高考文科数学数列专题复习

合集下载

高考文科数列知识点总结

高考文科数列知识点总结

高考文科数列知识点总结数列是数学中的一个重要概念,在高考文科数学中也是一项必考内容。

数列是由一系列按照某个规律排列的数字或数学表达式组成的,它有着广泛的应用。

本文将对高考文科数列知识点进行总结,包括数列的基本概念、常见类型的数列及其性质、数列的求和公式等。

一、数列的基本概念数列是指按照一定的规律将一系列数字或数学表达式排列在一起形成的序列。

其中,每一项被称为数列的项,用$a_n$表示。

数列还具有首项($a_1$)、公差($d$)和项数($n$)等重要概念。

首项是数列中的第一项,公差是指相邻两项之间的差值,项数是数列中项的个数。

二、等差数列及其性质等差数列是指数列中相邻两项之间的差值恒定的数列。

其通项公式为$a_n=a_1+(n-1)d$,其中$a_n$为数列的第$n$项,$a_1$为首项,$d$为公差。

等差数列有一系列重要的性质,例如,相邻两项之间的差值是常数,任意三项的中项等于前后两项的平均值等。

三、等比数列及其性质等比数列是指数列中相邻两项之间的比值恒定的数列。

其通项公式为$a_n=a_1\cdot r^{n-1}$,其中$a_n$为数列的第$n$项,$a_1$为首项,$r$为公比。

等比数列也具有一些重要的性质,例如,相邻两项之间的比值是常数,任意三项之间的比值等于公比的平方等。

四、斐波那契数列及其性质斐波那契数列是一个特殊的数列,其前两项都为1,从第三项开始,每一项都是前两项之和。

斐波那契数列的通项公式为$a_n=\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2})^n]$。

斐波那契数列有着许多有趣的性质,例如,相邻两项之间的比值越来越接近黄金分割比例。

五、数列的求和公式数列的求和是数列研究中的一个重要内容。

对于等差数列和等比数列来说,我们可以通过求和公式得到数列的和。

等差数列的求和公式为$S_n=\frac{n}{2}(a_1+a_n)$,其中$S_n$为数列的前$n$项和。

2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)

2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)

数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.4(2023·湖南邵阳·统考三模)记S n 为等差数列{a n }的前n 项和,已知a 3=5,S 9=81,数列{b n }满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n a n +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .5(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .2【2020年新课标1卷文科】数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=1(2021·山东济宁市·高三二模)已知数列{a n}是正项等比数列,满足a3是2a1、3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;log,求数列{b n}的前n项和T n.(2)若b n=-1n⋅2a2n+12【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.n n+13(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.2(2022·湖北省鄂州高中高三期末)已知数列a n前n项和满足a1=1,a n+a n+1=2n;数列b n为S n,且b1=1,2S n=b n+1-1.(1)求数列a n的通项公式;和数列b n(2)设c n=a n⋅b n,求c n前2n项和T2n.数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.【解析】【小问1详解】∵na n+1-n+1a n=1,∴a n+1n+1-a nn=1n-1n+1,a n+1+1n+1=a n+1n,所以a n+1n是常数列,即a n+1n=a1+11=3,∴a n=3n-1;【小问2详解】由(1)知,a n是首项为2,公差为3等差数列,由题意得b2n-1=a2n-1=6n-4,b2n=2a2n+1=12n+4,设数列b2n-1,b2n的前50项和分别为T1,T2,所以T1=50b1+b992=25×298=7450,T2=50×b2+b1002=25×620=15500,所以b n的前100项和为T1+T2=7450+15500=22950;综上,a n=3n-1,b n的前100项和为T1+T2=7450+15500=22950.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.【答案】(1)证明见详解(2)S2n=2n-1n19+n34n+3【详解】(1)当n=1时,可得a1=1,当n≥2时,由a1+3a2+⋯+2n-1a n=n,则a1+3a2+⋯+2n-3a n-1=n-1n≥2,上述两式作差可得a n=12n-1n≥2,因为a1=1满足a n=12n-1,所以a n的通项公式为a n=12n-1,所以1a n=2n-1,因为1a n-1a n-1=2n-1-2n-3=2(常数),所以1a n是一个等差数列.(2)c n=2n-119,n为奇数12n-12n+3,n为偶数 ,所以C1+C3+⋯C2n-1=1+5+9+⋯4n-319=2n-1n19,C2+C4+⋯C2n=1413-17+17-111+⋯+14n-1-14n+3=n34n+3所以数列c n的前2n项和S2n=2n-1n19+n34n+3.2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.【答案】(1)a1=12,a2=4;1024是数列a n的第342项(2)S2n-1=4n6+3n2-5n+116【详解】(1)由a n=2n-2,n为奇数3n-2,n为偶数可得a1=12,a2=4.令2n-2=1024=210,解得:n=12为偶数,不符合题意,舍去;令3n-2=1024,解得:n=342,符合题意.因此,1024是数列a n的第342项.(2)S2n-1=a1+a2+a3+a4+⋅⋅⋅+a2n-2+a2n-1=12+4+2+10+⋅⋅⋅+6n-8+22n-3=12+2+⋅⋅⋅+22n-3+4+10+⋅⋅⋅+6n-8=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.另解:由题意得a2n-1=22n-3,又a2n+1a2n-1=4,所以数列a2n-1是以12为首项,4为公比的等比数列.a2n=6n-2,又a2n+2-a2n=6,所以数列a2n是以4为首项,6为公差的等差数列.S2n-1为数列a2n-1的前n项和与数列a2n的前n-1项和的总和.故S2n-1=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.【答案】(1)a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)证明见解析.【详解】(1)由题意a2n+1=a2n+1=2a2n-1+1,所以a2n+1+1=2a2n-1+1,因为a1+1=2≠0,所以数列a2n-1+1是首项为2,公比为2的等比数列,所以a2n-1+1=2n,即a2n-1=2n-1,而a2n=2a2n-1=2n+1-2,所以a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)方法一:由(1)得T2n=ni=11a2i-1+1a2i=32ni=112i-1=32ni=12i+1-12i-12i+1-1<32ni=12i+12i-12i+1-1=3ni=12i2i-12i+1-1=3ni=112i-1-12i+1-1=31-12n+1-1<3方法二:因为2n-1≥2n-1n∈N*,所以T2n=∑ni=11a2i-1+1a2i=32∑n i=112i-1≤32∑n i=112i-1=31-12n<34(2023·湖南邵阳·统考三模)记S n为等差数列{a n}的前n项和,已知a3=5,S9=81,数列{b n}满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n an +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .【答案】(1)a n =2n -1,b n =3n (2)T 2n =3⋅9n 8-116n +12-724【详解】(1)设等差数列{a n }的公差为d ,∵a 3=5S 9=81 ,即a 1+2d =59a 1+9×82d =81 ,∴a 1=1,d =2,∴a n =2n -1.∵a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3,①∴a 1b 1+a 2b 2+⋯+a n -1b n -1=n -2 ⋅3n +3n ≥2 ,②所以①-②得,a n b n =2n -1 ⋅3n ,∴b n =3n n ≥2 .当n =1时,a 1b 1=3,b 1=3,符合b n =3n .∴b n =3n .(2)T 2n =c 1+c 2+c 3+⋯+c 2n ,依题有:T 2n =b 1+b 3+⋯+b 2n -1 +1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2.记T 奇=b 1+b 3+⋯+b 2n -1,则T 奇=3(1-32n )1-32=32n +1-38.记T 偶=1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2,则T 偶=12d 1a 2-1a 4 +1a 4-1a 6 +⋯+1a 2n -1a 2n +2=12d 1a 2-1a 2n +2=1413-14n +3 .所以T 2n =32n +1-38+1413-14n +3 =3⋅9n 8-116n +12-7245(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数【详解】(1)因为a n 是等比数列,公比为q ≠-1,则a 4=a 1q 3,a 5=a 1q 4,a 7=a 1q 6,a 8=a 1q 7,所以a 4+a 5a 7+a 8=a 1q 3+a 1q 4a 1q 6+a 1q 7=1q 3=127,解得q =3,由S 4=a 3+93,可得a 11-34 1-3=9a 1+93,解得a 1=3,所以数列a n 的通项公式为a n =3n .(2)由(1)得b n =-n ,n 为奇数3n ,n 为偶数,当n 为偶数时,T n =b 1+b 2+⋅⋅⋅+b n =b 1+b 3+⋅⋅⋅+b n -1 +b 2+b 4+⋅⋅⋅+b n =-1+3+⋅⋅⋅+n -1 +32+34+⋅⋅⋅+3n=-n2⋅1+n -12×+91-9n 21-9=983n -1 -n 24;当n 为奇数时T n =T n +1-b n +1=983n +1-1 -n +1 24-3n +1=18×3n +1-98-n +1 24;综上所述:T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数.题型二、含有(-1)n 类型2【2020年新课标1卷文科】数列{a n }满足a n +2+(-1)n a n =3n -1,前16项和为540,则a 1=【答案】7【解析】a n +2+(-1)n a n =3n -1,当n 为奇数时,a n +2=a n +3n -1;当n 为偶数时,a n +2+a n =3n -1.设数列a n 的前n 项和为S n ,S 16=a 1+a 2+a 3+a 4+⋯+a 16=a 1+a 3+a 5⋯+a 15+(a 2+a 4)+⋯(a 14+a 16)=a 1+(a 1+2)+(a 1+10)+(a 1+24)+(a 1+44)+(a 1+70)+(a 1+102)+(a 1+140)+(5+17+29+41)=8a 1+392+92=8a 1+484=540,∴a 1=7.故答案为:7.1(2021·山东济宁市·高三二模)已知数列{a n }是正项等比数列,满足a 3是2a 1、3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =-1 n ⋅2a 2n +1log ,求数列{b n }的前n 项和T n .【解析】(1)设等比数列{a n }的公比为q ,因为a 3是2a 1、3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12,因为数列{a n }是正项等比数列,所以q =2.因为a 4=16,即a 4=a 1q 3=8a 1=16,解得a 1=2,所以a n =2×2n -1=2n ;(2)解法一:(分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,①若n 为偶数,T n =-3+5-7+9-⋯-2n -1 +2n +1 =-3+5 +-7+9 +⋯+-2n -1 +2n +1 =2×n2=n ;②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-2n +1 =-n -2,当n =1时,T 1=-3适合上式,综上得T n =n ,n 为偶数-n -2,n 为奇数(或T n =n +1 -1 n -1,n ∈N *);解法二:(错位相减法)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,T n =-1 1×3+-1 2×5+-1 3×7+⋯+-1 n ⋅2n +1 ,所以-T n =-1 2×3+-1 3×5+-1 4×7+⋯+-1 n +1⋅2n +1 所以2T n =3+2[-1 2+-1 3+⋯+-1 n ]--1 n +12n +1 ,=-3+2×1--1 n -12+-1 n 2n +1 =-3+1--1 n -1+-1 n 2n +1=-2+2n +2 -1 n ,所以T n=n+1-1n-1,n∈N*2【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.【答案】(1)a n=2n-1,S n=n2;(2)T n=(-1)n n(n+1)2.【解析】【分析】(1)利用等差数列的基本量,列方程即可求得首项和公差,再利用公式求通项公式和前n项和即可;(2)根据(1)中所求即可求得b n,对n分类讨论,结合等差数列的前n项和公式,即可容易求得结果.【详解】(1)由S5=5(a1+a5)2=5×2a32=5a3=25得a3=5.又因为a5=9,所以d=a5-a32=2,则a3=a1+2d=a1+4=5,解得a1=1;故a n=2n-1,S n=n(1+2n-1)2=n2.(2)b n=(-1)n n2.当n为偶数时:T n=b1+b2+b3+b4+⋯+b n-1+b n=-12+22+-32+42+⋯+-(n-1)2+n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[n-(n-1)]×[n+(n-1)] =1+2+3+⋯+(n-1)+n=n(n+1)2.当n为奇数时:T n=b1+b2+b3+b4+⋯+b n-2+b n-1+b n=-12+22+-32+42+-(n-2)2+(n-1)2-n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[(n-1)-(n-2)]×[(n-1)+(n-2)]-n2 =1+2+3+⋯+(n-2)+(n-1)-n2=(n-1)(1+n-1)2-n2=-n(n+1)2.综上得T n=(-1)n n(n+1)2题型三、a n+a n+1类型3(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.【解析】(1)已知S n=a n2+n2+1,n∈N*当n=1时,a1=a12+2,a1=4;当n=2时,a1+a2=a22+5,a2=2,所以a1+a2=6.因为S n=a n2+n2+1①,所以S n+1=a n+12+n+12+1②.②-①得,a n+1=a n+12-a n2+n+12-n2,整理得a n+a n+1=4n+2,n∈N*,所以a n+1+a n+2-a n+a n+1=4n+1+2-4n+2=4(常数),n∈N*,所以a n+a n+1是首项为6,公差为4的等差数列.(2)由(1)知,a n-1+a n=4n-1+2=4n-2,n∈N*,n≥2.当n为偶数时,S n=a1+a2+a3+a4+⋯+a n-1+a n=n26+4n-22=n2+n;当n为奇数时,S n=a1+a2+a3+a4+a5+⋯+a n-1+a n=4+n-1210+4n-22=n2+n+2.综上所述,S n=n2+n,当n为偶数时n2+n+2,当n为奇数时1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.【答案】(1)a n=n,n=2k-1,k∈Zn-1,n=2k,k∈Z,bn=3n-1;(2)58n-59n8.【分析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n82(2022·湖北省鄂州高中高三期末)已知数列a n 满足a 1=1,a n +a n +1=2n ;数列b n 前n 项和为S n ,且b 1=1,2S n =b n +1-1.(1)求数列a n 和数列b n 的通项公式;(2)设c n =a n ⋅b n ,求c n 前2n 项和T 2n .【答案】(1)a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,b n =3n -1;(2)58n -5 9n8.【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n8。

高考文科数列知识点总结

高考文科数列知识点总结

数列知识点二.知识点(一)数列的该概念和表示法、(1)数列定义: 按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项记作, 在数列第一个位置的项叫第1项(或首项), 在第二个位置的叫第2项, ……, 序号为的项叫第项(也叫通项)记作;数列的一般形式: , , , ……, , ……, 简记作。

(2)通项公式的定义: 如果数列的第n项与n之间的关系可以用一个公式表示, 则这个公式就叫这个数列的通项公式说明:①表示数列, 表示数列中的第项, = 表示数列的通项公式;②同一个数列的通项公式的形式不一定唯一。

③不是每个数列都有通项公式。

例如, 1, 1.4, 1.41, 1.414, ……(3)数列的函数特征与图象表示:序号: 1 2 3 4 5 6项: 4 5 6 7 8 9(4)上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。

从函数观点看, 数列实质上是定义域为正整数集(或它的有限子集)的函数当自变量从1开始依次取值时对应的一系列函数值……, , …….通常用来代替, 其图象是一群孤立的点数列分类:①按数列项数是有限还是无限分: 有穷数列和无穷数列;(5)②按数列项与项之间的大小关系分: 单调数列(递增数列、递减数列)、常数列和摆动数列(二)递推公式定义:如果已知数列的第1项(或前几项), 且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示, 则这个公式就叫做这个数列的递推公式(三)等差数列1.等差数列的定义: (d为常数)();2. 等差数列通项公式:, 首项: , 公差:d, 末项:推广:. 从而;3. 等差中项(1)如果, , 成等差数列, 则叫做与的等差中项.即:或(2)等差中项: 数列是等差数列4. 等差数列的前n项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A.B 是常数, 所以当d ≠0时, Sn 是关于n 的二次式且常数项为0)特别地, 当项数为奇数 时, 是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数 乘以中间项)5. 等差数列的判定方法(1) 定义法: 若 或 (常数 ) 是等差数列. (2) 等差中项:数列 是等差数列 .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

高中文科数列知识点归纳总结

高中文科数列知识点归纳总结

高中文科数列知识点归纳总结数列是数学中一个重要的概念,广泛应用于各个领域。

在高中文科中,数列是一个重要的知识点,它涉及到数列的定义、性质和应用。

下面对高中文科数列的知识进行归纳总结。

一、数列的定义数列是由一系列按照特定规律排列的数所组成的集合。

常用的表示数列的方法有两种:通项公式和递推公式。

1. 通项公式通项公式表示数列第 n 项与 n 的函数关系,通常用公式 aₙ 表示第n 项。

2. 递推公式递推公式表示数列中每一项与前一项的关系,常用公式 aₙ = aₙ₋₁+ d 或 aₙ = a₁q^(n-1) 表示。

二、数列的性质对于数列的性质,我们主要关心数列的公差、首项、末项和项数等。

下面我们来分别介绍这几个重要的性质。

1. 公差对于等差数列,公差(d)表示相邻两项之间的差值,可以是正数、负数或零。

公差可以用来求出数列中任意一项的值。

2. 首项首项(a₁)表示数列中的第一项。

对于等差数列,可以通过给定的公差和首项来确定数列的通项公式。

3. 末项末项(aₙ)表示数列中的最后一项。

对于等差数列,可以通过给定的公差、项数和首项来确定数列的末项。

4. 项数项数(n)表示数列中共有多少项。

对于等差数列,可以通过给定的公差、首项和末项来确定数列的项数。

三、数列的常见类型文科中常见的数列主要有等差数列和等比数列。

下面我们来介绍这两种常见的数列类型及其应用。

1. 等差数列等差数列是指数列中相邻两项之差保持恒定的数列。

它的通项公式为 aₙ = a₁ + (n-1)d,其中 a₁表示首项,d 表示公差。

等差数列的应用非常广泛,例如在金融领域中,我们常常用等差数列来计算投资的收益率或者负债的增长率。

2. 等比数列等比数列是指数列中相邻两项之比保持恒定的数列。

它的通项公式为 aₙ = a₁q^(n-1),其中 a₁表示首项,q 表示公比。

等比数列也有许多应用场景,比如在自然科学中常常用等比数列来描述指数增长或者衰减的现象。

高三文科数学第一轮复习数列专题.docx

高三文科数学第一轮复习数列专题.docx

数列专题姓名: _____________ (一)数列求和学号: _____________1.公式法。

(直接用等差、等比数列的求和公式求和)n(a 1a n )n(n 1)na 1 (q 1)na 1 ; S nn ) (q 1)S n22da 1 (1 q公比含字母时一定要讨论1 q例 1(1):已知等差数列.... { a n } 满足 a 1 1, a 23 ,求前 n 项和 S n .例 1(2):已知等比数列.... { a n } 满足 a 11, a 2 3 ,求前 n 项和 S n .练习 1( 1) .设 f (n)2 2427210L23 n 10 ( nN ) ,则 f (n) 等于()A. 2(8n1) B.2 (8n 1 1) C.2(8n 3 1)D. 2 (8n 41)777 7练习 1( 2) . 求和: 1+ 3 + 7 + 9 + K + (2 n - 1)2.分组求和法c n = a n + b n , a n 、 b n 是等差或等比数列,则采用分组求和法1111 例 3:求数列1, 2+, 3+ , 4++⋯ + nn 1 的前 n 项和 S n .2 482练习 2(1):已知数列 { a n } 是 3+ 2-1,6+ 22- 1,9+ 23- 1,12+24 -1,⋯,写出数列 { a n } 的通项公式并求其前 n 项和 S n .练习 2( 2):求和: (2 - 3? 5- 1 ) (4 - 3? 5- 2 ) L + (2 n - 3? 5- n ) .3.错位相减法:(乘以式中的公比q ,然后再进行相减) a n等差 , b n等比 , 求 a1b1 a 2b2a n b n的和 .例 3.求和S n 1 2x 3x2L nx n 1( x 1 0 )(提示:分类讨论, x1和 x 1 两种情况)练习 3( 1)化简:S n 1 21 2 2 2n2n123n练习 3(2) .求和:S n23na a a a练习3(3). 设{ a n}是等差数列,{b n } 是各项都为正数的等比数列,且a1b1 1 , a3b521 ,a5 b3 13 (Ⅰ)求 { a n} , { b n } 的通项公式;(Ⅱ)求数列a n的前 n 项和S n.b n4.裂项相消法 ( 把数列的通项拆成两项之差、正负相消剩下首尾若干项)常见拆项:1 11;1 1 ( 1 1 ) 1= 1 ( 1- 1 )n(n 1) nn 1n(n2)2 n n 2 ; n(n + k) k n n + k11111111]()[(2n 1)( 2n 1) 2 2n 1 2n 1 ; n(n 1)( n2) 2 n(n 1) ( n 1)(n2)例 4(1).数列 { a n } 的前 n 项和为 S n ,若 a n1,则 S 5 等于( )n(n 1)A . 1B .5C .1D .16630例 4(2) . 已知数列 { a n } 的通项公式为 a n1,求前 n 项的和.nn11,求前 n 项的和.练习 4( 1).已知数列 { a n } 的通项公式为 a nn(n 1)练习 4( 2).若数列的通项公式为 b n1n 项和为 _________.,则此数列的前 (2n1) (2n 1)练习 4( 3)已知数列a n: 1 ,12 , 1 23 , ⋯ , 1 2 3 L 9, ⋯ , 若 b n 1,23 34 4410 10 1010a nan 1那么数列 b n 的前 n 项和 S n 为()A .n B. 4n C.3n D. 5n n1n 1n 1n 1练习 4( 4).已知数列 { a n } 的通项公式为 a n =n1,设 T n11 L1 ,求 T n .2a 1 a 3a 2 a 4a nan 2练习 4( 5).求 11 1 14 1,(n N * ) 。

高三数列知识点文科版

高三数列知识点文科版

高三数列知识点文科版数列是数学中常见的一种数学对象,是由一系列按照一定规律排列的数字所构成的序列。

在文科学科中,数列的概念及其相关知识点也是不可忽视的一部分。

本文将介绍高三数列知识点的相关内容。

一、数列的概念与性质数列是由一系列按照一定规律排列的数字所构成的序列。

其中,每个数字称为数列的项,用an表示。

数列的通项公式表示了数列中各项之间的关系,常用的有等差数列和等比数列。

1. 等差数列等差数列是一种公差为常数的数列,即数列中每一项与它的前一项之差都相等。

通项公式为an = a1 + (n - 1)d,其中,a1为首项,d为公差,n为项数。

2. 等比数列等比数列是一种比值为常数的数列,即数列中每一项与它的前一项之比都相等。

通项公式为an = a1 × r^(n - 1),其中,a1为首项,r为公比,n为项数。

数列的性质包括有限数列和无限数列、单调性、有界性和极限等。

二、数列的应用数列作为一种基本的数学工具,在文科学科中有着广泛的应用。

下面列举几个常见的数列应用场景。

1. 金融领域在金融领域中,数列常用于计算复利增长问题。

例如,银行的定期存款利率为6%,每年计算一次利息,那么每一年的本息总量可以用等比数列来表示。

2. 人口统计在人口统计工作中,数列可以用来描述人口的增长或减少情况。

通过分析数列的特征,可以预测未来的人口发展趋势。

3. 历史研究在历史研究领域,数列可以用来揭示历史事件发展的规律。

通过构建适当的数列模型,可以将历史事件与时间、地点等因素联系起来,帮助研究人员深入了解历史的发展过程。

三、数列的解题方法解题是数列学习中的重要环节,只有掌握了解题方法,才能在高考中灵活运用数列知识。

1. 数列的推导数列的推导是指根据已知的数列条件,推导出数列的通项公式。

对于等差数列,通过观察数列中相邻项的关系,可以得出公差;对于等比数列,通过观察数列中相邻项的比值,可以得出公比。

2. 数列的和求解求解数列的和是数列学习中的常见问题。

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

全国卷文科数列-复习

全国卷文科数列-复习

数列(文) 复习【知识梳理】一、数列的通项公式如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

(对于不是等差数列又不是等比数列的数列的通项公式只能找第n 项与n 的规律)例如:①:1 ,2 ,3 ,4, 5 ,… ②:514131211,,,,… 数列①的通项公式是n a = n (n N +∈),数列②的通项公式是n a = 1n(n N +∈)。

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。

例如,n a = (1)n -=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩;/③不是每个数列都有通项公式。

例如,1,,,,……二、数列{na }的前n 项和nS 与通项na 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥三、等差数列1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

用递推公式表示为1(1)n n a a d n +-=≥或1(2)n n a a d n --=≥。

2、等差数列的通项公式:1(1)n a a n d =+-;—说明:1、等差数列的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。

2、(),(为常数B A BAn a n +=⇒{}n a 是等差数列 )例:1.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”)2. 等差数列12-=n a n ,=--1n n a a3.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于(A )667 (B )668 (C )669 (D )6703、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考文科数学数列专题
复习
文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]
高考文科数学 数列专题复习
一、选择题
1.(广东卷)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = A. 2
1 B. 2
2
C. 2 2.(安徽卷)已知为等差数列,,则等
于 A. -1 B. 1 C.
3
3.(江西卷)公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于
A. 18
B. 24
C. 60
D. 90
4(湖南卷)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于【 】
A .13
B .35
C .49
D . 635.(辽宁卷)已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =
(A )-2 (B )-12
(C )12
(D )2
6.(四川卷)等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是
A. 90
B. 100
C. 145
D. 190
7.(湖北卷)设,R x ∈记不超过x 的最大整数为[x ],令{x }=x -[x ],则{2
1
5+},[
21
5+],2
15+ A.是等差数列但不是等比数列 B.是等比数列但不是等差数列 C.既是等差数列又是等比数列 D.既不是等差数列也不是等比数列 8.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。

下列数中及时三角形数又是正方形数的是
9.(宁夏海南卷)等差数列{}n a 的前n 项和为n S ,已知2
110m m m
a a a -++-=,2138m S -=,则m =
(A )38 (B )20 (C )10 (D )9
10.(重庆卷)设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则
{}n a 的前n 项和n S =
A .2744
n n
+
B .2533n n
+
C .2324
n n
+
D .2n n +
11.(四川卷)等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是
A. 90
B. 100
C. 145
D. 190
二、填空题
1(浙江)设等比数列{}n a 的公比12
q =,前n 项和为n S ,则
4
4
S a = . 2.(浙江)设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则
4T , , ,
16
12
T T 成等比数列. 3.(山东卷)在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .
4.(宁夏海南卷)等比数列{n a }的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S = 三.解答题
1.(广东卷文)(本小题满分14分)已知点(1,3
1)是函数,0()(>=a a x f x 且
1≠a )的图象上一点,等比数列}{n a 的前n 项和为c n f -)(,数列}{n b )0(>n b 的首项
为c ,且前n 项和n S 满足n S -1-n S =n S +1+n S (2n ≥).(1)求数列}{n a 和}{n b 的通项公式;(2)若数列{
}11+n n b b 前n 项和为n T ,问n T >2009
1000的最小正整数n 是多少 2(浙江文)(本题满分14分)设n S 为数列{}n a 的前n 项和,2n S kn n =+,
*n N ∈,其中k 是常数.
(I ) 求1a 及n a ; (II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值.
3.(北京文)(本小题共13分)设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值.(Ⅰ)若1
1,2
3
p q ==-,求3b ;
(Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式;(Ⅲ)是否存在p 和
q ,使得32()m b m m N *=+∈如果存在,求p 和q 的取值范围;如果不存在,请说明
理由.。

相关文档
最新文档