技术将材料制备成薄膜,实现光伏效应的转化工作原理与晶体硅和非晶硅类似,通过材料的光电转换将太阳光能转换为电能。

三、太阳能电池材料的特点不同种类的太阳能电池材料各有其独特的特点和适用场景。

非晶硅太阳能电池工作原理及进展

非晶硅太阳能电池工作原理及进展

非晶硅太阳能电池工作原理及进展.txt生活是过出来的,不是想出来的。

放得下的是曾经,放不下的是记忆。

无论我在哪里,我离你都只有一转身的距离。

本文由yy19880602贡献 pdf文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

维普资讯 、非晶硅太阳能电池工作原理及进展、/徐温元(开大学电子科学系)南自196年以来,晶硅基台金作为一种新型的电子材料,7非由于它的优异的光电特性,它在太阳能使电池及其他方面具有广泛的应用前景,而推动着人们对这羹材料特性进行深人研究。

近几年国际上从有关这方面的研究工作发展迅速,已形成一个新技术产业部门.非晶硅太阳能电池的转换效率和电弛面积也都有明显的提高和增太.本文综述了非晶硅材料特性,电池工作原理及最近发展.一、非晶硅材料特性移率虺非晶硅基合金材料包括氢化非晶硅as:—i了H、非晶碳化硅aSxH、非晶氮化硅-iC:s1i…N:H、非晶锗硅aSl—i…Ge:等一系列H犍材料.类台金均可在较低的温度下(3O)这<0℃以等离子化学气相沉积方法(CVPD)在较广泛的衬底材料(玻璃、属、高温塑料)生如金及上成大面积薄膜.1非晶硅舍金的带隐及悬挂键.远程无序的.对理想晶态半导体来说,我们已卷市崖(m ?ePc)图l非晶态半导体态密宦分布示意图带隙宽度.非晶硅的带隙宽度约等于17V,.e同.这种不同与非晶硅中含有1%以上的氢0非晶硅与晶体硅不同之处是其原子排列是晶体硅的带隙宽度为1IV,二者有明显的不.c能用能带理论阐明其导电机理,即电子或空穴有关.再者,在非晶硅中掺人适量的锗(e、若G)可“由”运动于扩展的导带或价带之中,并碳(或氮O,可以形成不同的硅基合金即自地c)N)则具有较高的迁移率,而处于导带和价带之间的非晶锗硅合金禁带态密度为零.对非晶态半导体来说,由于aSl—i…C:Has—i一Gc:非晶碳硅台金H,或非晶氮硅台金asl—i…N:H.原子排列非长程有序,即材料中存在着各种不各种合金的带隙宽度随掺人量(的变化而变.)完整性(键长、角不相等和材料中存在空洞表1列出几种常见合金的带隙宽度.从迁移率如键或E,内分布的带尾的态密度近似以指向等)导致在描述非晶态导电机理时虽也有类似边E,于晶态的导带和价带,但它分成扩展态和局域数规律降到~1“c? V的悬挂键态密度./me0态.在扩展态中,子和空穴的迁移率明显低所谓悬挂键是指非晶硅中的而电s原子未成共价i110/9于晶态材料,只相当于晶态材料载流子迁移率键的电子态.由射频溅射或电子束蒸发方法制的I%或更低.谓局域态即载流子不能在其中备的非晶硅膜,其悬挂键态密度可高达所输运的一种态,而且载流子是连续分布于导带ce由等离子体化学沉积法制备的非晶mV.或价带附近,故局域态又称为带尾,如图I所硅膜中含有大量的氢,可有效地与非晶硅中的示.带尾的宽窄与原子排列无序程度有关,即悬挂键结合形成s—键,使悬挂键态密度降iH无序程度愈高带尾分布愈宽.低.悬挂键分布在带隙的中部,并起复合中心图中E,E,迁移率边,占到占.间称的作用.悬挂键态密度越低,则材料的载流子称之物理655 ?维普资讯 表I几种非晶志半导体的帝隙宽度可使此材料成为p型或n型的导电材料,其电导率可增至约l-( ? m)02Qc~.对于台有微晶成分的非晶硅材料,电导率可更高.其Cure(S(晶)!s≈CJ)多i寿命越长.对于高质量的非晶硅材斟,其悬挂键态密度可低于l“c/me0V.嚣表l中各种非晶硅基合金()量从01分.逐渐增加时,带隙宽度也逐渐增大.其z戢流子的输运过程.非晶硅材粒受光照或外电场注人时将产生菲平衡载流子,这些载流子在被复合之前在扩展态输运过程中,有一部分载流子将被带尾局域态所陷获,而被陷的载流子由于声子协助可重新激发回到扩展态.这种过程在载流子通过材料时可多次重复发生,直至载流子穿通材料崔波长^r)n图2非晶硅基合金与晶体硅光吸收系敲的比较达到另一电极.由于这种多次陷阱效应,导致3光吸收特性.了载流子迁移率的下降.对未掺杂的本征非晶导率为l-一1( ? m)Ot0Qc~.通过掺硼或磷非晶硅基合金材料的光吸收特性与晶体硅由图2可以看出,非晶硅在可见光部分比晶硅材料来说,是电子导电,般用i示,电材料差别很大,2给出几种材料的光吸收谱.这一表图侣/钛-’200A~_GI020A1B.ODIAp.10A0aeHS:TC0图3()I玻璃为衬康的单结电}(为玻璃,TC为so镀面透明导电膜,a三【电GOnB为缓冲层,n为掺磷n型电于导电材料,p为掺礤P型空穴导电材料,,(,+’钼钍^ITi为背电敏,燕上1—2置的钍再蒸铝,)先00可得到较好的欧姆接触);【)b以不锈钢为衬雇的单结电}(为不镑钢衬雇,IO为氧化镏锡遗明导电膜)电sT;f)叠层电她(电他为。

npn的利用原理及合理利用措施。

npn的利用原理及合理利用措施。

npn的利用原理及合理利用措施。

非晶硅(a-Si)/微晶硅(μc-Si)/非晶硅(a-Si)(a-Si/μc-
Si/a-Si)三层电池是一种光伏技术,也被称为非晶硅太阳能电池。

它的利用原理是,在这种太阳能电池中,a-Si透明导电层吸收
可见光,并将其传导到a-Si和μc-Si层。

a-Si层主要负责吸收
低能量的红外光,而μc-Si层主要负责吸收高能量的蓝色光。

在太阳能光子击中a-Si和μc-Si层时,光子的能量会通过a-Si
和μc-Si的p型和n型层形成电子和空穴。

这些电子和空穴会
被导电层捕获并转化为电流,从而产生电能。

合理利用措施包括:
1. 提高光吸收效率:采用多层结构,通过调整各层材料的带隙能力来增加光子的吸收。

2. 优化层次结构:根据不同的光子能量,调整a-Si和μc-Si层
的厚度和组成,以提高各层的光吸收和载流子收集效率。

3. 表面处理:通过在透明导电层上进行抗反射涂层或纳米纹理等表面处理,减少光的反射,提高光的吸收。

4. 智能跟踪系统:利用太阳能电池板的智能跟踪系统,根据太阳的位置和光照强度调整面板的角度,最大限度地吸收太阳能。

5.系统优化:在设计和安装太阳能电池系统时,优化组件布局、
避免阴影、最大限度地利用光能,并使用高效的反馈和控制系统来提高整体的能量转换效率。

这些措施有助于提高a-Si/μc-Si/a-Si电池的能量转换效率并实现更可持续的太阳能利用。

!!!太阳能电池制造工艺---工艺流程以及工序简介

!!!太阳能电池制造工艺---工艺流程以及工序简介

去除磷硅玻璃的目的、作用:
1.
磷硅玻璃的厚度在扩散中工艺难控制,且其工艺窗口太小,不稳 定。 磷硅玻璃的折射率在1.5左右,比氮化硅折射率(2.07左右)小, 若磷硅玻璃较厚会降低减反射效果。 磷硅玻璃中含有高浓度的磷杂质,会增加少子表面复合,使电池 效率下降。
2.
3.
2. 扩散(POCl3液态扩散)
结的附近形成了与内建电场方
向相反的光生电场。在n区与p 区间产生了电动势。当接通外
电路时便有了电流输出。
单晶硅太阳电池
多晶硅太阳电池
非晶硅太阳电池
2. 硅太阳电池的制造工艺流程

下面我们就硅太阳电池的制造工艺流程以及各工序进行简 单的介绍。 晶体硅太阳能电池制造的常规工艺流程主要包括:硅片清 洗、绒面制备、扩散制结、(等离子周边刻蚀)、去 PSG(磷硅玻璃) 、PECVD 减反射膜制备、电极(背面电极、 铝背场和正电极) 印刷及烘干、烧结、Laser和分选测试等。 同时,在各工序之间还有检测项目,主要有抽样检测制绒效 果、抽样 测方块电阻、抽样测氮化硅减反射膜厚度和折射 率等项目。
(c). 去磷硅玻璃---PSG
在扩散过程中发生如下反应:
4PCl3 5O2 2PO 2 5 6Cl2
POCl3分解产生的P2O5淀积在硅片表面, P2O5与Si反应生成SiO2和 磷原子:
2P O 5Si 5SiO 4P
2 5 2
这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。
ser
4.沉积减反射膜(PECVD)
10.烧 结
5.丝网印刷背电极
6.烘 干
9.丝网印刷正电极
8.烘 干
7.丝网印刷背电场

非晶硅太阳电池的原理

非晶硅太阳电池的原理

非晶硅太阳电池的原理非晶硅太阳电池是20世纪70年代中期发展起来的一种新型薄膜太阳电池,与其他太阳电池相比,非晶硅电池具有以下突出特点:1).制作工艺简单,在制备非晶硅薄膜的同时就能制作pin结构。

2).可连续、大面积、自动化批量生产。

3).非晶硅太阳电池的衬底材料可以是玻璃、不锈钢等,因而成本小。

4).可以设计成各种形式,利用集成型结构,可获得更高的输出电压和光电转换效率。

5).薄膜材料是用硅烷SiH4等的辉光放电分解得到的,原材料价格低。

1.非晶硅太阳电池的结构、原理及制备方法非晶硅太阳电池是以玻璃、不锈钢及特种塑料为衬底的薄膜太阳电池,结构如图1所示。

为减少串联电阻,通常用激光器将TCO膜、非晶硅(A-si)膜和铝(Al)电极膜分别切割成条状,如图2所示。

国际上采用的标准条宽约1cm,称为一个子电池,用内部连接的方式将各子电池串连起来,因此集成型电池的输出电流为每个子电池的电流,总输出电压为各个子电池的串联电压。

在实际应用中,可根据电流、电压的需要选择电池的结构和面积,制成非晶硅太阳电池。

1.1 工作原理非晶硅太阳电池的工作原理是基于半导体的光伏效应。

当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场Vb的作用下,光生电子和空穴被分离,空穴漂移到P边,电子漂移到N边,形成光生电动势VL, VL 与内建电势Vb相反,当VL = Vb 时,达到平衡; IL = 0, VL达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc,此时VL= 0;当外电路加入负载时,则维持某一光电压VL和光电流IL。

其I--V特性曲线见图3非晶硅太阳电池的转换效率定义为:Pi是光入射到电池上的总功率密度,Isc是短路电流密度,FF为电池的填充因子,Voc 为开路电压,Im 和 Vm 分别是电池在最大输出功率密度下工作的电流密度和电压。

目前,子电池的开路电压约在0.8V—0.9V之间,Isc达到13mA/cm2,FF在0.7-0.8之间,η达到12%以上。

主要薄膜光伏电池技术及制备工艺介绍

主要薄膜光伏电池技术及制备工艺介绍

主要薄膜光伏电池技术及制备工艺介绍技术及制备工艺介绍第一章薄膜光伏电池技术及进展概况简述一、全球要紧薄膜光伏电池技术简介图:薄膜光伏电池结构二、薄膜光伏电池进展概况(一)非晶硅薄膜电池的大规模应用堪忧中国有超过20 家非晶硅薄膜电池厂商,共约1.1GW 产能,其中800MW的转换效率为6%-7%,300MW 的转换效率高于8.5%,最高的转换效率能够达到9%-10%,生产成本为约0.8 美元/W。

假如非晶硅薄膜电池的转换效率为10%,组件的价格低于晶体硅电池的75%,才有竞争力。

随着今年晶硅电池成本的下降与转换效率的稳步提升,2010 年7月,美国应用材料公司(Applied Materials)宣布,停止向新客户销售其SunFab 系列整套非晶硅薄膜技术。

8 月,无锡尚德叫停旗下的非晶硅薄膜太阳能组件生产线的业务。

非晶硅薄膜电池要继续扩张市场份额,还需要突破其转换率低与衰减性等问题,建立市场信心。

另外,非晶硅薄膜电池在半透明BIPV 玻璃幕领域具有相对优势,但目前BIPV 仍面临透光度与转换效率的两难逆境,大规模应用尚未推行,非晶硅薄膜电池前景堪忧。

(二)CdTe薄膜电池难以成为国内企业的进展重点CdTd 薄膜电池方面,美国First Solar 一枝独秀。

First Solar 组件效率已达11%,成本降低到0.76 美元/W,在所有太阳电池中成本最低。

First Solar 今年产能约1.4GW,估计2011、2012 年分别达到2.1GW 、2.7GW。

在电池制造技术与装备制造,市场份额与规模效应方面,FirstSolar 已经占据了绝对优势,国内企业难以有较大进展,目前国内介入CdTe 电池的企业仅三家,且均未实现大规模量产。

另一方面,碲属于稀有元素,在地壳里仅占1x10-6 。

已探明储量14.9 万吨,该技术的未来进展空间受限。

估计CdTe 技术不可能成为我国企业进展薄膜电池的要紧方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非晶硅太阳电池的原理
2010-11-1314:54
目录
一、非晶硅薄膜太阳电池基础知识简介
二、非晶硅薄膜太阳电池生产线及制造流程简介
三、国产提供的非晶硅薄膜太阳电池生产线介绍
一、非晶硅薄膜太阳电池基础知识简介
1976年美国RCA实验室的D.E.Conlson和C.R.Wronski在Spear形成和控制p-n结工作的基础上利用光生伏特(PV)效应制成世界上第一个a-Si太阳能电池,揭开了a-Si在光电子器件或PV组件中应用的幄幕。

目前a-Si多结太阳能电池的最高光电转换效率己达15%。

图1为一般单结的非晶硅太阳能电池结构图,图2为非晶硅太阳能电池
图1非晶硅太阳能电池结构图图2非晶硅柔性太阳能电池
第一层,为普通玻璃,是电池载体。

第二层为绒面的TCO。

所谓TCO就是透明导电膜,一方面光从它穿过被电池吸收,所以要求它的透过率高;另一方面作为电池的一个电极,所以要求它导电。

TCO制备成绒面起到减少反射光的作用。

太阳能电池就是以这两层为衬底生长的。

太阳能电池的第一层为P层,即窗口层。

下面是i层,即太阳能电池的本征层,光生载流子主要在这一层产生。

再下面为n 层,起到连接i和背电极的作用。

最后是背电极和Al/Ag电极。

目前制备背电极通常采用掺铝ZnO(A1),或简称AZO。

由于a-Si(非晶硅)多缺陷的特点,a-Si的p-n结是不稳定的,而且光照时光电导不明显,几乎没有有效的电荷收集。

所以,a-Si太阳能电池基本结构不是p-n 结而是p-i-n结。

掺硼形成P区,掺磷形成n区,i为非杂质或轻掺杂的本征层(因为非掺杂的a-Si是弱n型)。

重掺杂的p、n区在电池内部形成内建势,以收集电
荷。

同时两者可与导电电极形成欧姆接触,为外部提供电功率。

i区是光敏区,光电导/暗电导比在105~106,此区中光生电子、空穴是光伏电力的源泉。

非晶体硅结构的长程无序破坏了晶体硅电子跃迁的动量守恒选择定则,相当于使之从间接带隙材料变成了直接带隙材料。

它对光子的吸收系数很高,对敏感光谱域的吸收系数在1014cm-1以上,通常0.5µm左右厚度的a-Si就可以将敏感谱域的光吸收殆尽。

所以,p-i-n结构的a-Si电池的厚度取0.5µm左右,而作为死光吸收区的p、n层的厚度在10nm量级。

a-Si太阳能电池即PV组件到80年代后期年产量已达世界光伏器件总产量的约30%,即1000MW以上。

技术向生产力的高速转化,说明非晶硅太阳能电池具有独特的优势。

这些优势主要表现在以下方面:
(1)材料和制造工艺成本低。

这是因为衬底材料,如玻璃、不锈钢、塑料等,价格低廉。

硅薄膜厚度不到1µm,昂贵的纯硅材料用量很少。

制作工艺为低温工艺(100-300°C),生产的耗电量小,能量回收时间短。

(2)易于形成大规模生产能力。

这是因为核心工艺适合制作特大面积无结构缺陷的a-Si合金薄膜;只需改变气相成分或者气体流量便可实现pn结以及相应的叠层结构;生产可全程自动化。

(3)品种多,用途广。

薄膜的a-Si太阳能电池易于实现集成化,器件功率、输出电压、输出电流都可自由设计制造,可以较方便地制作出适合不同需求的多品种产品。

由于光吸收系数高,暗电导很低,适合制作室内用的微低功耗电源,如手表电池、计算器电池等。

由于a-Si膜的硅网结构力学性能结实,适合在柔性的衬底上制作轻型的太阳能电池。

灵活多样的制造方法,可以制造建筑集成的电池,适合户用屋顶电站的安装。

尽管非晶硅是一种很好的太阳能电池材料,但由于其光学带隙为1.7eV,使得材料本身对太阳辐射光谱的长波区域不敏感,这样一来就限制了非晶硅太阳能电池的转换效率。

此外,其光电转换效率会随着光照时间的延续而衰减,即所谓的光致衰退S-W效应,使得电池性能不稳定。

解决这些问题的途径就是制备叠层太阳能电池。

叠层太阳能电池是在制备的p-i-n单结太阳能电池上再沉积一个或多个p-i-n子电池制得的。

叠层型非晶硅太阳能电池的工作原理:由于太阳光光谱中的能量分布较宽,现有的任何一种半导体材料都只能吸收其中能量比其能隙值高的光子。

太阳光中能量较小的光子将透过电池,被背电极金属吸收,转变成热能;而高能光子超出能隙宽度的多余能量,则通过光生载流子的能量热释作用传给电池材料本身的点阵原子,使材料本身发热。

这些能量都不能通过光生载流子传给负载,变成有效的电能。

因此对于单结太阳能电池,即使是晶体材料制成的,其转换效率的理论极
限一般也只有25%左右(AM1.5)。

若太阳光光谱可以被分成连续的若干部分,用能带宽度与这些部分有最好匹配的材料做成电池,并按能隙从大到小的顺序从外向里叠合起来,让波长最短的光被最外边的宽隙材料电池利用,波长较长的光能够透射进去让较窄能隙材料电池利用,这就有可能最大限度地将光能变成电能,这样的电池结构就是叠层电池,如图4所示:
图3大面积集成型叠层太阳能电池图4子电池示意图
二、非晶硅薄膜太阳电池生产线及制造流程简介
非晶硅薄膜太阳电池的生产线主要包括如下设备:导电玻璃磨边设备,导电玻璃清洗设备,大型非晶硅薄膜PECVD生产设备(包括辅助设备),红外激光、绿激光刻线设备,大型磁控溅射生产设备,组件测试设备。

其工艺流程如图5所示,
图5非晶硅太阳电池的制备流程从图5可以知道,其制备工艺的流程为所有光伏电池中流程最短。

但是对非晶硅半导体膜系的真空PECVD制备从膜系设计到工艺过程控制的要求是非常严格的。

当前小面积电池的实验室制备已达到接近15%的光电转换效率,而工艺生产的大面积组件在大多数生产线上还未达到认证效率6%。

理论上大面积组件的极限是小面积器件的85-90%,小面积器件与组件的光电准换效率的差距体现了一条生产线的技术水平。

国际上少数非晶硅生产线已制备出认证效率8%以上的组件,由于几乎所有其他类型的光伏组件(包括当前热议的微晶硅薄膜电池)在实际运行高温情况与阴天低照度下性能不佳的问题而唯独非晶硅组件在这些实际运行条件下表现优秀的性能,所以其它类型的大面积薄膜电池的低成本规模制造出认证光电转换效率超过12%的组件以前,即使在规模发电应用,非晶硅光伏组件以其最低的制造成本,适中的,并不像误传的那么差的光电转换效率,是无法被淘汰的,且不说美丽的半透明组件以及可以弯曲,质量轻又不易破碎的柔性组件等只有非晶硅具备的优越性能的应用了。

三、国产非晶硅薄膜太阳电池生产线介绍
思博露公司消化引进国外先进的光伏技术,利用本土资源的优势,在保证先进的技术前提下,思博露的主要技术人员,拥有在美国,英国,和中国等国从事大面积非晶硅薄膜光伏电池的研发和生产25年以上的技术经验积累。

2006年,思博露联合北京北仪真空设备公司设计制造的国内非晶硅薄膜太阳电池生产线已经成功投产,整条生产线从设计、制造到调试、投产,历时仅7个月。

这在世界范围内也属罕见。

同时,除此以外的其他客户,也纷纷与思博露进行洽谈,要求提供非晶硅薄膜太阳电池生产线。

目前已有多家公司订货。

除了提供生产线及其核心设备和先进生产工艺以外,已经实现并优化了生产线所有配套设备设施整机国产化。

思博露也可以向客户提供包括土建,净化车间等基础建设的总体设计技术服务。

承担完整非晶硅生产线的交钥匙工程。

4年以来,思博露公司努力将生产线的价格大幅度的降低的同时,对核心PECVD与PVD设备的设计与制造水平不断提高,以及器件设计与制备工艺的不断精细化,两者的结合正在使大面积组件的性能与小面积电池的性能的差距向理论极限9-10%靠近,同时良品率也在往理论极限95%靠近。

再加长度超过2.5米的半透明玻璃组件和质轻可弯曲的柔性组件的示范制造都在按计划顺利进行。

再加上非晶硅光伏组件最优秀的高温性能与低光照性能,制造过程最优秀的低耗能,低耗材,低排放,使得非晶硅光伏组件显示出在在各种光伏技术中的核心竞争力。

思博露可以根据在业界多年的经验积累,给客户在建厂或立项初期,给予科学的指导,避免客户在该领域走不必要的弯路。

并且可以根据用户的需求提供个性化生产线的设计。

目前思博露提供的规模最小非晶硅太阳电池生产线的产能为2.5MW,便于刚起步的企业。

而大规模生产线则可根据用户需要设计建造,单线产能最大可达36MW。

这类国产生产线在保持世界最低价格同时,生产的非晶硅组件不但性能优秀,而且合格率高,产能达标。

针对国内不少已建成或在建的非晶硅生产线存在组件性能与良品率上不去的实际情况,思博露的技术骨干认为大部分问题出在核心设备的设计制造存在严重缺陷,但大部分问题是可以通过设备技术改造与工艺优化解决的。

思博露公司有能力和有意向承担这些线的技术改造任务。

相关文档
最新文档