圆锥曲线知识点归纳与解题方法技巧

合集下载

圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。

圆锥曲线解题技巧和方法综合全

圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。

如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。

〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。

〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。

本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。

1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。

当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。

2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。

通过选取合适的参数,可以将曲线表示为一系列点的集合。

这种方法可以简化问题,使得求解过程更加直观和方便。

3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。

通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。

这种方法在求解对称性等问题时非常有用。

4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。

通过将数据点与曲线进行比较,可以得出曲线的参数和特性。

这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。

5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。

通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。

6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。

通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。

这种方法在求解对称性、求交点等问题时非常有用。

7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。

根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。

8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。

例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。

9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。

圆锥曲线解题技巧归纳(9篇)

圆锥曲线解题技巧归纳(9篇)

圆锥曲线解题技巧归纳(9篇)化为一元二次方程,利用判别式求最值篇一如果能把圆锥曲线的最值问题转化为含有一个未知量的一元二次方程,利用,解得要求未知量的范围,然后确定其最值。

例3:直线,椭圆C:。

求以椭圆C的焦点F1、F2为焦点,且与直线l有公共点M的椭圆中长轴最短的。

分析:因为直线l与所求椭圆有公共点,可以由方程组得到一个一元二次方程,再利用判别式确定所求椭圆长轴的`最小值。

解:椭圆C的焦点。

说明:直线l与椭圆有公共点,可得方程组,消去一个未知数,得到一个一元二次方程,由一元二次方程有实根的条件得,构造参变量的不等式,确定的最小值,这种解法思路清晰、自然。

圆锥曲线的八大解题方法:篇二1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法圆锥曲线的解题方法:篇三一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。

例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2。

求动点P的轨迹方程。

解析:依题意可知,{C},由题设知{C},{C}{C}。

(2)定义法:根据圆锥曲线的定义确定曲线的形状。

上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。

(3)待定系数法:通过题设条件构造关系式,待定参数即可。

例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。

解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4。

例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。

解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。

一、化为二次函数,求二次函数的最值依据条件求出用一个参数表示的二次函数解析式,而自变量都有一定的变化范围,然后用配方法求出限制条件下函数的最值,就可得到问题的解。

圆锥曲线方法总结

圆锥曲线方法总结

圆锥曲线考点及方法总结(江苏)1 化斜为直:利用相似三角形将斜线段之比转化为直角边之比,然后再将直角边之比转化为坐标之比这就将几何量转化为代数值2相关点法求曲线轨迹如求p的轨迹方程若知道A点所在的曲线方程L 只需找出P与A之间的坐标关系然后带入L即可3设点、设线然后将问题向X1+X2、x1*x2、y1+y2、y1*y2 上转化,然后联立直线与曲线的方程,利用韦达定理,涉及最值或范围问题时注意带塔>0;4圆锥曲线中的最值问题:通常构造函数转化为求函数最值(导数求解),也可以保留两个变量运用基本不等式求解,当然在设点时用圆锥曲线的参数方程,这样最值问题最终转化为三角函数最值问题5几何性质:角平分线定理6公式化法则7焦半径公式8极坐标方程(与焦半径有关的题目才能用)9参数方程(涉及最值与定值问题时可尝试)10直线的参数方程中的|t|的几何意义是直线上的点到定点的线段长度注意线段的方向性即t的正负(在涉及线段长度的题目中有效)11注意利用点在曲线上这一基本条件许多设而不求最终都会用到这一条件12常见椭圆结论:k1*k2为定值(与椭圆对称点)点差法的到的结论椭圆切点出的切线方程椭圆是对称图形13弦长公式14 SOAB=15代换技巧:如两直线过同一点只有K不一样,则算出k1的数据后用k2代换就能得到另一条线的数据(不只斜率K可以代换,点也可以代换)减少计算量16当化简到非常复杂的式子时,考虑能否整体代换,将形式复杂的部分用一个变量代替17利用三点共线列等式18直线过定点问题方法一;求出AB直线方程再求定点方法二:取两个特殊位置的直线,解出交点C,验证交点C是否在直线AB上,只需算k1=k2即可方法三,若能观察出定点在x轴上,解出AB方程令y=0,解出x为定值即可19对设而不求方法的具体介绍:大胆设点,利用以下结论一:点在曲线上二:点满足一定条件(题目所给)三:韦达定理运用好这三点,就可以做到舍而不求20定比等分点的应用21涉及垂直首先想到直径所对的圆周角等于90度然后是向量的数量积为0 最后是斜率相乘22计算技巧1代换技巧2遇到整体可先换元,算到最后再还原23万能公式已知椭圆上一点坐标A(x1,y1)B(m,0)则AB 与椭圆另一交点C坐标立刻可知,自己推出结果,作为结论记忆江苏省泗洪中学。

圆锥曲线解题十招全归纳

圆锥曲线解题十招全归纳

《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于0。

设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。

由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。

则线段AB 的中点为22211(,)22k k k--。

线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。

AB =21k =+2d k=21k +=k =053x =。

【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

高中数学圆锥曲线解题技巧方法总结

高中数学圆锥曲线解题技巧方法总结

圆锥曲线 1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视;若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在;若去掉定义中的绝对值则轨迹仅表示双曲线的一支;如方程8=表示的曲线是_____答:双曲线的左支2.圆锥曲线的标准方程标准方程是指中心顶点在原点,坐标轴为对称轴时的标准位置的方程:1椭圆:焦点在x 轴上时12222=+by a x 0a b >>,焦点在y 轴上时2222b x a y +=10a b >>;方程22Ax By C +=表示椭圆的充要条件是什么ABC ≠0,且A,B,C 同号,A ≠B;若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___2双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=10,0a b >>;方程22Ax By C +=表示双曲线的充要条件是什么ABC ≠0,且A,B 异号;如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______答:226x y -=3抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->;3.圆锥曲线焦点位置的判断首先化成标准方程,然后再判断:1椭圆:由x 2,y2分母的大小决定,焦点在分母大的坐标轴上;如已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__答:)23,1()1,( --∞2双曲线:由x 2,y 2项系数的正负决定,焦点在系数为正的坐标轴上;3抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向; 提醒:在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+; 4.圆锥曲线的几何性质:1椭圆以12222=+by a x 0a b >>为例:①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心0,0,四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:ce a=,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁;如1若椭圆1522=+my x 的离心率510=e ,则m 的值是__答:3或325; 2以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__答:222双曲线以22221x y a b-=0,0a b >>为例:①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心0,0,两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:ce a=,双曲线⇔1e >,等轴双曲线⇔e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:by x a=±;3抛物线以22(0)y px p =>为例:①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点0,0;④准线:一条准线2px =-; ⑤离心率:ce a=,抛物线⇔1e =; 如设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为________答:)161,0(a; 5、点00(,)P x y 和椭圆12222=+by a x 0a b >>的关系:1点00(,)P x y 在椭圆外⇔2200221x y a b +>;2点00(,)P x y 在椭圆上⇔220220by a x +=1;3点00(,)P x y 在椭圆内⇔2200221x y a b +<6.直线与圆锥曲线的位置关系:1相交:0∆>⇔直线与椭圆相交; 0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件;2相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切; 3相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离;提醒:1直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交;如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;2过双曲线2222by a x -=1外一点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;3过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线;7、焦点三角形椭圆或双曲线上的一点与两焦点所构成的三角形问题: 20tan ||2S b c y θ==,当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;对于双曲线2tan2θb S =; 如 1短轴长为5,8、抛物线中与焦点弦有关的一些几何图形的性质:1以过焦点的弦为直径的圆和准线相切;2设AB 为焦点弦, M 为准线与x 轴的交点,则∠AMF =∠BMF ;3设AB 为焦点弦,A 、B 在准线上的射影分别为A 1,B 1,若P 为A 1B 1的中点,则PA ⊥PB ;4若AO 的延长线交准线于C,则BC 平行于x 轴,反之,若过B 点平行于x 轴的直线交准线于C 点,则A,O,C 三点共线; 9、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B,且12,x x 分别为A 、B 的横坐标,则AB12x -,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+,若弦AB 所在直线方程设为x ky b =+,则AB=12y y -;特别地,焦点弦过焦点的弦:焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解; 抛物线:10、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解;在椭圆12222=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0202y a x b ;弦所在直线的方程: 垂直平分线的方程:在双曲线22221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0202y a x b ;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=0py ;提醒:因为0∆>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0∆>11.了解下列结论1双曲线12222=-b y a x 的渐近线方程为02222=-by a x ;2以x a b y ±=为渐近线即与双曲线12222=-b y a x 共渐近线的双曲线方程为λλ(2222=-by a x 为参数,λ≠0; 3中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为221mx ny +=;4椭圆、双曲线的通径过焦点且垂直于对称轴的弦为22b a ,焦准距焦点到相应准线的距离为2b c,抛物线的通径为2p ,焦准距为p ;5通径是所有焦点弦过焦点的弦中最短的弦;6若抛物线22(0)y px p =>的焦点弦为AB,1122(,),(,)A x y B x y ,则①12||AB x x p =++;②221212,4p x x y y p ==- 7若OA 、OB 是过抛物线22(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 12、解析几何与向量综合时可能出现的向量内容:1 给出直线的方向向量()k u ,1= 或()n m u ,=;2给出OB OA +与AB 相交,等于已知OB OA +过AB 的中点;3给出0=+PN PM ,等于已知P 是MN 的中点;4给出()BQ BP AQ AP +=+λ,等于已知Q P ,与AB 的中点三点共线;5 给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,OC OA OB αβαβαβ+==+且使,等于已知C B A ,,三点共线.6 给出0=⋅MB MA ,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=⋅m MB MA ,等于已知AMB ∠是钝角, 给出0>=⋅m MB MA ,等于已知AMB ∠是锐角,8给出MP =⎪⎫ ⎛+λ,等于已知MP 是AMB ∠的平分线/9在平行四边形ABCD 中,给出0)()(=-⋅+AD AB AD AB ,等于已知ABCD 是菱形;10 在平行四边形ABCD 中,给出||||AB AD AB AD +=-,等于已知ABCD 是矩形;11在ABC ∆中,给出222OC OB OA ==,等于已知O 是ABC ∆的外心三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点;12 在ABC ∆中,给出0=++OC OB OA ,等于已知O 是ABC ∆的重心三角形的重心是三角形三条中线的交点; 13在ABC ∆中,给出OA OC OC OB OB OA ⋅=⋅=⋅,等于已知O 是ABC ∆的垂心三角形的垂心是三角形三条高的交点;14在ABC ∆中,给出+=OA OP ()||||AB ACAB AC λ+)(+∈R λ等于已知AP 通过ABC ∆的内心; 15在ABC ∆中,给出,0=⋅+⋅+⋅OC c OB b OA a 等于已知O 是ABC ∆的内心三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点; 16 在ABC ∆中,给出()12AD AB AC =+,等于已知AD 是ABC ∆中BC 边的中线; 3已知A,B 为抛物线x 2=2pyp >0上异于原点的两点,0OA OB ⋅=,点C 坐标为0,2p1求证:A,B,C 三点共线; 2若AM =BMλR ∈λ且0OM AB ⋅=试求点M 的轨迹方程; 1证明:设221212(,),(,)22x x A x B x p p,由0OA OB ⋅=得2221212120,422x x x x x x p p p +=∴=-,又222121121(,2),(,)22x x x AC x p AB x x p p -=--=- 222211121(2)()022x x x x p x x p p-∴-⋅--⋅-=,//AC AB ∴,即A,B,C 三点共线;(2)由1知直线AB 过定点C ,又由0OM AB ⋅=及AM =BM λR ∈λ知OMAB ,垂足为M ,所以点M 的轨迹为以OC 为直径的圆,除去坐标原点;即点M 的轨迹方程为x 2+y-p 2=p 2x 0,y 0; 13.圆锥曲线中线段的最值问题:例1、1抛物线C:y 2=4x 上一点P 到点A3,42 2抛物线C: y 2=4x 上一点Q 到点B4,1与到焦点F 的距离和最小,分析:1A 在抛物线外,如图,连PF,则PF PH =,因而易发现,当A 、离和最小;(2)B 在抛物线内,如图,作QR ⊥l 交于R,则当B 、Q 、R 12,221,41 1、已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1左、右焦点;1 求双曲线C 2的方程;2 若直线l :2+=kx y 与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA 其中O 为原点,求k 的取值范围;解:Ⅰ设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为221.3x y -=II 将.0428)41(1422222=+++=++=kx x k y x kx y 得代入 由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k 即 21.4k > ①0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A,B得2222222130,1 1.3()36(13)36(1)0.k k k k k ⎧-≠⎪≠<⎨∆=-+-=->⎪⎩即且 22223715136,0.3131k k k k +-<>--于是即解此不等式得22131.153k k ><或 ③由①、②、③得.11513314122<<<<k k 或 故k 的取值范围为311313(1,(,)(,)(,1)322315--- 在平面直角坐标系xOy 中,已知点A0,-1,B 点在直线y = -3上,M 点满足MB 以MA =-x,-1-y, MB =0,-3-y, AB =x,-2.再由愿意得知MA +MB AB =0,即-x,-4-2yx,-2=0. 所以曲线C 的方程式为y=14x 2-2. Ⅱ设Px 0,y 0为曲线C :y=14x 2-2上一点,因为y '=12x,所以l 的斜率为12x 0因此直线l 的方程为0001()2y y x x x -=-,即200220x x y y x -+-=; 则O 点到l的距离2d =.又200124y x =-,所以201412,2x d +==≥当20x =0时取等号,所以O 点到l 距离的最小值为2.设双曲线22221x y a b-=a >0,b >0的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于设双曲线12222=-by a x 的一条渐近线,则双曲线的离心率为 .过椭圆22221x y a b+=0a b >>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为已知双曲线)0(12222>=-b b y x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则1PF ·2PF = 0已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若||2||FA FB =,则k =已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 设已知抛物线C 的顶点在坐标原点,焦点为F 1,0,直线l 与抛物线C 相交于A ,B 两点;若AB 的中点为2,2,则直线l 的方程为_____________.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = ;12F PF ∠的大小为 . 过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________________解析设切点00(,)P x y ,则切线的斜率为0'0|2x x y x ==.由题意有002y x x =又2001y x =+解得:201,2,b x e a =∴===双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y xa y x ⎧=⎪⎨⎪=+⎩,消去y,得210b xx a -+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a ====由渐近线方程为x y =知双曲线是等轴双曲线,∴双曲线方程是222=-y x ,于是两焦点坐标分别是-2,0和2,0,且)1,3(P 或)1,3(-P .不妨去)1,3(P ,则)1,32(1---=PF ,)1,32(2--=PF .∴1PF ·2PF =01)32)(32()1,32)(1,32(=+-+-=-----解析设抛物线2:8C y x =的准线为:2l x =-直线()()20y k x k =+>恒过定点P()2,0- .如图过A B、分 别作AM l⊥于M ,BN l ⊥于N , 由||2||FA FB =,则||2||AM BN =,点B 为AP 的中点.连结OB ,则1||||2OB AF =, ||||OB BF ∴= 点B 的横坐标为1, 故点B 的坐标为22022(1,22)1(2)3k -∴==--, 故选D。

圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题

圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题

圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题圆锥曲线是数学中的重要概念之一,在几何学和代数学领域都有广泛的应用。

通过直角坐标系解析法,我们可以用简洁而准确的方式解决与圆锥曲线相关的问题。

本文将介绍圆锥曲线的基本知识,并以解析法为重点,总结圆锥曲线解题的技巧与方法。

一、圆锥曲线的基本概念圆锥曲线是由平面与圆锥相交而形成的曲线。

常见的圆锥曲线包括椭圆、双曲线和抛物线。

这些曲线在直角坐标系中有各自的特点和方程。

1. 椭圆椭圆是圆锥和平面相交所形成的曲线。

在直角坐标系中,椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1其中,(h, k)为椭圆的中心坐标,a为椭圆长轴的一半长度,b为椭圆短轴的一半长度。

2. 双曲线双曲线同样是由圆锥和平面相交所形成的曲线。

在直角坐标系中,双曲线的标准方程为:(x-h)²/a² - (y-k)²/b² = 1其中,(h, k)为双曲线的中心坐标,a为双曲线长轴的一半长度,b为双曲线短轴的一半长度。

3. 抛物线抛物线是由圆锥和平面相交所形成的曲线。

在直角坐标系中,抛物线的标准方程为:y = ax² + bx + c其中,a、b、c为常数,决定了抛物线的形状和位置。

二、通过直角坐标系解析法解决圆锥曲线问题的技巧与方法通过直角坐标系解析法,我们可以通过曲线的方程和几何特征来解决与圆锥曲线相关的问题。

以下是一些解题的常用技巧与方法:1. 求解曲线的方程通过已知的几何信息,我们可以得到曲线的方程。

根据曲线的类型,选择合适的标准方程,并通过已知点或其他条件来确定方程中的参数。

2. 求解曲线的焦点和准线对于椭圆和双曲线,焦点和准线是重要的几何特征。

通过方程中的参数,我们可以计算焦点和准线的坐标。

3. 求解曲线的顶点和开口方向抛物线的顶点和开口方向也是重要的几何特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线知识点归纳与解题方法技巧Revised on November 25, 2020圆锥曲线解题方法技巧第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。

(2)与直线相关的重要内容①倾斜角与斜率tan ,[0,)k ααπ=∈ 2121y y k x x -=- ②点00(,)P x y 到直线0Ax By C ++=的距离d =③夹角公式:直线111222::l y k x b l y k x b =+=+ 夹角为α, 则2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离①AB =②12AB x =-=③12AB y =- (4)两条直线的位置关系 (Ⅰ)111222::l y k x b l y k x b =+=+①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且(Ⅱ)11112222:0:0l A x B y C l A x B y C ++=++=①1212120l l A A B B ⊥⇔+=② 1212211221//0l l A B A B AC A C ⇔≠-=0且-或111222A B C A B C =≠者(2220A B C ≠)两平行线距离公式1122::l y kx b l y kx b =+⎧⎨=+⎩距离d = 1122:0:0l Ax By C l Ax By C ++=⎧⎨++=⎩距离d =2、圆锥曲线方程及性质1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如方程8=表示的曲线是_____(答:双曲线的左支) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>),焦点在y 轴上时2222b x a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么(ABC ≠0,且A ,B ,C 同号,A ≠B )。

椭圆的方程的形式有几种(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a = 参数方程:cos ,sin x a y b θθ==若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。

方程22Ax By C +=表示双曲线的充要条件是什么(ABC ≠0,且A ,B 异号)。

如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由x 2,y 2分母的大小决定,焦点在分母大的坐标轴上。

如已知方程12122=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__(答:)23,1()1,( --∞)(2)双曲线:由x 2,y 2项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

提醒:在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+。

4.圆锥曲线的几何性质:(1)椭圆(以12222=+by a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:ce a=,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。

如(1)若椭圆1522=+my x 的离心率510=e ,则m 的值是__(答:3或325); (2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答:22)(2)双曲线(以22221x y a b-=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:ce a=,双曲线⇔1e >,等轴双曲线⇔e =e越小,开口越小,e 越大,开口越大;⑥两条渐近线:by x a=±。

双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:|2a =(3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2p,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2px =-; ⑤离心率:c e a =,抛物线⇔1e =。

如设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为________(答:)161,0(a);5、点00(,)P x y 和椭圆12222=+by a x (0a b >>)的关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b +>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b+< 6.记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。

(2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22p px x y ++抛物线焦点在轴上时为焦点在y 轴上时为 7.椭圆和双曲线的基本量三角形你清楚吗 第二、方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有 1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗经典套路是什么如果有两个参数怎么办设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。

若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。

一旦设直线为y kx b =+,就意味着k 存在。

例1、已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).(1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。

第二问抓住角A 为090可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程;解:(1)设B (1x ,1y ),C(2x ,2y ),BC 中点为(00,y x ),F(2,0)则有11620,1162022222121=+=+y x y x 两式作差有16))((20))((21212121=+-+-+y y y y x x x x 04500=+ky x (1) F(2,0)为三角形重心,所以由2321=+x x ,得30=x ,由03421=++y y 得20-=y ,代入(1)得56=k 直线BC 的方程为02856=--y x2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2)设直线BC 方程为8054,22=++=y x b kx y 代入,得080510)54(222=-+++b bkx x k2215410k kbx x +-=+,222154805k b x x +-= 2222122154804,548k k b y y k k y y +-=+=+ 代入(2)式得 0541632922=+--k b b ,解得)(4舍=b 或94-=b 直线过定点(0,)94-,设D (x,y ),则1494-=-⨯+xy x y ,即016329922=--+y x y 所以所求点D 的轨迹方程是)4()920()916(222≠=-+y y x 。

相关文档
最新文档