圆精典培优竞赛题(含详细答案)
初三数学圆的综合的专项培优练习题(含答案)及答案解析

初三数学圆的综合的专项培优练习题(含答案)及答案解析一、圆的综合1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若BC=4,CD=6,求平行四边形OABC 的面积.【答案】(1)证明见解析(2)24【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.试题解析:(1)证明:连接OD ,∵OD=OA ,∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC ,在△EOC 和△DOC 中,OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°,即OD ⊥DC ,∴CD 是⊙O 的切线;(2)由(1)知CD 是圆O 的切线,∴△CDO 为直角三角形,∵S △CDO =12CD•OD , 又∵OA=BC=OD=4,∴S△CDO=12×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.3.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.4.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,3PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,3,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=123,3,在Rt△DEP中,∵37∴22(7)(3)=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE,∠BED=∠AEC,∴△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=17,∴57∵BE∥DF,∴△ABE∽△AFD,∴BE AE DF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴阴影部分的面积=△BDF的面积﹣弓形BD的面积=△BDF的面积﹣(扇形BOD的面积﹣△BOD的面积)=22160(23)3123(23)23604π⨯⨯⨯--⨯ =93﹣2π.【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.5.如图1,是用量角器一个角的操作示意图,量角器的读数从M点开始(即M点的读数为0),如图2,把这个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有射线C绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到与CB,在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.(1)当射线CP经过AB的中点时,点E处的读数是,此时△BCE的形状是;(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式;(3)当CP旋转多少秒时,△BCE是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC=∠BAC=∠BCE=30°,∴∠OBE=∠OBC=60°,∵OE=OB,∴△OBE是等边三角形,∴∠BOE=60°,∴∠AOB=120°,∠ACB=60°,∴∠ACE=12∴x=30,综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.6..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A 重合),⊙D与AB相切,切点为E,⊙D交射线..DC于点F,过F作FG⊥EF交直线..BC于点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 3r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r ,由勾股定理得:(3r )2+9=36,解得:r=3; (3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==-②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2,即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.7.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC 于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=322)tan ∠BCD=14;(3)①135°;②2. 【解析】 【分析】(1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(2c )(2c )=8,消去字母a ,b 求出c 值,即求出△CPF 2c . 【详解】 (1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得: AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1, ∴x 2+x 2=82, 解得:x=42.∵⊙O 内接四边形,∠ACD=90°, ∴∠ADE=90°, ∴∠EDB=90°, ∵∠B=45°,∴△BDE 是等腰直角三形. ∴DE=DB , 又∵DB=1, ∴DE=1, 又∵CE=BC-BE , ∴CE=42232-=. (2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y , ∵S △ACB =S ACD +S DCB ,∴()1114242103y y 222⨯=+⨯+⨯, 解得:y=2或y=-11(舍去). ∴EM=1,CM=CE+ME=1+3=4, 又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .∵∠CAD=45°, ∴∠CPD=∠CAD=45°, 又∵点D 是CPF ∆的内心, ∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD ∴∠CPF=90° ∴∠PCF+∠PFC=90°∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°, 即∠CDF 的度数为135°. ②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心, ∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°, ∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线, ∴∠PCF=2∠DCF ,∠PFC=2∠DFC , ∴∠PCF+∠PFC=90°, ∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°, ∴四边形PKDN 是矩形, 又∵KD=ND ,∴四边形PKDN 是正方形. 又∵∠MBD=∠BDM=45°, ∠BDM=∠KDP , ∴∠KDP=45°. ∵PC=a ,PF=b ,PD=c ,∴,∴NF=b -,CK=a -, 又∵CK=CM ,FM=FN ,CF=CM+FM , ∴CF=a b +, 又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴1111ab a b (a b 2222=+++-),化简得:)2a b c c +-------(Ⅰ),又∵若(c )(c )=8化简得:()2ab a b 2c 8++=------(Ⅱ),将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c =c =-∴m=c 222==, 即△CPF 的内切圆半径长为2. 【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.8.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++;(3)50105-.【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxx-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC =HP CP =10R R -=45,解得:R =409; (2)在△ABC 中,AC =BC =10,cosC =35, 设AP =PD =x ,∠A =∠ABC =β,过点B 作BH ⊥AC ,则BH =ACsinC =8,同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ5,sinβ5, EB =BDcosβ=(525x )5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx -+--=,整理得:y 25xx 8x 803x 20-++(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q是弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=5设圆的半径为r,在△ADG中,AD=2rcosβ5DG5AG=2r,5=52r51+,则:DG550﹣5相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.10.如图,四边形ABCD是⊙O的内接四边形,AC为直径,»»BD AD=,DE⊥BC,垂足为E.(1)判断直线ED与⊙O的位置关系,并说明理由;(2)若CE=1,AC=4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影. 【解析】 【分析】(1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可. 【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•2223=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.11.已知四边形ABCD 是⊙O 的内接四边形,∠DAB =120°,BC =CD ,AD =4,AC =7,求AB 的长度.【答案】AB =3. 【解析】 【分析】作DE ⊥AC ,BF ⊥AC ,根据弦、弧、圆周角、圆心角的关系,求得BC CD =u u u r u u u r,进而得到∠DAC =∠CAB =60°,在Rt △ADE 中,根据60°锐角三角函数值,可求得DE =23,AE =2,再由Rt △DEC 中,根据勾股定理求出DC 的长,在△BFC 和△ABF 中,利用60°角的锐角三角函数值及勾股定理求出AF 的长,然后根据求出的两个结果,由AB =2AF ,分类讨论求出AB 的长即可. 【详解】作DE ⊥AC ,BF ⊥AC ,∵BC =CD , ∴BC CD =u u u r u u u r, ∴∠CAB =∠DAC , ∵∠DAB =120°, ∴∠DAC =∠CAB =60°, ∵DE ⊥AC ,∴∠DEA =∠DEC =90°, ∴sin60°=4DE ,cos60°=4AE, ∴DE =3AE =2, ∵AC =7,∴CE =5,∴DC= ∴BC ,∵BF ⊥AC ,∴∠BFA =∠BFC =90°,∴tan60°=BF AF,BF 2+CF 2=BC 2, ∴BF,∴()2227AF +-=, ∴AF =2或AF =32, ∵cos60°=AF AB, ∴AB =2AF ,当AF =2时,AB =2AF =4,∴AB =AD ,∵DC =BC ,AC =AC ,∴△ADC ≌△ABC (SSS ),∴∠ADC =∠ABC ,∵ABCD 是圆内接四边形,∴∠ADC+∠ABC =180°,∴∠ADC =∠ABC =90°,但AC 2=49,2222453AD DC +=+=,AC 2≠AD 2+DC 2,∴AB =4(不合题意,舍去), 当AF =32时,AB =2AF =3, ∴AB =3.【点睛】 此题主要考查了圆的相关性质和直角三角形的性质,解题关键是构造直角三角形模型,利用直角三角形的性质解题.12.如图,BD 为△ABC 外接圆⊙O 的直径,且∠BAE =∠C .(1)求证:AE 与⊙O 相切于点A ;(2)若AE ∥BC ,BC =AC =2,求AD 的长.【答案】(1)证明见解析;(2)23【解析】【分析】(1)根据题目中已出现切点可确定用“连半径,证垂直”的方法证明切线,连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,根据同弧所对的圆周角相等,则可得到∠BAE=∠F,既而得到AE与⊙O相切于点A.(2))连接OC,先由平行和已知可得∠ACB=∠ABC,所以AC=AB,则∠AOC=∠AOB,从而利用垂径定理可得AH=1,在Rt△OBH中,设OB=r,利用勾股定理解得r=2,在Rt△ABD中,即可求得AD的长为3【详解】解:(1)连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,∵»»,AB AB∴∠ACB=∠F,∵∠BAE=∠ACB,∴∠BAE=∠F,∵∠FAB+∠F=90°,∴∠FAB+∠BAE=90°,∴OA⊥AE,∴AE与⊙O相切于点A.(2)连接OC,∵AE∥BC,∴∠BAE=∠ABC,∵∠BAE=∠ACB,∴∠ACB=∠ABC,∴AC=AB=2,∴∠AOC=∠AOB,∵OC=OB,∴OA⊥BC,∴CH=BH=1BC32在Rt△ABH中,AH=22AB BH-=1,在Rt△OBH中,设OB=r,∵OH2+BH2=OB2,∴(r﹣1)2+(3)2=r2,解得:r=2,∴DB=2r=4,在Rt△ABD中,AD=22BD AB-=2242-=23,∴AD的长为23.【点睛】本题考查了圆的综合问题,恰当的添加辅助线是解题关键.13.如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=12∠P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C 为顶点的三角形与△BFM相似,求DH的长度.【答案】(1)证明见解析;(2)PM=32;(3)满足条件的DH的值为632-或122311+. 【解析】【分析】(1)如图1中,作PH ⊥FM 于H .想办法证明∠PFH=∠PMH ,∠C=∠OFC ,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD ,PD 即可解决问题;(3)分两种情形①当△CDH ∽△BFM 时,DH CD FM BF =. ②当△CDH ∽△MFB 时,DH CD FB MF=,分别构建方程即可解决问题; 【详解】(1)证明:如图1中,作PH ⊥FM 于H .∵PD ⊥AC ,∴∠PHM =∠CDM =90°,∵∠PMH =∠DMC ,∴∠C =∠MPH ,∵∠C =12∠FPM ,∴∠HPF =∠HPM , ∵∠HFP+∠HPF =90°,∠HMP+∠HPM =90°,∴∠PFH =∠PMH ,∵OF =OC ,∴∠C =∠OFC ,∵∠C+∠CMD =∠C+∠PMF =∠C+∠PFH =90°,∴∠OFC+∠PFC =90°,∴∠OFP =90°,∴直线PA 是⊙O 的切线. (2)解:如图1中,∵∠A =30°,∠AFO =90°,∴∠AOF =60°,∵∠AOF =∠OFC+∠OCF ,∠OFC =∠OCF ,∴∠C =30°,∵⊙O 的半径为4,DM =1,∴OA =2OF =8,CD 33,∴OD =OC ﹣CD =43,∴AD =OA+OD =8+43 =123 ,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×33 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2. (3)如图2中,由(2)可知:BF =12BC =4,FM =3BF =43 ,CM =2DM =2,CD =3 , ∴FM =FC ﹣CM =43﹣2,①当△CDH ∽△BFM 时,DH CD FM BF = , ∴ 3432=- ,∴DH =63- ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =- ,∴DH =1223+ , ∵DN =()22443833--=- ,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为63- 或1223+. 【点睛】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.14.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点. (1)求证:是小半圆的切线; (2)若,点在上运动(点不与两点重合),设,. ①求与之间的函数关系式,并写出自变量的取值范围;②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.15.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.【答案】(1)证明见解析;(2)52 BE【解析】试题分析:(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF=3,在Rt △AFD 中求得DF =1,所以AB =AD = ,CD = CF +DF =4,再证明△ABE ∽△CDA ,得出BE AB DA CD =,即可求出BE 的长度; 试题解析:(1)证明:连结OA ,OB ,∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°.∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =∠ACF =45°,∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴AB AD ==且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA , ∴BE AB DA CD=,∴10=,10∴5BE=.2。
六年级上册数学人教版 第五单元圆培优测试(含答案)

人教版数学六年级上册第五单元班级________ 姓名______ 分数_______一、填空题。
(25分)1.大圆的半径是小圆半径的3倍,大圆的周长是小圆周长的()倍,大圆面积是小圆面积的()倍。
2.一个圆的周长是12.56cm,这个圆的直径是()cm,这个圆的面积是()cm2。
3.小芳用尺子量得圆形桌面的直径是1.2m,这个圆形桌面的周长是()m。
4.一个圆的周长、直径、半径相加的和是27.84厘米,这个圆的面积是()平方厘米。
5.用圆规画一个直径为10cm的圆,圆规两脚间的距离是()cm。
6.一根铁丝刚好可以围成一个边长为3.14分米的正方形,用这根铁丝可以围成一个周长是()分米的圆,这个圆形的面积是()平方分米。
7.在边长是4dm的正方形纸上剪一个最大的圆,这个圆的面积是()dm2。
8.君君画了两个同心圆,半径分别是3厘米和4厘米,这两个圆的面积相差()。
9.一个钟表分针长10厘米,时针长8厘米,从2时走到3时,分针所扫过的面积是()平方厘米,分针尖端走过的周长是()厘米;从3时到6时,时针扫过的面积是()平方厘米。
10.在长8分米、宽6分米的长方形中画一个最大的圆,圆的直径是()分米。
二、选择题。
(12分)1.小明买了一个台玩具越野车,前轮直径是后轮的一半,后轮滚动6圈,前轮要滚动()圈。
A.3 B.12 C.92.一个圆的半径由2cm增加到3cm,这个圆的面积增加了()cm2。
A.5πB.πC.13.小圆的直径是8cm,大圆的半径是5cm,小圆的面积是大圆面积的()。
A.45B.54C.1625D.19104.如图,两个图形中的阴影部分周长和面积大小关系是()。
A.周长和面积都相等B.周长不相等,面积相等C.面积不相等,周长相等5.圆是平面上的()。
A.直线图形B.曲线图形C.无法确定6.以下图形周长相等,则()面积最大。
A.长方形B.正方形C.圆三、判断题。
(10分)1.从大圆里剪掉一个小圆就得到一个圆环。
苏教版五年级下册数学培优题第6单元 圆(有答案)

六、圆1、从树木的年轮,我们可以清楚地看出树木的生长年龄,如果一棵20年树龄的红杉树的树干直径是23厘米,你知道这棵红杉树的半径平均每年增加多少厘米吗?解析:20年树龄的树干直径是23厘米,我们可以根据在同一个圆中直径是半径的2倍关系求出半径,然后再求出平均每年半径增加的厘米数。
解答:23÷2÷20=0.575(厘米)答:这棵红杉树的半径平均每年增加0.575厘米。
2、将两个大小相同的圆形铁片平放在桌面上,一个固定不动,另一个沿着不动铁片的边缘滚动,则滚动铁片的圆心转一周后所形成的圆的半径是铁片半径的几倍?若圆形铁片的半径是1厘米,则形成的大圆的半径是多少厘米?解析:由图知,两个圆形铁片大小相同,滚动铁片的圆心转一周后所形成的圆就是虚线画的圆,虚线的圆的半径是铁片半径的2倍,如果圆形铁片的半径是1厘米,则形成的大圆的半径就是2个铁片半径,也就是2厘米。
解答:滚动铁片的圆心转一周后所形成的圆的半径是铁片半径的2倍,若圆形铁片的半径是1厘米,则形成的大圆的半径是2厘米。
3、在一张边长是2厘米的正方形纸上画一个最大的扇形。
解析:扇形是由两条半径和圆上的一段弧线组成的,在边长是2厘米的正方形中画出一个最大的扇形,需要考虑扇形的圆心角要最大,因此需要把正方形的一个顶点为圆心,边长为半径作弧,这样就可以找到最大的扇形。
解答:4、下面扇形的圆心角各是多少度?解析:因为一个周角是360°,12圆的圆心角就是360°的一半,也就是180°;14圆的圆心角就是360°的14,也就是90°;15圆的圆心角就是360°的15,也就是72°。
解答: 180° 90° 72°5、下图中大圆的直径是6厘米,小圆的直径是4厘米,你知道阴影部分的宽是多少吗?解析:根据题意可知大圆的直径是6厘米,则半径就是3厘米;小圆的直径是4厘米,则半径就是2厘米。
初三数学圆的综合的专项培优练习题(含答案)及答案

初三数学圆的综合的专项培优练习题(含答案)及答案一、圆的综合1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°. 【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数. 试题解析:(1)∵∠AOC=∠BOD ∴∠AOC -∠COD=∠BOD-∠COD 即∠AOD=∠BOC ∵四边形ABCD 是矩形 ∴∠A=∠B=90°,AD=BC ∴AOD BOC ∆≅∆ ∴AO=OB (2)解:∵AB 是O 的直径,PA 与O 相切于点A ,∴PA ⊥AB , ∴∠A=90°. 又∵∠OPA=40°, ∴∠AOP=50°, ∵OB=OC , ∴∠B=∠OCB. 又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,AB 为⊙O 的直径,点D 为AB 下方⊙O 上一点,点C 为弧ABD 的中点,连接CD ,CA .(1)求证:∠ABD =2∠BDC ;(2)过点C 作CH ⊥AB 于H ,交AD 于E ,求证:EA =EC ;(3)在(2)的条件下,若OH =5,AD =24,求线段DE 的长度.【答案】(1)证明见解析;(2)见解析;(3)92DE =. 【解析】 【分析】(1)连接AD ,如图1,设∠BDC =α,∠ADC =β,根据圆周角定理得到∠CAB =∠BDC =α,由AB 为⊙O 直径,得到∠ADB =90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE =∠ADC ,等量代换得到∠ACE =∠CAE ,于是得到结论; (3)如图2,连接OC ,根据圆周角定理得到∠COB =2∠CAB ,等量代换得到∠COB =∠ABD ,根据相似三角形的性质得到OH =5,根据勾股定理得到AB =22AD BD +=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD .如图1,设∠BDC =α,∠ADC =β, 则∠CAB =∠BDC =α,∵点C 为弧ABD 中点,∴AC =CD ,∴∠ADC =∠DAC =β,∴∠DAB =β﹣α,∵AB 为⊙O 直径,∴∠ADB =90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD =90°﹣∠DAB =90°﹣(β﹣α),∴∠ABD =2α,∴∠ABD =2∠BDC ;(2)∵CH ⊥AB ,∴∠ACE +∠CAB =∠ADC +∠BDC =90°, ∵∠CAB =∠CDB ,∴∠ACE =∠ADC , ∵∠CAE =∠ADC ,∴∠ACE =∠CAE ,∴AE =CE ; (3)如图2,连接OC ,∴∠COB =2∠CAB , ∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD , ∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==,∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18,∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.3.如图AB 是△ABC 的外接圆⊙O 的直径,过点C 作⊙O 的切线CM ,延长BC 到点D ,使CD=BC ,连接AD 交CM 于点E ,若⊙OD 半径为3,AE=5, (1)求证:CM ⊥AD ; (2)求线段CE 的长.【答案】(1)见解析;(2)5 【解析】分析:(1)连接OC ,根据切线的性质和圆周角定理证得AC 垂直平分BD ,然后根据平行线的判定与性质证得结论;(2)根据相似三角形的判定与性质证明求解即可. 详解:证明:(1)连接OC∵CM 切⊙O 于点C , ∴∠OCE=90°,∵AB是⊙O的直径,∴∠ACB=90°,∵CD=BC,∴AC垂直平分BD,∴AB=AD,∴∠B=∠D∵∠B=∠OCB∴∠D=∠OCB∴OC∥AD∴∠CED=∠OCE=90°∴CM⊥AD.(2)∵OA=OB,BC=CD∴OC=1AD2∴AD=6∴DE=AD-AE=1易证△CDE~△ACE∴CE DEAE CE∴CE2=AE×DE∴CE=5点睛:此题主要考查了切线的性质和相似三角形的判定与性质的应用,灵活判断边角之间的关系是解题关键,是中档题.4.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.5.如图,一条公路的转弯处是一段圆弧().AB()1用直尺和圆规作出AB所在圆的圆心O;(要求保留作图痕迹,不写作法)()2若AB的中点C到弦AB的距离为2080m AB m=,,求AB所在圆的半径.【答案】(1)见解析;(2)50m【解析】分析:()1连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;()2连接OA OC OC,,交AB于D,如图2,根据垂径定理的推论,由C为AB的中点得到1OC AB AD BD AB402⊥===,,则CD20=,设O的半径为r,在Rt OAD中利用勾股定理得到222r (r 20)40=-+,然后解方程即可. 详解:()1如图1,点O 为所求;()2连接OA OC OC ,,交AB 于D ,如图2,C 为AB 的中点,OC AB ∴⊥,1402AD BD AB ∴===,设O 的半径为r ,则20OA r OD OD CD r ==-=-,,在Rt OAD 中,222OA OD AD =+,222(20)40r r ∴=-+,解得50r =,即AB 所在圆的半径是50m .点睛:本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.6.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD 3FC 的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE33∠==设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+32,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.7.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210) 240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.8.已知:BD 为⊙O 的直径,O 为圆心,点A 为圆上一点,过点B 作⊙O 的切线交DA 的延长线于点F ,点C 为⊙O 上一点,且AB =AC ,连接BC 交AD 于点E ,连接AC . (1)如图1,求证:∠ABF =∠ABC ;(2)如图2,点H 为⊙O 内部一点,连接OH ,CH 若∠OHC =∠HCA =90°时,求证:CH =12DA ; (3)在(2)的条件下,若OH =6,⊙O 的半径为10,求CE 的长.【答案】(1)见解析;(2)见解析;(3)215. 【解析】 【分析】()1由BD 为O 的直径,得到D ABD 90∠∠+=,根据切线的性质得到FBA ABD 90∠∠+=,根据等腰三角形的性质得到C ABC ∠∠=,等量代换即可得到结论;()2如图2,连接OC ,根据平行线的判定和性质得到ACO COH ∠∠=,根据等腰三角形的性质得到OBC OCB ∠∠=,ABC CBO ACB OCB ∠∠∠∠+=+,根据相似三角形的性质即可得到结论;()3根据相似三角形的性质得到AB BD 2OHOC==,根据勾股定理得到22AD BD AB 16=-=,根据全等三角形的性质得到BF BE =,AF AE =,根据射影定理得到212AF 916==,根据相交弦定理即可得到结论.【详解】()1BD 为O 的直径,90BAD ∴∠=,90D ABD ∴∠+∠=,FB 是O 的切线, 90FBD ∴∠=, 90FBA ABD ∴∠+∠=,FBA D ∴∠=∠, AB AC =,C ABC ∴∠=∠, CD ∠=∠,ABF ABC ∴∠=∠;()2如图2,连接OC ,90OHC HCA ∠=∠=,//AC OH ∴,ACO COH ∴∠=∠, OB OC =,OBC OCB ∴∠=∠,ABC CBO ACB OCB ∴∠+∠=∠+∠, 即ABD ACO ∠=∠, ABC COH ∴∠=∠,90H BAD ∠=∠=,ABD ∴∽HOC , 2AD BD CH OC ∴==, 12CH DA ∴=; ()3由()2知,ABC ∽HOC ,2AB BDOH OC∴==, 6OH =,O 的半径为10,212AB OH ∴==,20BD =,2216AD BD AB ∴=-=,在ABF 与ABE 中,90ABF ABE AB AB BAF BAE ∠=∠⎧⎪=⎨⎪∠=∠=⎩, ABF ∴≌ABE ,BF BE ∴=,AF AE =, 90FBD BAD ∠=∠=,2AB AF AD ∴=⋅,212916AF ∴==,9AE AF ∴==,7DE ∴=,2215BE AB AE =+=, AD ,BC 交于E , AE DE BE CE ∴⋅=⋅,9721155AE DE CE BE ⋅⨯∴===.【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.9.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=2523812n n- ;(3) n 9559155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO =22233m m n m -+-()()n =,解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.10.如图,线段BC 所在的直线 是以AB 为直径的圆的切线,点D 为圆上一点,满足BD =BC ,且点C 、D 位于直径AB 的两侧,连接CD 交圆于点E . 点F 是BD 上一点,连接EF ,分别交AB 、BD 于点G 、H ,且EF =BD . (1)求证:EF ∥BC ;(2)若EH =4,HF =2,求BE 的长.【答案】(1)见解析;(2) 233π【解析】 【分析】(1)根据EF =BD 可得EF =BD ,进而得到BE DF ,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.(2)连接DF ,根据切线的性质及垂径定理求出GF 、GE 的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG ,进而求出∠BDE 的度数,确定BE 所对的圆心角的度数,根据∠DFH =90°确定DE 为直径,代入弧长公式即可求解. 【详解】 (1)∵EF =BD , ∴EF =BD ∴BEDF∴∠D=∠DEF又BD=BC,∴∠D=∠C,∴∠DEF=∠CEF∥BC(2)∵AB是直径,BC为切线,∴AB⊥BC又EF∥BC,∴AB⊥EF,弧BF=弧BE,GF=GE=12(HF+EH)=3,HG=1DB平分∠EDF,又BF∥CD,∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2∴cos∠BHG=HGHB =12,∠BHG=60°.∴∠FDB=∠BDE=30°∴∠DFH=90°,DE为直径,DE=43,且弧BE所对圆心角=60°.∴弧BE=16×43π=233π【点睛】本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.11.如图,已知AB是⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CD⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积. 【答案】(1)详见解析;(2)6334π-.【解析】 【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC, ∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º ∴∠PCA=∠OCB, ∵OC=OB,∴∠OBC=∠OCB, ∴∠PCA=∠ABC ; (2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B, ∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形, ∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º, ∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA, 同理,CF =FM,∴AM =2CF=3 Rt △ACM 中,易得AC=33=3=OC,∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º, ∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB, 连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =OA×tan30º=3 , ∵△CDO ≌△EDO(AAS), ∴EG=CD=AC×sin60º=332, ∴1332ABM S AB MO ∆=⨯=, 同样,易求934AOE S ∆=, 260333602BOES ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形=93363333424ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.12.如图,四边形ABCD 内接于⊙O ,∠BAD =90°,AD 、BC 的延长线交于点F ,点E 在CF 上,且∠DEC =∠BAC . (1)求证:DE 是⊙O 的切线;(2)当AB =AC 时,若CE =2,EF =3,求⊙O 的半径.【答案】(1)证明见解析;(235. 【解析】【分析】(1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F =∠EDF ,根据等腰三角形的判定得到DE =EF =3,根据勾股定理得到CD 225DE CE =-=,证明△CDE ∽△DBE ,根据相似三角形的性质即可得到结论. 【详解】(1)如图,连接BD .∵∠BAD =90°,∴点O 必在BD 上,即:BD 是直径,∴∠BCD =90°,∴∠DEC +∠CDE =90°. ∵∠DEC =∠BAC ,∴∠BAC +∠CDE =90°.∵∠BAC =∠BDC ,∴∠BDC +∠CDE =90°,∴∠BDE =90°,即:BD ⊥DE . ∵点D 在⊙O 上,∴DE 是⊙O 的切线;(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°. ∵AB =AC ,∴∠ABC =∠ACB .∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3. ∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD 225DE CE =-=.∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°. ∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 533522⨯==,∴⊙O 的半径354=.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.13.如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与A 、B 重合),连AP ,BP ,过C 作CM ∥BP 交PA 的延长线于点M ,(1)求证:△PCM 为等边三角形;(2)若PA =1,PB =2,求梯形PBCM 的面积.【答案】(1)见解析;(21534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH ⊥CM 于H ,∵△ABC 是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM ∥BP ,∴∠BPC=∠PCM=60°,∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA ,∴∠BCP=∠ACM ,在△BCP 和△ACM 中, BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ACM (SAS ),∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt △PMH 中,∠MPH=30°,∴332∴S梯形PBCM=12(PB+CM)×PH=12×(2+3)×332=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.14.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.在△ABC 中,0090,60ACB BAC ∠=∠=,AC=2,P 为△ABC 所在平面内一点,分别连PA,PB ,PC .(1)如图1,已知,APB BPC APC ∠=∠=∠,以A 为旋转中心,将APB ∆顺时针旋转60度,得到AMN ∆.①请画出图形,并求证:C 、P 、M 、N 四点在同一条直线上;②求PA+PB+PC 的值.(2)如图2,如果点P 满足090BPC ∠=,设Q 为AB 边中点,求PQ 的取值范围.【答案】(1)①详见解析;②7;(231312PQ PQ ≤≤≠且;【解析】【分析】(1)①欲证明C 、P 、M 、N 四点在同一条直线上,只要证明∠APC+∠APM=180°,∠AMN+∠AMP=180°即可;②只要证明PA+PB+PC=PC+PM+MN=CN ,在Rt △CBN 中,利用勾股定理求出NC 即可; (2)如图2中,由∠BPC=90°,推出点P 在以BC 为直径的圆上(P 不与B 、C 重合),设BC 的中点为O ,作直线OQ 交⊙O 与P 和P′,可得PQ 3-1,PQ 的最大值为3+1,PQ≠2,由此即可解决问题;【详解】(1)①证明:如图,∵△APB≌△AMN,△APM是等边三角形,∴∠APM=∠APM=60°,∵∠APB=∠BPC=∠APC=120°,∴∠APB=∠BPC=∠APC=∠AMN=120°,∴∠APC+∠APM=180°,∠AMN+∠AMP=180°,∴C、P、M、N四点在同一条直线上;②解:连接BN,易得ΔABN是等边三角形∴∠ABN=60°,∵∠ABC=30°,∴∠NBC=90°,∵AC=2,∴AB=BN=4,BC=23,∵PA=PM,PB=MN,∴PA+PB+PC=PC+PM+MN=CN,在Rt△CBN中,CN=22+=,BC BN27∴PA+PB+PC=27.(2) 如图2中,∵∠BPC=90°,∴点P在以BC为直径的圆上(P不与B、C重合),设BC的中点为O,作直线OQ交⊙O与P和P′,可得PQ3-1,PQ3+1,PQ≠2,∴33+1且PQ≠2.且∴≤≤≠PQ1PQ1PQ2【点睛】本题考查几何变换综合题、等边三角形的性质和判定、全等三角形的性质、勾股定理、圆的有关知识等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.。
人教中考数学 圆的综合 培优练习(含答案)及详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙A过▱OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).(1)若∠BOH=30°,求点H的坐标;(2)求证:直线PC是⊙A的切线;(3)若OD=10,求⊙A的半径.【答案】(1)(132)详见解析;(3)5 3 .【解析】【分析】(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;(2)先判断出∠PCD=∠DAE,进而判断出∠PCD=∠CAE,即可得出结论;(3)先求出OE═3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论.【详解】(1)解:如图,过点H作HM⊥y轴,垂足为M.∵四边形OBCD是平行四边形,∴∠B=∠ODC∵四边形OHCD是圆内接四边形∴∠OHB=∠ODC∴∠OHB=∠B∴OH=OB=2∴在Rt△OMH中,∵∠BOH=30°,∴MH=12OH=1,33∴点H的坐标为(13(2)连接AC.∵OA=AD,∴∠DOF=∠ADO∴∠DAE=2∠DOF∵∠PCD=2∠DOF,∴∠PCD=∠DAE∵OB与⊙O相切于点A∴OB⊥OF∵OB∥CD∴CD⊥AF∴∠DAE=∠CAE∴∠PCD=∠CAE∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°∴直线PC是⊙A的切线;(3)解:⊙O的半径为r.在Rt△OED中,DE=12CD=12OB=1,OD=10,∴OE═3∵OA=AD=r,AE=3﹣r.在Rt△DEA中,根据勾股定理得,r2﹣(3﹣r)2=1解得r=53.【点睛】此题是圆的综合题,主要考查了平行四边形的性质,圆内接四边形的性质,勾股定理,切线的性质和判定,构造直角三角形是解本题的关键.2.如图1,已知扇形MON2,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.【答案】 (1)证明见解析;(2) 2=+y x 02<≤x 1422=x . 【解析】分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出DM ME BD AE =,进而得出AE =122x (),再判断出2OA OC DMOE OD OD==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论. 详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°. ∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM . ∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM , ∴AC =AM .(2)如图2,过点D 作DE ∥AB ,交OM 于点E . ∵OB =OM ,OD ⊥BM ,∴BD =DM . ∵DE ∥AB ,∴DM ME BD AE =,∴AE =EM .∵OM 2,∴AE =122x (). ∵DE ∥AB ,∴2OA OC DM OE OD OD==, ∴22DM OA y OD OE x =∴=+,02x ≤< (3)(i ) 当OA =OC 时.∵111222DM BM OC x ===.在Rt △ODM 中,222124OD OM DM x =-=-. ∵2121224xDM y OD x x==+-,1422x =,或1422x =(舍). (ii )当AO =AC 时,则∠AOC =∠ACO .∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在.(ⅲ)当CO =CA 时,则∠COA =∠CAO =α.∵∠CAO >∠M ,∠M =90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA =2α>90°.∵∠BOA ≤90°,∴此种情况不存在. 即:当△OAC 为等腰三角形时,x 的值为142-.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y 关于x 的函数关系式是解答本题的关键.3.如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E .(1)判断直线DE 与⊙O 的位置关系,并说明理由; (2)若AE =8,⊙O 的半径为5,求DE 的长.【答案】(1)直线DE 与⊙O 相切(2)4 【解析】试题分析:(1)连接OD ,∵AD 平分∠BAC ,∴EAD OAD ∠∠=,∵OA OD =,∴ODA OAD ∠∠=,∴ODA EAD ∠∠=,∴EA ∥OD ,∵DE ⊥EA ,∴DE ⊥OD ,又∵点D 在⊙O 上,∴直线DE 与⊙O 相切 (2)如图1,作DF ⊥AB ,垂足为F ,∴DFA DEA 90∠∠︒==,∵EAD FAD ∠∠=,AD AD =,∴△EAD ≌△FAD ,∴AF AE 8==,DF DE =,∵OA OD 5==,∴OF 3=,在Rt △DOF 中,22DF 4OD OF -==,∴AF AE 8== 考点:切线的证明,弦心距和半径、弦长的关系点评:本题难度不大,第一小题通过内错角相等相等证明两直线平行,再由两直线平行推出同旁内角相等.第二小题通过求出两个三角形全等,从而推出对应边相等,接着用弦心距和弦长、半径的计算公式,求出半弦长.4.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A 作出直径BC 所在射线的垂线.【答案】画图见解析. 【解析】【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下:【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线.5.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD =12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF = 【解析】分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解. 详解:⑴证明:连结OC ∵AB 是⊙O 的直径 ∴∠ACB=90° ∴∠B+∠BAC=90° ∵OA=OC ∴∠BAC=∠OCA ∵∠B=∠FCA ∴∠FCA+∠OCA=90° 即∠OCF=90° ∵C 在⊙O 上 ∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD 12AE EC = ∴CE=8∵直径AB ⊥弦CD 于点E ∴AD AC = ∵∠FCA =∠B ∴∠B=∠ACD=∠FCA ∴∠EOC=∠ECA ∴tan ∠B=tan ∠ACD=1=2CE BE∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE⊥AB∴∠CEO=∠FCE=90°∴△OCE∽△CFE∴OC OECF CE=即106=8 CF∴40CF3=点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.6.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2﹣kx+23 =0的两根(k为常数).(1)求证:PA•BD=PB•AE;(2)求证:⊙O的直径长为常数k;(3)求tan∠FPA的值.【答案】(1)见解析;(2)见解析;(3)tan∠FPA=2﹣3 .【解析】试题分析:(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA•BD=PB•AE;(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.试题解析:(1)证明:如图,∵PB切⊙O于点B,∴∠PBD=∠A,∵PF平分∠APB,∴∠APE=∠BPD,∴△PBD∽△PAE,∴PB:PA=BD:AE,∴PA•BD=PB•AE;(2)证明:如图,∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.又∵∠PBD=∠A,∠EPA=∠BPD,∴∠BED=∠BDE.∴BE=BD.∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),∴AE+BD=k,∴AE+BD=AE+BE=AB=k,即⊙O直径为常数k.(3)∵PB切⊙O于B点,AB为直径.∴∠PBA=90°.∵∠A=60°.∴PB=PA•sin60°=PA,又∵PA•BD=PB•AE,∴BD=AE,∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数).∴AE•B D=2,即AE2=2,解得:AE=2,BD=,∴AB=k=AE+BD=2+,BE=BD=,在Rt△PBA中,PB=AB•tan60°=(2+)×=3+2.在Rt△PBE中,tan∠BPF===2﹣,∵∠FPA=∠BPF,∴tan∠FPA=2﹣.【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.7.在O中,AB为直径,C为O上一点.(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小. 【答案】(1)∠P =34°;(2)∠P =27° 【解析】 【分析】(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;(2)因为D 为弧AC 的中点,OD 为半径,所以OD ⊥AC ,继而求得答案. 【详解】 (1)连接OC , ∵OA =OC , ∴∠A =∠OCA =28°, ∴∠POC =56°, ∵CP 是⊙O 的切线, ∴∠OCP =90°, ∴∠P =34°;(2)∵D 为弧AC 的中点,OD 为半径, ∴OD ⊥AC , ∵∠CAB =12°, ∴∠AOE =78°, ∴∠DCA =39°, ∵∠P =∠DCA ﹣∠CAB , ∴∠P =27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.8.如图,AB 为O 的直径,C 、D 为O 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】 解:(1)AB 是O 的直径,且D 为O 上一点,90ADB ∴∠=︒, CE DB ⊥, 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =,12∴∠=∠. 312∠=∠+∠,321∴∠=∠.42BDC ∠=∠,1BDC ∠=∠,421∴∠=∠,43∴∠=∠,//OC DB ∴.CE DB ⊥,OC CF ∴⊥.又OC 为O 的半径,CF ∴为O 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =483AD BD ∴==, 226810AB ∴=+=,5OB OC ==.OC CF ⊥,90OCF ∴∠=︒,3tan 4OC F CF ∴==, 解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.9.如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与A 、B 重合),连AP ,BP ,过C 作CM ∥BP 交PA 的延长线于点M ,(1)求证:△PCM 为等边三角形;(2)若PA =1,PB =2,求梯形PBCM 的面积.【答案】(1)见解析;(21534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH ⊥CM 于H ,∵△ABC 是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM ∥BP ,∴∠BPC=∠PCM=60°,∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA ,∴∠BCP=∠ACM ,在△BCP 和△ACM 中, BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ACM (SAS ),∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt △PMH 中,∠MPH=30°,∴332∴S 梯形PBCM =12(PB+CM )×PH=12×(2+3)331534【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.10.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQ k CQ +=,则称点A (或点B )是⊙C 的“K 相关依附点”,特别地,当点A 和点B 重合时,规定AQ=BQ ,2AQ k CQ =(或2BQ CQ ). 已知在平面直角坐标系xoy 中,Q(-1,0),C(1,0),⊙C 的半径为r .(1)如图1,当2r =时,①若A 1(0,1)是⊙C 的“k 相关依附点”,求k 的值.②A 2(1+2,0)是否为⊙C 的“2相关依附点”.(2)若⊙C 上存在“k 相关依附点”点M ,①当r=1,直线QM 与⊙C 相切时,求k 的值.②当3k =时,求r 的取值范围.(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 的“3相关依附点”,直接写出b 的取值范围.【答案】(1)2.②是;(2)①3k =②r 的取值范围是12r <≤;(3)333b -<. 【解析】【分析】(1)①如图1中,连接AC 、1QA .首先证明1QA 是切线,根据2AQ k CQ =计算即可解决问题; ②根据定义求出k 的值即可判断; (2)①如图,当1r =时,不妨设直线QM 与C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,根据定义计算即可; ②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,可得()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=,2CQ ,推出2MQ NQ DQ k DQ CQ CQ +===,可得当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C 经过点Q ,此时2r ,因为点Q 早C 外,推出r 的取值范围是12r <; (3)如图4中,由(2)可知:当3k =时,12r <.当2r 时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =-,当直线3y x b =-+经过点E 时,33b =,即可推出满足条件的b 的取值范围为333b -<<.【详解】(1)①如图1中,连接AC 、1QA .由题意:1OC OQ OA ==,∴△1QA C 是直角三角形,190CA Q ∴∠=︒,即11CA QA ⊥,1QA ∴是C 的切线,12222QA k QC ∴=== ②2(12,0)A +在C 上,2212122k +∴==,2A ∴是C 的“2相关依附点”.2(2)①如图2,当1r =时,不妨设直线QM 与C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥.(1,0)Q -,(1,0)C ,1r =,2CQ ∴=,1CM =,∴3MQ =,此时23MQ k CQ ==; ②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,()222MQ NQ MN NQ NQ ND NQ DQ ∴+=++=+=,2CQ =,∴2MQ NQ DQ k DQ CQ CQ +===,∴当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C 经过点Q ,此时2r ,点Q 早C 外,r ∴的取值范围是12r <.(3)如图4中,由(2)可知:当3k =时,12r <.当2r 时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =+经过点Q 时,3b =3y x b =-+经过点E 时,33b =,∴满足条件的b 的取值范围为333b -<.【点睛】本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点A (或点)B 是C 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.。
圆的周长与面积(典型问题)培优专项50练(含解析)完美打印版

圆的周长与面积(典型问题)培优专项50练(含解析)完美打印版圆的周长与面积培优专项50练(含解析)一、选择题(共15小题)1.如果 c = 28.26 米,圆的面积是多少?A。
20.25 平方米B。
14.13 平方米C。
63.585 平方米D。
64.85 平方米2.用一根长 6.28 米的绳子刚好能围一棵树的树干 2 圈。
如果树干的横截面为圆形,那么它的面积是多少?A。
12.56 平方米B。
3.14 平方米C。
1.57 平方米D。
0.785 平方米3.一个圆的半径扩大 2 倍,那么面积和周长会发生什么变化?A。
面积和周长扩大 2 倍B。
面积扩大 4 倍,周长扩大 2 倍C。
周长扩大 4 倍,面积扩大 2 倍4.把一张圆形纸片沿半径平均分成若干份,拼成一个近似的长方形。
这个长方形的周长与圆的周长相比会怎么样?A。
等于圆的周长B。
大于圆的周长C。
小于圆的周长D。
无法比较5.一个长方形和一个圆的周长相等。
已知长方形的长是 9 分米,宽是6.7 分米,圆的面积是多少?A。
31.4 平方分米B。
78.5 平方分米C。
314 平方分米D。
68.8 平方分米6.如果把圆的半径按 1:3 缩小,那么新的圆与原来的圆的面积比是多少?A。
3:1B。
1:3C。
1:9D。
9:17.一个环形的玉环,外直径为 8 厘米,内直径为 6 厘米,这个玉环的面积是多少?A。
12.56 平方厘米B。
18.84 平方厘米C。
21.98 平方厘米D。
31.4 平方厘米8.用 2019 厘米长的铁丝先围成一个圆,再用这根铁丝围成了一个正方形。
圆和正方形周长相比会怎么样?A。
一样长B。
圆的周长更长C。
正方形的周长更长9.如图,把圆分成若干等份,拼成近似的长方形后,周长增加了 8 dm。
原来的这个圆的面积是多少?A。
12.56 平方分米B。
25.12 平方分米C。
50.24 平方分米10.两个圆的周长相等,那么它们的面积会怎么样?A。
也相等B。
人教版六年级数学第五单元(圆)培优提高卷(含答案)

14.一个半径是4分米的半圆,它的周长是()分米。
A.10.56B.10.28C.20.56D.30.56
15.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12cm2,小圆面积是()。
A.12cm2B.8cm2C.4cm2
16.如图中,圆的面积和平行四边形的面积相等,已知平行四边形的底是4厘米,圆的半径是()厘米。
人教版六年级数学第五单元(圆)培优提高卷
一、填空题
1.一个圆的半径是10分米,这个圆的直径是分米,周长是分米,面积是平方分米。
2.根据给出圆的条件,求出圆的面积。
圆
半径
直径
面积
A
4cm
( )
B
9cm
( )
C
6cm
( )
D
20cm
( )
3.看图填空。
(1)
圆的半径是,直径是。
(2)
圆的半径是;长方形的宽是,长是。
27.一块圆形菜地原来的周长是18.84米,现在周围加宽2米,这块菜地的面积增加多少平方米?
28.国际奥委会会旗上的图案是由代表五大洲的五个圆环组成.现在在某体育馆前的草坪上要修剪出此图案,已知每个圆环的内、外半径分别是4米和5米,图中两两相交成的小曲边四边形(重叠部分)的面积相等,每个为1平方米,已知修剪每平方米的人工费用为10元,求修剪出此图案要花费多少人工费?
7.在长为3分米,宽为2分米的长方形内画一个最大的圆,这个圆的面积是( )。
8.如图,将一个圆转化成一个近似的长方形后,周长比原来增加了8厘米,原来圆的面积是( )平方厘米。
9.如图,横截面半径是0.2米的圆柱形油桶,从车厢的后端滚到前端共要5周。车厢长( )米。
圆精典培优竞赛题(含详细答案)

.圆培优竞赛1.如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A【答案】B.【解析】试题分析:如答图,连接PO,AO,取AO中点G,连接AG,过点A作AH⊥PO于点H,∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,∴PA=PB,CA=CE,DB=DE,∠APO=∠BPO,∠OAP=90º.∵△PCD的周长等于3r,∴∵⊙O的半径为r,∴在Rt△APO∴,即故选B.考点:1.切线的性质;2.切线长定理;3.勾股定理;4.相似三角形的判定和性质;5.锐角三角函数定义;6.直角三角形斜边上中线的性质;7.转换思想的应用.ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与边CD 切于点Q.若正方形的边长为有理数,则R 、r 的值可能是( ).A.R=5,r=2B.R=4,r=3/2C.R=4,r=2D.R=5,r=3/2 【答案】D 【解析】本题考查圆和勾股定理的综合应用,在竞赛思维训练中有典型意义。
可以将选项中的数据代入圆中,看是否满足条件。
做圆心O '和正方形中心O 。
设正方形边长为a 。
设AB 中点为H ,连接OH 并延长,交大圆于点JP则连接OA .由勾股定理有OH =JH R =-所以22r a R R ++=。
将各个选项数据代入,知D 正确。
3.如图,Rt △ABC 中,∠C=90°,AB=5,AC=3,点E 在中线AD 上,以E 为圆心的⊙E 分别与AB 、BC 相切,则⊙E 的半径为( ).B.【答案】B.【解析】试题分析:作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连结EB,EC,设⊙E的半径为R,如图,∵∠C=90°,AB=5,AC=3,∴AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=R,∴HC=R,AH=3-R,∵EH∥BC,∴△AEH∽△ADC,∴EH:CD=AH:AC,即∵S△ABE+S△BCE+S△ACE=S△ABC,×4×33×4,故选B.考点:切线的性质.4.如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63 º,那么∠B= .【答案】18°【解析】连接ED,CE,由图可知∠B=∠DEB, ∠ECD=∠EDC=2∠B∵∠A=63 º,∴∠ECA=63 º∴∠A+∠ECA+∠ECD+∠B=180º∴∠B=18°5.如图,在以O为圆心的两个同心圆图2中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP= 1,MA=AB=BC,则△MBQ的面积为 .【答案】【解析】小圆方程x 2 +y 2 =1 MC 方程 y = k(x+2), x =2y k - 解y 1y 2= 221k k -+,12y y= 21-3k 2=49此时MC =2B 点坐标为(1449) MBQ 面积=32493/2 = 278= 386.如图,已知⊙O 的半径为,射线PM 经过点O ,OP =15 cm ,射线PN 与⊙O 相切于点Q .动点A 自P 的速度沿射线PM 方向运动,同时动点B 也自P 点以2cm/s 方向运动,则它们从点P 出发 s 后AB 所在直线与⊙O 相切..【答案】0.5s或10.5s.【解析】试题分析:PN与⊙O相切于点Q,OQ⊥PN,即∠OQP=90°,在直角△OPQ中根据勾股定理就可以求出PQ的值,过点O作OC⊥AB,垂足为C.直线AB与⊙O相切,则△PAB∽△POQ,根据相似三角形的对应边的比相等,就可以求出t的值.试题解析: 连接OQ,∵PN与⊙O相切于点Q,∴OQ⊥PN,即∠OQP=90°,∵OP=15,OQ=9,∴cm).过点O作OC⊥AB,垂足为C,∵点A,点B的运动速度为2cm/s,运动时间为ts,∴,PB=2t,∵PO=15,PQ=12,∵∠P=∠P,∴△PAB∽△POQ,∴∠PBA=∠PQO=90°,∵∠BQO=∠CBQ=∠OCB=90°,∴四边形OCBQ为矩形.∵⊙O的半径为,∴BQ=OC=9时,直线AB与⊙O相切.①当AB运动到如图1所示的位置,BQ=PQ-PB=12-2t,∵BQ=9,∴8-4t=9,∴t=0.25(s).②当AB运动到如图2所示的位置,BQ=PB-PQ=2t-12,∵BQ=9,∴2t-12=9,∴t=10.5(s).∴当t为0.5s或10.5s时直线AB与⊙O相切.考点: 1.切线的判定;2.勾股定理;3.矩形的性质;4.相似三角形的判定与性质.7.(本题满分13分)在平面直角坐标系xOy中,点M,以点M为圆心,OM长为半径作⊙M ,使⊙M与直线OM的另一交点为点B,与x轴、y轴的另一交点分别为点D,A(如图),连接AM点P是弧AB上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.【答案】(1)90°;(20);②.试题分析:(1)首先过点M作MH⊥OD于点H,由点M,可得∠MOH=45°,OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数;(2)①由MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B重合时,OP•OQ=20,可求得OQ的长,继而求得答案;②由Q的纵坐标为t,即可得P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.(1)过点M作MH⊥OD于点H,∵点M,∴∴∠MOD=45°,试题解析:∵∠AOD=90°,∴∠AOM=45°,∵OM=AM,∴∠OAM=∠AOM=45°,∴∠AMO=90°,∴∠AMB=90°;(2)①∵MH⊥OD,∴,OB=4,∵动点P与点B重合时,OP•OQ=20,∴OQ=5,∵∠OQE=90°,∠POE=45°,∴∴E0);②∵Q的纵坐标为t,∴如图2,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴;如图3,当动点P与A点重合时,Q点在y轴上,∴∵OP•OQ=20,∴此时;∴S的取值范围为5≤S≤10.考点:圆的综合题. 8.(本题满分10分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若(1)求⊙O 的半径;(2)求图中阴影部分的面积. 【答案】(1)2;(2)2π-. 【解析】试题分析:(1)根据垂径定理得CE 的长,再根据已知DE 平分AO 得,解直角三角形求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.试题解析:(1)∵直径AB ⊥DE ,∴DE 平分AO ,∴.又∵∠OCE=90°,∴sin ∠∴∠CEO=30°.在Rt △COE 中,cos30==2,∴⊙O 的半径为2;(2)连接OF .在Rt △DCP 中,∵∠DPC=45°,∴∠D=90°﹣45°=45°,∴∠EOF=2∠D=90°, ∴OEF S 扇形=π. ∵∠EOF=2∠D=90°,OE=OF=2,∴Rt OEF S ∆=∴S 阴影=Rt OEF OEF S S ∆-扇形=2π-..9.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t为何值时,四边形APQD为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?【答案】(1)4;(2)t为4s时,⊙P与⊙Q外切.【解析】试题分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;(2)主要考虑有四种情况,一种是P在AB上,一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).答:t为4时,四边形APQD为矩形(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得s);④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,解得s),∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,∴当t为时,⊙P与⊙Q外切.考点:1.矩形的性质;2.圆与圆的位置关系.10.(10分)如图,以线段AB为直径的⊙O交线段AC于点E,点D是AE的中点,连接OD并延长交⊙O于点M,∠BOE=60°,∠的度数;(1)求A(2)求证:BC是⊙O的切线;(3)求弧AM的长度.【答案】(1)30°;(2)证明见试题解析;(3)π.【解析】试题分析:(1)根据三角函数的知识即可得出∠A的度数.(2)要证BC是⊙O的切线,只要证明AB⊥BC即可.(3)根据垂径定理求得∠AOM=60°,运用三角函数的知识求出OA的长度,即可求得弧AM的长度.试题解析:(1)∵OA=OE,∴∠A=∠OEA,∵∠BOE=∠A+∠OEA=2∠A,∴∠×60°=30°;(2)在△ABC中,∵∴∠C=60°,又∵∠A=30°,∴∠ABC=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(3)∵点D是AE的中点,∴OM⊥AE,∵∠A=30°,∴∠AOM=60°,在RT△ABC中,tanC=∵,∴,∴弧AM的长=π.考点:切线的判定.11.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)b=2+a或2﹣a;(3)时,以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.【解析】试题分析:(1)连接PM,PN,运用△PMF≌△PNE证明.(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解.(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t:.∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0).∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1,0).∴OQ=1t.由(1)得△PMF≌△PNE ,∴NE=MF=t,∴OE=t﹣1.当△OEQ∽△MPF.当△OEQ∽△MFP.(Ⅱ)如答图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1,0)∴﹣1,由(1)得△PMF≌△PNE ∴NE=MF=t.∴OE=t﹣1.当△OEQ∽△MPF.当△OEQ∽△MFPQ、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.试题解析:解:(1)证明:如答图1,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN∴∠PMF=∠PNE=90°且∠NPM=90°.∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE.在△PMF和△PNE中,NPE MPF PN PMPNE PMF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△PMF≌△PNE(ASA).∴PE=PF.(2)①当t>1时,点E在y轴的负半轴上,如答图1,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1.∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a.②0<t≤1时,如答图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.考点:1.单动点和轴对称问题;2.切线的性质;3.全等三角形的判定和性质;4.相似三角形的判定和性质;5.分类思想和方程思想的应用.12.如图(1)x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).(1)求此抛物线的解析式;(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由..(2)①;②存在,(4,3)或或. 【解析】试题分析:(1)把A 的坐标代入抛物线的解析式,即可得到关于c 的方程,求的c 的值,则抛物线的解析式即可求解.(2)①连接MC 、MD ,证明△COM ∽△MED ,根据相似三角形的对应边的比相等即可求解. ②分四种情况进行讨论,根据平行四边形的性质即可求解.试题解析:解:(1)∵点A (﹣2,0(2)①令D (x ,y ),(x >0,y >0),则E (x ,0),M0), 由(1)知C (0,3), 如答图1,连接MC 、MD∵DE 、CD 与⊙O 相切,∴∠CMD=90°.∴△COM ∽△MED.又∵x >0,∴∴D②假设存在满足条件的点G(a,b).若构成的四边形是□ACGF,(答图2)则G与C关于直线x=2对称,∴G点的坐标是:(4,3).-,若构成的四边形是□ACFG,(答图3,4)则由平行四边形的性质有b=3G点的坐标是:.若构成的四边形是□AGCF,(答图5)则CG FA,∴G点的坐标是:(4,3).显而易见,AFCG不能构成平行四边形.综上所述,在抛物线上存在点G,使A、C、G、F四点为顶点的四边形是平行四边形,点G的坐标为(4,3.考点:1.单动点问题;2.二次函数综合题;3.曲线上点的坐标与方程的关系;4.直线与圆相切的性质;5.相似三角形的判定和性质;6. 平行四边形的性质;7.分类思想的应用.13.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE 为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【答案】(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,.【解析】试题分析:(1)只要证到三个内角等于90°即可.(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE然后只需求出CF的范围就可求出S矩形ABCD的范围.②根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.试题解析:解:(1)证明:如图,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.如答图1,连接OD,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB∵AD=4,AB=3,∴BD=5.∴S矩形ABCD=2S△CFE∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如答图1所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如答图2所示,此时⊙O与射线BD 相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如答图3所示.S△BCDBD•CF″′.∵S矩形ABCD∴矩形EFCG的面积最大值为12②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴点G考点:1.圆的综合题;2.单动点问题;3.垂线段最短的性质;4.直角三角形斜边上的中线的性质;5.矩形的判定和性质;6.圆周角定理;7.切线的性质;8.相似三角形的判定和性质;9.分类思想的应用.14.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=,AD=4cm.若⊙O与矩形ABCD沿l1同时..向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接OA,AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)【答案】(1)105;(2(3t【解析】试题分析:(1)⊙O与l1,l2都相切,连接圆心和两个切点,等正方向.OA即为正方形的对角线,得到∠OAD=450,再在Rt△ADC中,由锐角三角函数求∠DAC=600,从而求得∠OAC的度数1050..(2)连接O 1与切点E ,则O 1E=2,O 1E ⊥l 1,利用△O 1EA 1∽△D 1C 1E 1,求A 12+O 1O+A 1E=AA 1,可求t ,进而求得圆心移动的距离(3)圆心O 到对角线AC 的距离d <2,即d <r.说明⊙O 与AC 相交,所以出找两个临界点的t 值,即⊙O 与AC 相切.运动中存在两个相切的位置.分别求两个相切时t 的值,即可得出d <r 时,t 的取值试题解析:解:(1)1050.(2)O 1,A 1,C 1恰好在同一直线上时,设⊙O 与AC 的切点为E ,连接O 1E ,如答图1, 可得O 1E=2,O 1E ⊥l 1,在Rt △A 1D 1C 1中,∵A 1D 1=4,D 1C∴tan ∠C 1A 1D 1C 1A 1D 1=600.在Rt △A 1O 1E 中, ∠O 1A 1E=∠C 1A 1D 1∵111A E AA OO 2t 2=--=-,∴∴OO 1(3)如答图2,①当直线AC 与⊙O 第一次相切时,设移动时间为t 1.如位置一,此时⊙O 移动到⊙O 2的位置,矩形ABCD 移动到A 2B 2C 2D 2的位置.设⊙O 2与直线l 1、A 2C 2分别相切于点F 、G, 连接O 2 F 、O 2 G 、O 2 A 2, ∴O 2 F ⊥l 1、O 2 G ⊥A 2C 2.又由(2)可得∠C 2A 2D 2=600于,∴∠GA 2F=1200.∴∠O 2A 2F=600.在Rt △O 2A 2F∵OO 2=3t 1, ②当点O 1,A 1,C 1恰好在同一直线上时为位置二,设移动时间为t 2.由(2)可得③当直线AC 与⊙O 第二次相切时,设移动时间为t 3.如位置3,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等.∴2132t t t t -=-,即综上所述,当d<2时,t t考点:1.双面动平移问题;2.直线与圆的位置关系;3.锐角三角函数定义;4.特殊角的三角函数值; 5.分类思想的应用.15.在平面直角坐标系xOy 中,点M ,以点M 为圆心,OM 长为半径作⊙M ,使⊙M 与直线OM 的另一交点为点B ,与x 轴,y 轴的另一交点分别为点D ,A (如图),连接AM.点P 是AB 上的动点.(1)写出∠AMB 的度数;(2)点Q 在射线OP 上,且OP·OQ=20,过点Q 作QC 垂直于直线OM ,垂足为C ,直线QC 交x 轴于点E.①当动点P 与点B 重合时,求点E 的坐标;②连接QD ,设点Q 的纵坐标为t ,△QOD 的面积为S ,求S 与t 的函数关系式及S 的取值范围..【答案】(1)90°;(2)①(0);②【解析】试题分析:(1)首先过点M作MH⊥OD于点H,由点M,可得∠MOH=45°,OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数:如答图3,过点M作MH⊥OD于点H,∵点M,∴∴∠MOD=45°.∵∠AOD=90°,∴∠AOM=45°.∵OA=OM,∴∠OAM=∠AOM=45°.∴∠AMO=90°.∴∠AMB=90°.(2)①由MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B重合时,OP•OQ=20,可求得OQ的长,继而求得答案.②由Q的纵坐标为t,即可得P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.试题解析:解:(1)90°.(2)①由题意,易知:OM=2,OB=4.当动点P与点B重合时,∵OP·OQ=20,∴OQ=5.∵∠OQE=90°,∠POE=45°,∴∴E点坐标为(0).②∵Q的纵坐标为t,∴如答图1,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴此时如答图2,当动点P与A点重合时,Q点在y轴上,∴∵OP•OQ=20,∴此时∴S的取值范围为5≤S≤10.考点:1.圆的综合题;2.单动点问题;3.等腰直角三角形的判定和性质;4.点的坐标;5.由实际问题列函数关系式;6.数形结合思想、分类思想和方程思想的应用.16.在平面直角坐标系xOy中,二次函数的图像与x轴交于点A,B(点B在点A的左侧),与y轴交于点C,过动点H(0, m)作平行于x轴的直线,直D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由...【答案】(1)(4,0)和(-1,0);(2(3)存在,m=2-或4-或3或1-.【解析】试题分析:(1)A 、B 两点的纵坐标都为0,所以代入y=0,求解即可.(2)由圆和抛物线性质易得圆心Q 位于直线与抛物线对称轴的交点处,则Q 的横坐标D 、ED 、E 都在抛物线上,代入一点即可得m .(3)使得△ACF 是等腰直角三角形,重点的需要明白有几种情形,分别以三边为等腰三角形的两腰或者底,则共有3种情形;而三种情形中F 点在AC 的左下或右上方又各存在2种情形,故共有6种情形.求解时.利用全等三角形知识易得m 的值.试题解析:解:(1)当y=0,解之得:12x 4,x 1==- ,∴A 、B 两点的坐标分别为(4,0)和(-1,0).(2)∵⊙Q 与x 轴相切,且与D 、E 两点,∴圆心O 位于直线与抛物线对称轴的交点处,且⊙Q 的半径为H 点的纵坐标m (m 0>).∴D 、E 两点的坐标分别为:且均在二次函数.舍去).(3)存在.①当∠ACF=90°,AC=FC 时,如答图1,试卷第22页,总60页过点F 作FG ⊥y 轴于G ,∴∠AOC=∠CGF=90°.∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG. ∴△ACO ≌△∠CFG ,∴CG=AO=4. ∵CO=2,∴()m OG 422=-=--=-或m =OG=2+4=6.②当∠CAF=90°,AC=AF 时,如答图2,过点F 作FP ⊥x 轴于P ,∴∠AOC=∠APF=90°.∵∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP. ∴△ACO ≌△∠FAP ,∴FP =AO=4. ∴m FP 4=-=-或m =FP =4.③当∠AFC=90°,FA=FC 时,如答图3,则F 点一定在AC 的中垂线上,此时存在两个点分别记为F ,F′, 分别过F ,F′两点作x 轴、y 轴的垂线,分别交于E ,G ,D ,H . ∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA. ∵∠CDF=∠AEF ,CF=AF ,∴△CDF ≌△AEF. ∴CD=AE ,DF=EF.∴四边形OEFD 为正方形. ∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD. ∴4=2+2•CD.∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CGF′+∠GF′A,∴∠HF′C=∠GF′A.∵∠HF′C=∠GF′A,CF′=AF′.∴△HF′C≌△GF′A.∴HF′=GF′,CH=AG. ∴四边形OHF′G 为正方形.∴OH CH CO AG CO AO OG CO AO OHCO 4OH 2=-=-=--=--=--.∴OH=1. ∴m=1-.y∵直线l 与抛物线有两个交点,∴m m 可取值为m=2-或4-或3或1-.综上所述,m 的值为m=2-或4-或3或1-...考点:1.二次函数综合题; 2.单动点问题;3.等腰直角三角形存在性问题;4.二次函数的性质;5.曲线上点的坐标与方程的关系;6.直线与圆的位置关系;7.全等三角形的判定和性质;8.正方形的判定和性质;9.分类思想的应用.17.如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点A 、D ,交y 轴于点E ,连结AB 、AE 、BE .已知tan ∠A(3,0),D(-1,0),E(0,3).(1)求抛物线的解析式及顶点B 的坐标; (2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在一点P ,使以D 、E 、P 为顶点的三角形与△ABE 相似,若存在,直接写出....点P 的坐标;若不存在,请说明理由; (4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与t 之间的函数关系式,并指出t 的取值范围.【答案】(1)y=-x 2+2x +3.B(1,4).(2)证明见解析;(3)P 1(0,0),P 2(9,0),P 3(0.(4)【解析】试题分析:(1)利用两根式列出二次函数解析式y=a(x -3)(x +1),把将E(0,3)代入即可求出a 的值,继而可求顶点B 的坐标;(2)过点B 作BM ⊥y 于点M ,利用已知条件先证明AB 是△ABE 外接圆的直径.再证CB ⊥AB 即可.试卷第24页,总60页(3)存在;(4)分两种情况进行讨论即可.试题解析:(1)解:由题意,设抛物线解析式为y=a(x -3)(x +1). 将E(0,3)代入上式,解得:a=-1.∴y=-x 2+2x +3. 则点B(1,4).(2)如图,证明:过点B 作BM ⊥y 于点M ,则M(0,4). 在Rt △AOE 中,OA=OE=3,∴∠1=∠2=45°,在Rt △EMB 中,EM=OM -OE=1=BM ,∴∠MEB=∠MBE=45°,∴∠BEA=180°-∠1-∠MEB=90°. ∴AB 是△ABE 外接圆的直径. 在Rt △ABE 中,tan ∠∠CBE , ∴∠BAE=∠CBE .在Rt △ABE 中,∠BAE +∠3=90°, ∴∠CBE +∠3=90°.∴∠CBA=90°,即CB ⊥AB . ∴CB 是△ABE 外接圆的切线.(4)解:设直线AB 的解析式为y=kx +b .将A(3,0),B(1,4)代入,得30,4.k b k b +=⎧⎨+=⎩解得2,6.k b =-⎧⎨=⎩∴y=-2x+6.过点E 作射线EF∥x 轴交AB 于点F ,当y=3时,得∴3). 情况一:如图7,当0<t AOE 平移到△DNM 的位置,MD 交AB 于点H ,MN 交AE 于点G .则ON=AD=t ,过点H 作LK ⊥x 轴于点K ,交EF 于点L .由△AHD ∽△FHM HK=2t.∴S 阴=S △MND -S △GNA -S △HAD3×3-t)2·2t=+3t ...情况二:如图8t ≤3时,设△AOE 平移到△PQR 的位置,PQ 交AB 于点I ,交AE 于点V .由△IQA ∽△IPFIQ=2(3-t). ∴S 阴=S △IQA -S△(3-t)×2(3-t)-3t 综上所述:考点:二次函数综合题.18.y=ax 2+bx+c (a ,b ,c 是常数,a≠0)的对称轴为y 轴,且经过(0,0)和两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0,2).(1)求a ,b,c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交; (3)设⊙P 与x 轴相交于M (x 1,0),N (x 2,0)(x 1<x 2)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.【答案】(1)b=c=0;(2)证明见解析;(3)P 的纵坐标为0或4﹣ 【解析】 试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a ,b ,c 的值即可;(2)设P (x ,y ),表示出⊙P 的半径r ,进而与2比较得出答案即可; (3)分别表示出AM ,AN 的长,进而分别利用当AM=AN 时,当AM=MN 时,当AN=MN时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0∴抛物线的一般式为:y=ax2,2,解得:∵图象开口向上,∴∴抛物线解析式为:2,故b=c=0;(2)设P(x,y),⊙P的半径又∵2,则化简得:2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a2),∵作PH⊥MN于H,则又∵2,则,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴当AM=AN解得:a=0,当AM=MN,解得:2当AN=MN,试卷第26页,总60页..解得:a=﹣2=4﹣综上所述,P 的纵坐标为0或4﹣考点:二次函数综合题.19.木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O 1,O 2分别在CD ,AB 上,半径分别是O 1C ,O 2A ,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC 将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆; 方案四:锯一块小矩形BCEF 拼接到矩形AEFD 下面,并利用拼成的木板锯一个尽可能大的圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆培优竞赛1.如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A51312.125C3135D2133【答案】B.【解析】试题分析:如答图,连接PO,AO,取AO中点G,连接AG,过点A作AH⊥PO于点H,∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,∴PA=PB,CA=CE,DB=DE,∠APO=∠BPO,∠OAP=90º.∵△PCD的周长等于3r,∴PA=PB=3r 2.∵⊙O的半径为r,∴在Rt△APO中,由勾股定理得22313PO t r2⎛⎫=+=⎪⎝⎭. ∴13 GO=.∵∠OHA=∠OAP=90º, ∠HOA=∠AOP,∴△HOA∽△AOP. ∴AH OH OAPA OA OP==,即AH OH3r13 r r 2==∴313213AH OH=.∴13213513GH GO OH=--.∵∠AGH=2∠APO=∠APB, ∴AH12 tan APB tan AGHG31313513rH5∠=∠===.故选B.考点:1.切线的性质;2.切线长定理;3.勾股定理;4.相似三角形的判定和性质;5.锐角三角函数定义;6.直角三角形斜边上中线的性质;7.转换思想的应用.2.如图,以PQ=2r(r∈Q)为直径的圆与一个以R(R∈Q)为半径的圆相切于点P.正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与边CD切于点Q.若正方形的边长为有理数,则R、r的值可能是( ).=5,r=2 =4,r=3/2=4,r=2 =5,r=3/2【答案】D【解析】本题考查圆和勾股定理的综合应用,在竞赛思维训练中有典型意义。
可以将选项中的数据代入圆中,看是否满足条件。
做圆心O 和正方形中心O。
设正方形边长为a。
设AB中点为H,连接OH并延长,交大圆于点JP则连接OA .由勾股定理有OH =JH R =-所以22r a R R ++=。
将各个选项数据代入,知D 正确。
3.如图,Rt △ABC 中,∠C=90°,AB=5,AC=3,点E 在中线AD 上,以E 为圆心的⊙E 分别与AB 、BC 相切,则⊙E 的半径为( ).A .78 B .67 C .56D .1 【答案】B.【解析】试题分析:作EH ⊥AC 于H ,EF ⊥BC 于F ,EG⊥AB 于G ,连结EB ,EC ,设⊙E 的半径为R ,如图,B C DM∵∠C=90°,AB=5,AC=3, ∴BC=224AB AC =-,而AD 为中线,∴DC=2,∵以E 为圆心的⊙E 分别与AB 、BC 相切,∴EG=EF=R ,∴HC=R ,AH=3-R ,∵EH ∥BC ,∴△AEH ∽△ADC ,∴EH :CD=AH :AC ,即EH=2(3)3R -, ∵S △ABE +S △BCE +S △ACE =S △ABC ,∴12×5×R+12×4×R+12×3×2(3)3R -=12×3×4, ∴R=67. 故选B .考点:切线的性质.4.如图,过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A=63 º,那么∠B= .【答案】18°【解析】连接ED,CE,由图可知∠B=∠DEB, ∠ECD=∠EDC=2∠B∵∠A=63 º,∴∠ECA=63 º∴∠A+∠ECA+∠ECD+∠B=180º∴∠B=18°5.如图,在以O 为圆心的两个同心圆图2中,MN 为大圆的直径,交小圆于点P 、Q ,大圆的弦MC 交小圆于点A 、B.若OM=2,OP= 1,MA=AB=BC ,则△MBQ 的面积为.【答案】3 15/8【解析】小圆方程x 2 +y 2 =1MC 方程 y = k(x+2), x =2y k - 解y 12213k k k +- y 22213k k k -- 12y y 2213213k k---= 2 213k -213k -213k -1-3k 2 =49527此时 1.56 36 B 点坐标为(14527g 49) MBQ 面积= 32527g 493/2 = 278527 = 3158 6.如图,已知⊙O 的半径为9cm ,射线PM 经过点O ,OP =15 cm ,射线PN 与⊙O 相切于点Q .动点A 自P 点以25cm/s 的速度沿射线PM 方向运动,同时动点B 也自P 点以2cm/s 的速度沿射线PN 方向运动,则它们从点P 出发 s 后AB 所在直线与⊙O 相切.【答案】或.【解析】试题分析:PN 与⊙O 相切于点Q ,OQ ⊥PN ,即∠OQP=90°,在直角△OPQ 中根据勾股定理就可以求出PQ 的值,过点O 作OC ⊥AB ,垂足为C .直线AB 与⊙O 相切,则△PAB ∽△POQ ,根据相似三角形的对应边的比相等,就可以求出t 的值.试题解析: 连接OQ ,∵PN 与⊙O 相切于点Q ,∴OQ ⊥PN ,即∠OQP=90°,∵OP=15,OQ=9,∴PQ=2210612-=(cm ).过点O 作OC ⊥AB ,垂足为C ,∵点A 的运动速度为52cm/s ,点B 的运动速度为2cm/s ,运动时间为ts ,∴PA=52t,PB=2t,∵PO=15,PQ=12,∴PA PB PO PQ,∵∠P=∠P,∴△PAB∽△POQ,∴∠PBA=∠PQO=90°,∵∠BQO=∠CBQ=∠OCB=90°,∴四边形OCBQ为矩形.∴BQ=OC.∵⊙O的半径为,∴BQ=OC=9时,直线AB与⊙O相切.①当AB运动到如图1所示的位置,BQ=PQ-PB=12-2t,∵BQ=9,∴8-4t=9,∴t=(s).②当AB运动到如图2所示的位置,BQ=PB-PQ=2t-12,∵BQ=9,∴2t-12=9,∴t=(s).∴当t为或时直线AB与⊙O相切.考点: 1.切线的判定;2.勾股定理;3.矩形的性质;4.相似三角形的判定与性质.7.(本题满分13分)在平面直角坐标系xOy中,点M(2,2),以点M为圆心,OM长为半径作⊙M ,使⊙M与直线OM的另一交点为点B,与x轴、y轴的另一交点分别为点D,A(如图),连接AM点P是弧AB上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.【答案】(1)90°;(2)①(20);②2t,5≤S≤10.【解析】试题分析:(1)首先过点M作MH⊥OD于点H,由点M22),可得∠MOH=45°,2,继而求得∠AOM=45°,又由OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数;(2)①由2MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B重合时,OP•OQ=20,可求得OQ的长,继而求得答案;②由OD=22Q的纵坐标为t,即可得S=1222t2t,然后分别从当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.试题解析:(1)过点M 作MH ⊥OD 于点H ,∵点M (2,2),∴OH=MH=2,∴∠MOD=45°,∵∠AOD=90°,∴∠AOM=45°,∵OM=AM ,∴∠OAM=∠AOM=45°,∴∠AMO=90°,∴∠AMB=90°;(2)①∵OH=MH=2,MH ⊥OD ,∴OM=22MH OH +=2,OD=2OH=22,∴OB=4,∵动点P 与点B 重合时,OP •OQ=20,∴OQ=5,∵∠OQE=90°,∠POE=45°,∴OE=52,∴E 点坐标为(52,0);②∵OD=22,Q 的纵坐标为t ,∴S=1222t ⨯=2t ,如图2,当动点P 与B 点重合时,过点Q 作QF ⊥x 轴,垂足为F 点,∵OP=4,OP •OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴t=QF=522,此时S=5222⨯=5; 如图3,当动点P 与A 点重合时,Q 点在y 轴上,∴OP=22,∵OP •OQ=20,∴t=OQ=52,此时S=252⨯=10;∴S 的取值范围为5≤S≤10.考点:圆的综合题.8.(本题满分10分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE=23(1)求⊙O的半径;(2)求图中阴影部分的面积.【答案】(1)2;(2)2π-.【解析】试题分析:(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=12AO=12OE,解直角三角形求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.试题解析:(1)∵直径AB⊥DE,∴CE=12DE=3.∵DE平分AO,∴CO=12AO=12OE.又∵∠OCE=90°,∴sin∠CEO=COEO=12,∴∠CEO=30°.在Rt△COE中,OE=cos30CEo=33=2,∴⊙O的半径为2;(2)连接OF.在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°,∴∠EOF=2∠D=90°,∴OEFS扇形=2902360π⨯⨯=π.∵∠EOF=2∠D=90°,OE=OF=2,∴Rt OEFS∆=12×OE×OF=2,∴S阴影=Rt OEFOEFS S∆-扇形=2π-.考点:1.扇形面积的计算;2.线段垂直平分线的性质;3.解直角三角形.9.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t为何值时,四边形APQD为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切【答案】(1)4;(2)t为4s,203s,283s时,⊙P与⊙Q外切.【解析】试题分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;(2)主要考虑有四种情况,一种是P在AB上,一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).答:t为4时,四边形APQD为矩形(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得t=203(s);④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,解得t=283(s),∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,而283<11,∴当t为4s,203s,283s时,⊙P与⊙Q外切.考点:1.矩形的性质;2.圆与圆的位置关系.10.(10分)如图,以线段AB为直径的⊙O交线段AC于点E,点D是AE的中点,连接OD并延长交⊙O于点M,∠BOE=60°,cosC=12,BC=23.(1)求A∠的度数;(2)求证:BC是⊙O的切线;(3)求弧AM的长度.【答案】(1)30°;(2)证明见试题解析;(3)π.【解析】试题分析:(1)根据三角函数的知识即可得出∠A的度数.(2)要证BC是⊙O的切线,只要证明AB⊥BC即可.(3)根据垂径定理求得∠AOM=60°,运用三角函数的知识求出OA的长度,即可求得弧AM的长度.试题解析:(1)∵OA=OE,∴∠A=∠OEA,∵∠BOE=∠A+∠OEA=2∠A,∴∠A=12∠BOE=12×60°=30°;(2)在△ABC中,∵cosC=12,∴∠C=60°,又∵∠A=30°,∴∠ABC=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(3)∵点D是AE的中点,∴OM⊥AE,∵∠A=30°,∴∠AOM=60°,在RT△ABC中,tanC=ABBC,∵BC=32,∴AB=BC•tanC=233,∴OA=12AB=3,∴弧AM的长=603180π⨯=π.考点:切线的判定.11.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F 运动过程中,设OE=a ,OF=b ,试用含a 的代数式表示b ;(3)作点F 关于点M 的对称点F′,经过M 、E 和F′三点的抛物线的对称轴交x 轴于点Q ,连接QE .在点F 运动过程中,是否存在某一时刻,使得以点Q 、O 、E 为顶点的三角形与以点P 、M 、F 为顶点的三角形相似若存在,请直接写出t 的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)b=2+a 或2﹣a ;(3)当117t 4+=或2或22+或22-时,以点Q 、O 、E 为顶点的三角形与以点P 、M 、F 为顶点的三角形相似. 【解析】试题分析:(1)连接PM ,PN ,运用△PMF≌△PNE 证明.(2)分两种情况①当t >1时,点E 在y 轴的负半轴上,0<t≤1时,点E 在y 轴的正半轴或原点上,再根据(1)求解.(3)分两种情况,当1<t <2时,当t >2时,三角形相似时还各有两种情况,根据比例式求出时间t :如答图3,(Ⅰ)当1<t <2时,∵F (1+t ,0),F 和F′关于点M 对称,∴F′(1﹣t ,0). ∵经过M 、E 和F′三点的抛物线的对称轴交x 轴于点Q ,∴Q (1﹣12t ,0).∴OQ=1﹣12t. 由(1)得△PMF≌△PNE ,∴NE=MF=t ,∴OE=t ﹣1.当△OEQ∽△MPF 时,OE OQ MP MF=,即11t t 121t --=, 解得,12117117t ,t 44+-==(舍去). 当△OEQ∽△MFP 时,OE OQ MF MP=,即11t t 12t 1--=,解得,12t 2,t 2==- (舍去).(Ⅱ)如答图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣12t,0)∴OQ=12t ﹣1,由(1)得△PMF≌△PNE ∴NE=MF=t.∴OE=t﹣1.当△OEQ∽△MPF时,OE OQMP MF=,即1t1t121t--=,无解.当△OEQ∽△MFP时,∴OE OQMF MP=,即1t1t12t1--=,解得,12t22,t22=+=-.综上所述,当117t4+=或2或22+或22-时,以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.试题解析:解:(1)证明:如答图1,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN∴∠PMF=∠PNE=90°且∠NPM=90°.∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE.在△PMF 和△PNE 中,NPE MPF PN PM PNE PMF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△PMF ≌△PNE (ASA ).∴PE=PF.(2)①当t >1时,点E 在y 轴的负半轴上,如答图1, 由(1)得△PMF≌△PNE ,∴NE=MF=t ,PM=PN=1. ∴b=OF=OM+MF=1+t ,a=NE ﹣ON=t ﹣1, ∴b ﹣a=1+t ﹣(t ﹣1)=2,∴b=2+a.②0<t≤1时,如答图2,点E 在y 轴的正半轴或原点上, 同理可证△PMF≌△PNE ,∴b=OF=OM+MF=1+t ,a=ON ﹣NE=1﹣t , ∴b+a=1+t+1﹣t=2, ∴b=2﹣a ,(3)当117t 4+=或2或22+或22-时,以点Q 、O 、E 为顶点的三角形与以点P 、M 、F 为顶点的三角形相似.考点:1.单动点和轴对称问题;2.切线的性质;3.全等三角形的判定和性质;4.相似三角形的判定和性质;5.分类思想和方程思想的应用.12.如图(1),抛物线21y x x c 4=-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(﹣2,0). (1)求此抛物线的解析式;(2)①若点D 是第一象限内抛物线上的一个动点,过点D 作DE ⊥x 轴于E ,连接CD ,以OE 为直径作⊙M ,如图(2),试求当CD 与⊙M 相切时D 点的坐标;②点F 是x 轴上的动点,在抛物线上是否存在一点G ,使A 、C 、G 、F 四点为顶点的四边形是平行四边形若存在,求出点G 的坐标;若不存在,请说明理由.【答案】(1)21y x x 34=-++; (2)①(()3152+,()3358+);②存在,(4,3)或(27,3+- )或(27,3-- ). 【解析】试题分析:(1)把A 的坐标代入抛物线的解析式,即可得到关于c 的方程,求的c 的值,则抛物线的解析式即可求解.(2)①连接MC 、MD ,证明△COM∽△MED ,根据相似三角形的对应边的比相等即可求解. ②分四种情况进行讨论,根据平行四边形的性质即可求解.试题解析:解:(1)∵点A (﹣2,0)在抛物线21y x x c 4=-++上, ∴()21022c 4=-⨯--+,解得c=3. ∴抛物线的解析式是:21y x x 34=-++.(2)①令D (x ,y ),(x >0,y >0),则E (x ,0),M (x2,0), 由(1)知C (0,3), 如答图1,连接MC 、MD∵DE 、CD 与⊙O 相切,∴∠CMD=90°.∴△COM ∽△MED. ∴CO OM ME ED=,即x32x y 2=.又∵21y x x34=-++,∴2x32x1x x324=-++,解得x=()3152±.又∵x>0,∴x=()3152+,∴()3y358=+.∴D点的坐标是:(()3152+,()3358+).②假设存在满足条件的点G(a,b).若构成的四边形是□ACGF,(答图2)则G与C关于直线x=2对称,∴G点的坐标是:(4,3).若构成的四边形是□ACFG,(答图3,4)则由平行四边形的性质有b=3-,又∵213a a34-=-++,解得a=27±,此时G点的坐标是:(27,3±-).若构成的四边形是□AGCF,(答图5)则CG FA,∴G点的坐标是:(4,3).显而易见,AFCG不能构成平行四边形.综上所述,在抛物线上存在点G,使A、C、G、F四点为顶点的四边形是平行四边形,点G的坐标为(4,3)或(27,3+-)或(27,3--).考点:1.单动点问题;2.二次函数综合题;3.曲线上点的坐标与方程的关系;4.直线与圆相切的性质;5.相似三角形的判定和性质;6. 平行四边形的性质;7.分类思想的应用.13.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【答案】(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,最小值为108 25;②154.【解析】试题分析:(1)只要证到三个内角等于90°即可.(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=23CF4.然后只需求出CF的范围就可求出S矩形ABCD的范围.②根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.试题解析:解:(1)证明:如图,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.如答图1,连接OD,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴2 CFEDABS CF S DA ∆∆⎛⎫= ⎪⎝⎭.∵AD=4,AB=3,∴BD=5.∴222CFE DABCF CF13CFS S34DA1628∆∆⎛⎫=⋅=⋅⋅⋅=⎪⎝⎭. ∴S矩形ABCD=2S△C FE=23CF4.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如答图1所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如答图2所示,此时⊙O与射线BD 相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如答图3所示.S△BCD=12BC•CD=12BD•CF″′.∴4×3=5×CF″′.∴CF″′=125.∴125≤CF≤4.∵S矩形ABCD=23CF4,∴22ABCD3123S4454⎛⎫⋅≤≤⋅⎪⎝⎭矩形,即ABCD108S1225≤≤矩形.∴矩形EFCG的面积最大值为12,最小值为10825.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴DC DG DA DB "=,即3DG 45"=,解得15DG 4"=. ∴点G 移动路线的长为154.考点:1.圆的综合题;2.单动点问题;3.垂线段最短的性质;4.直角三角形斜边上的中线的性质;5.矩形的判定和性质;6.圆周角定理;7.切线的性质;8.相似三角形的判定和性质;9.分类思想的应用.14.如图,已知l 1⊥l 2,⊙O 与l 1,l 2都相切,⊙O 的半径为2cm .矩形ABCD 的边AD ,AB 分别与l 1,l 2重合,AB =43 cm ,AD =4cm .若⊙O 与矩形ABCD 沿l 1同时..向右移动,⊙O 的移动速度为3cm/s ,矩形ABCD 的移动速度为4cm/s ,设移动时间为t(s). (1)如图①,连接OA ,AC ,则∠OAC 的度数为 °;(2)如图②,两个图形移动一段时间后,⊙O 到达⊙O 1的位置,矩形ABCD 到达A 1B 1C 1D 1的位置,此时点O 1,A 1,C 1恰好在同一直线上,求圆心O 移动的距离(即OO 1的长); (3)在移动过程中,圆心O 到矩形对角线AC 所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t 的取值范围.(解答时可以利用备用图画出相关示意图)【答案】(1)105;(2)236+;(3)2323-<t <223+. 【解析】试题分析:(1)⊙O 与l 1,l 2都相切,连接圆心和两个切点,等正方向.OA 即为正方形的对角线,得到∠OAD=450,再在Rt△ADC 中,由锐角三角函数求∠DAC=600,从而求得∠OAC 的度数1050.(2)连接O 1与切点E ,则O 1E=2,O 1E ⊥l 1,利用△O 1EA 1∽△D 1C 1E 1,求A 1E=233,根据2+O 1O+A 1E=AA 1,可求t ,进而求得圆心移动的距离3t=236+.(3)圆心O 到对角线AC 的距离d <2,即d <r.说明⊙O 与AC 相交,所以出找两个临界点的t 值,即⊙O 与AC 相切.运动中存在两个相切的位置.分别求两个相切时t 的值,即可得出d <r 时,t 的取值 试题解析:解:(1)1050.(2)O 1,A 1,C 1恰好在同一直线上时,设⊙O 与AC 的切点为E ,连接O 1E ,如答图1, 可得O 1E=2,O 1E ⊥l 1,在Rt△A 1D 1C 1中,∵A 1D 1=4,D 1C 1=43, ∴tan ∠C 1A 1D 1=3.∴∠C 1A 1D 1=600.在Rt△A 1O 1E 中, ∠O 1A 1E=∠C 1A 1D 1=600.∴A 1E=0223tan 603=, ∵111A E AA OO 2t 2=--=-,∴23t 23-=,∴23t 23=+.∴OO 1=3t=236+.(3)如答图2,①当直线AC 与⊙O 第一次相切时,设移动时间为t 1.如位置一,此时⊙O 移动到⊙O 2的位置,矩形ABCD 移动到A 2B 2C 2D 2的位置.设⊙O 2与直线l 1、A 2C 2分别相切于点F 、G, 连接O 2 F 、O 2 G 、O 2 A 2, ∴O 2 F ⊥l 1、O 2 G ⊥A 2C 2.又由(2)可得∠C 2A 2D 2=600于,∴∠GA 2F=1200.∴∠O 2A 2F=600.在Rt△O 2A 2F 中,O 2F=2,∴A 2F=233. ∵OO 2=3t 1,22123AF AA A F 4t 3=+=+,∴11234t 3t 23+-=,解得123t 23=-. ②当点O 1,A 1,C 1恰好在同一直线上时为位置二,设移动时间为t 2.由(2)可得223t 23=+. ③当直线AC 与⊙O 第二次相切时,设移动时间为t 3.如位置3,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等.∴2132t t t t -=-,即323232322t 2333⎛⎫⎛⎫⎛⎫+--=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得3t 223=+. 综上所述,当d<2时,t 的取值范围为2323-<t <223+.考点:1.双面动平移问题;2.直线与圆的位置关系;3.锐角三角函数定义;4.特殊角的三角函数值; 5.分类思想的应用.15.在平面直角坐标系xOy 中,点M (2,2),以点M 为圆心,OM 长为半径作⊙M ,使⊙M 与直线OM 的另一交点为点B ,与x 轴,y 轴的另一交点分别为点D ,A (如图),连接AM.点P 是»AB上的动点. (1)写出∠AMB 的度数;(2)点Q 在射线OP 上,且OP·OQ=20,过点Q 作QC 垂直于直线OM ,垂足为C ,直线QC 交x 轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.,5≤S≤10.【答案】(1)90°;(2)①(52,0);②S2t【解析】试题分析:(1)首先过点M作MH⊥OD于点H,由点M(2,2),可得∠MOH=45°,OH=MH=2,继而求得∠AOM=45°,又由OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数:如答图3,过点M作MH⊥OD于点H,∵点M(2,2),∴OH=MH=2.∴∠MOD=45°.∵∠AOD=90°,∴∠AOM=45°.∵OA=OM,∴∠OAM=∠AOM=45°.∴∠AMO=90°.∴∠AMB=90°.(2)①由OH=MH=2,MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B重合时,OP•OQ=20,可求得OQ的长,继而求得答案.②由OD=22,Q的纵坐标为t,即可得S=122t2t2⨯=,然后分别从当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.试题解析:解:(1)90°.(2)①由题意,易知:OM=2,OD=22,∴OB=4.当动点P与点B重合时,∵OP·OQ=20,∴OQ=5.∵∠OQE=90°,∠POE=45°,∴OE=52.∴E点坐标为(52,0).②∵OD=22,Q的纵坐标为t,∴S=122t2t 2⨯=.如答图1,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴t=QF=52 2.此时S=52252⨯=.如答图2,当动点P与A点重合时,Q点在y轴上,∴OP=22.∵OP•OQ=20,∴t=OQ=52.此时S=25210⨯=.∴S的取值范围为5≤S≤10.考点:1.圆的综合题;2.单动点问题;3.等腰直角三角形的判定和性质;4.点的坐标;5.由实际问题列函数关系式;6.数形结合思想、分类思想和方程思想的应用.16.在平面直角坐标系xOy中,二次函数213y x x222=-++的图像与x轴交于点A,B(点B在点A的左侧),与y轴交于点C,过动点H(0, m)作平行于x轴的直线,直线与二次函数213y x x222=-++的图像相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线上是否存在一点F,使得△ACF是等腰直角三角形若存在,求m的值;若不存在,请说明理由.【答案】(1)(4,0)和(-1,0);(2)2912-;(3)存在,m=2-或4-或3或1-.【解析】试题分析:(1)A、B两点的纵坐标都为0,所以代入y=0,求解即可.(2)由圆和抛物线性质易得圆心Q 位于直线与抛物线对称轴的交点处,则Q 的横坐标D 、ED 、E 都在抛物线上,代入一点即可得m .(3)使得△ACF 是等腰直角三角形,重点的需要明白有几种情形,分别以三边为等腰三角形的两腰或者底,则共有3种情形;而三种情形中F 点在AC 的左下或右上方又各存在2种情形,故共有6种情形.求解时.利用全等三角形知识易得m 的值.试题解析:解:(1)当y=0,解之得:12x 4,x 1==- ,∴A 、B 两点的坐标分别为(4,0)和(-1,0).(2)∵⊙Q 与x 轴相切,且与D 、E 两点,∴圆心O 位于直线与抛物线对称轴的交点处,且⊙Q 的半径为H 点的纵坐标m (m 0>).∴D 、E 两点的坐标分别为:且均在二次函数.舍去). (3)存在.①当∠ACF=90°,AC=FC 时,如答图1, 过点F 作FG ⊥y 轴于G ,∴∠AOC=∠CGF=90°.∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG. ∴△ACO ≌△∠CFG ,∴CG=AO=4. ∵CO=2,∴()m OG 422=-=--=-或m =OG=2+4=6.②当∠CAF=90°,AC=AF时,如答图2,过点F作FP⊥x轴于P,∴∠AOC=∠APF=90°.∵∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP.∴△ACO≌△∠FAP,∴FP =AO=4.=-=-或m=FP =4.∴m FP4③当∠AFC=90°,FA=FC时,如答图3,则F点一定在AC的中垂线上,此时存在两个点分别记为F,F′,分别过F,F′两点作x轴、y轴的垂线,分别交于E,G,D,H.∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA.∵∠CDF=∠AEF,CF=AF,∴△CDF≌△AEF.∴CD=AE,DF=EF.∴四边形OEFD为正方形.∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD.∴4=2+2•CD.∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CGF′+∠GF′A,∴∠HF′C=∠GF′A.∵∠HF′C=∠GF′A,C F′=AF′.∴△HF′C≌△GF′A.∴HF′=GF′,CH=AG.∴四边形OHF′G为正方形.=-=-=--=--=--.∴OH=1.∴OH CH CO AG CO AO OG CO AO OH CO4OH2 -.∴m=1∵22131325y x x2x22228⎛⎫=-++=--+⎪⎝⎭,∴y的最大值为258.∵直线l与抛物线有两个交点,∴m<258∴m可取值为m=2-或4-或3或1-.综上所述,m的值为m=2-或4-或3或1-.考点:1.二次函数综合题; 2.单动点问题;3.等腰直角三角形存在性问题;4.二次函数的性质;5.曲线上点的坐标与方程的关系;6.直线与圆的位置关系;7.全等三角形的判定和性质;8.正方形的判定和性质;9.分类思想的应用.17.如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=13,A(3,0),D(-1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出....点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.【答案】(1)y=-x 2+2x +3.B(1,4).(2)证明见解析;(3)P 1(0,0),P 2(9,0),P 3(0,-13).(4)s=22333 0),221933 (3).222t t t t t t ⎧-+<⎪⎪⎨⎪-+<⎪⎩≤≤(.【解析】试题分析:(1)利用两根式列出二次函数解析式y=a(x -3)(x +1),把将E(0,3)代入即可求出a 的值,继而可求顶点B 的坐标;(2)过点B 作BM ⊥y 于点M ,利用已知条件先证明AB 是△ABE 外接圆的直径.再证CB ⊥AB 即可. (3)存在;(4)分两种情况进行讨论即可.试题解析:(1)解:由题意,设抛物线解析式为y=a(x -3)(x +1). 将E(0,3)代入上式,解得:a=-1. ∴y=-x 2+2x +3. 则点B(1,4).(2)如图,证明:过点B 作BM ⊥y 于点M ,则M(0,4). 在Rt △AOE 中,OA=OE=3,∴∠1=∠2=45°,22OA OE +2. 在Rt △EMB 中,EM=OM -OE=1=BM ,∴∠MEB=∠MBE=45°,22EM BM +2. ∴∠BEA=180°-∠1-∠MEB=90°. ∴AB 是△ABE 外接圆的直径. 在Rt △ABE 中,tan ∠BAE=BE AE =13=tan ∠CBE ,∴∠BAE=∠CBE.在Rt△ABE中,∠BAE+∠3=90°,∴∠CBE+∠3=90°.∴∠CBA=90°,即CB⊥AB.∴CB是△ABE外接圆的切线.(3)P1(0,0),P2(9,0),P3(0,-13 ).(4)解:设直线AB的解析式为y=kx+b.将A(3,0),B(1,4)代入,得30,4.k bk b+=⎧⎨+=⎩解得2,6.kb=-⎧⎨=⎩∴y=-2x+6.过点E作射线EF∥x轴交AB于点F,当y=3时,得x=32,∴F(32,3).情况一:如图7,当0<t≤32时,设△AOE平移到△DNM的位置,MD交AB于点H,MN交AE于点G.则ON=AD=t,过点H作LK⊥x轴于点K,交EF于点L.由△AHD∽△FHM,得AD HKFM HL=.即332t HKHKt=--.解得HK=2t.∴S阴=S△MND-S△GNA-S△HAD=12×3×3-12(3-t)2-12t·2t=-32t2+3t.情况二:如图8,当32<t≤3时,设△AOE平移到△PQR的位置,PQ交AB于点I,交AE于点V.由△IQA∽△IPF,得AQ IQFP IP=.即3332IQtIQt-=--.解得IQ=2(3-t).∴S阴=S△IQA-S△VQA=12×(3-t)×2(3-t)-12(3-t)2=12(3-t)2=12t2-3t+92.综上所述:s=223330),221933 (3).222t t tt t t⎧-+<⎪⎪⎨⎪-+<⎪⎩≤≤(.考点:二次函数综合题.18.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(a,116)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A (0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.【答案】(1)a=14,b=c=0;(2)证明见解析;(3)P的纵坐标为0或34﹣3【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;(2)设P(x,y),表示出⊙P的半径r,进而与14x2比较得出答案即可;(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN时,求出a 的值,进而得出圆心P 的纵坐标即可.试题解析:(1)∵抛物线y=ax 2+bx+c (a ,b ,c 是常数,a≠0)的对称轴为y 轴,且经过(0,0,116)两点, ∴抛物线的一般式为:y=ax 2,∴116=a 2, 解得:a=±14,∵图象开口向上,∴a=14, ∴抛物线解析式为:y=14x 2,故a=14,b=c=0;(2)设P (x ,y ),⊙P 的半径,又∵y=14x 2,则化简得:14x 2, ∴点P 在运动过程中,⊙P 始终与x 轴相交;(3)设P (a ,14a 2),∵作PH ⊥MN 于H ,则 又∵PH=14a 2,则=2, 故MN=4,∴M (a ﹣2,0),N (a+2,0),又∵A (0,2),∴,当AM=AN , 解得:a=0,当AM=MN 时,2(2)4a -+=4, 解得:a=2±23(负数舍去),则14a 2=4+23; 当AN=MN 时,2(2)4a ++=4, 解得:a=﹣2±23(负数舍去),则14a 2=4﹣23; 综上所述,P 的纵坐标为0或4+23或4﹣23.考点:二次函数综合题.19.木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O 1,O 2分别在CD ,AB 上,半径分别是O 1C ,O 2A ,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC 将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆; 方案四:锯一块小矩形BCEF 拼接到矩形AEFD 下面,并利用拼成的木板锯一个尽可能大的圆。