《第13章 轴对称》单元测试题
数学八年级上册《轴对称》单元检测(含答案)

9.如图,在 中, , , 平分 , ,则图中共有等腰三角形( )
A. 个B. 个C. 个D. 个
[答案]D
[解析]
[分析]
根据等腰三角形性质和三角形内角和定理求出∠A C B=∠B= (180°−∠A)=72°,求出∠A C D=∠B C D= ∠A C B=36°,求出∠C D B=∠A+∠A C D=72°,根据平行线的性质得出∠ED B=∠A=36°,∠DEB=∠A C B=72°,∠C DE=∠A C D=36°,推出∠A=∠A C D=∠B C D=∠C DE=36°,∠B=∠A C D=∠DEB=∠C D B=72°即可.
A. B. C. D.
3.一个角是 等腰三角形是( )
A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确
4.如图,在一个规格为 (即 个小正方形)的球台上,有两个小球 , .若击打小球 ,经过球台边的反弹后,恰好击中小球 ,那么小球 击出时,应瞄准球台边上的点( )
A. B. C. D.
5.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
[详解]解:∵A B=A C,
∴∠A B C=∠C,
∵B D=B A,
∴∠A=∠B D A,
∴∠A>∠C,
∴2∠A<180°且3∠A>180°,
∴60°<∠A<90°,即60<x<90.
故选C.
[点睛]此题考查了等腰三角形的性质,三角形内角和为180°和三角形外角的性质,关键是得到2∠A<180°且3∠A>180°.
[答案]D
[解析]
[分析]
此题根据△A B C中∠A为锐角与钝角分为两种情况解答.
人教版八年级数学上册第13章 轴对称单元测试(配套练习附答案)

一、选择题(本大题共10小题,共40.0分)
1.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()
A.4个B.3个C.2个D.1个
【答案】B
A. B. C. D.
【答案】B
【解析】
【详解】试题分析:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P1P2的长,∵OP=5,∴OP2=OP1=OP=5.又∵P1P2=5,,∴OP1=OP2=P1P2,∴△OP1P2是等边三角形, ∴∠P2OP1=60°,即2(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
【详解】 , ,
,
是 的外角,
,
,
.
【点睛】考查等腰三角形的性质,关键是根据三角形外角的性质以及三角形内角和定理解答.
19.已知点A(2m+n,2),B (1,n-m),当m、n分别为何值时,
(1)A、B关于x轴对称;
(2)A、B关于y轴对称.
【答案】 (2)
【解析】
【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得
【分析】首先证明△ACD≌△BAE可得∠ACD=∠BAE,根据∠BAE+∠EAC=60°可得∠ACD+∠EAC=60°,再根据三角形内角与外角的关系可得∠APD=60°.
【详解】∵△ABC是等边三角形,
∴
在△ACD和△BAE中,
第13章 轴对称(单元测试培优卷)(学生版) 2024-2025学年八年级数学上册基础知识专项突破

第13章轴对称(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列图形中是轴对称图形的是()A .B .C .D .2.如图,点A 在直线l 上,△ABC 与AB C '' 关于直线l 对称,连接BB ',分别交AC ,AC '于点D ,D ¢,连接CC ',下列结论不一定正确的是()A .BACB AC ∠=∠''B .CC BB '' C .BD B D =''D .AD DD ='3.我们知道光的反射是一种常见的物理现象.如图,某V 型路口放置如图所示的两个平面镜1l ,2l ,两个平面镜所成的夹角为1∠,位于点D 处的甲同学在平面镜2l 中看到位于点A 处的乙同学的像,其中光的路径为入射光线AB 经过平面镜1l 反射后,又沿BC 射向平面镜2l ,在点C 处再次反射,反射光线为CD ,已知入射光线2AB l ∥,反射光线1CD l ∥,则1∠等于()A .40︒B .50︒C .60︒D .70︒4.如图,已知a b ∥,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交直线a ,b 于点D 、C ,连接AC ,若135∠=︒,则BAD ∠的度数是()A .35︒B .55︒C .65︒D .70︒5.如图,在等腰Rt ABC △,90BAC ∠=︒,AB AC =,BD 为ABC V 的角平分线,过点C 作CE BD ⊥交BD 的延长线与点E ,若2CE =,则BD 的长为()A .3B .4C .5D .66.如图,90ACB AED ∠=∠=︒,CAE BAD ∠=∠,BC DE =,若BD AC ∥,则ABC ∠与CAE ∠间的数量关系为()A .2ABC CAE∠=∠B .ABC CAE ∠=∠C .290ABC CAE ∠+∠=︒D .2180ABC CAE ∠+∠=︒7.某平板电脑支架如图所示,其中AB CD =,EA ED =,为了使用的舒适性,可调整AEC ∠的大小.若AEC ∠增大16︒,则BDE ∠的变化情况是()A .增大16︒B .减小16︒C .增大8︒D .减小8︒8.如图,在ABC V 中,80BAC ∠=︒,边A 的垂直平分线交BC 于点E ,边AC 的垂直平分线交AC 于点F ,连接AE ,AG .则EAG ∠的度数为()A .35︒B .30︒C .25︒D .20︒9.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AD 是△ABC 的角平分线,若P ,Q 分别是AD 和AC 边上的动点,则PC +PQ 的最小值是()A .65B .2C .125D .5210.如图,在ABC V 中,90BAC ∠=︒,A 是高,BE 是中线,C 是角平分线,C 交A 于G ,交BE 于H ,下面说法:①ACF BCF S S = ;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =.其中正确的是()A .①②③④B .①③C .②③D .①③④二、填空题(本大题共8小题,每小题4分,共32分)11.如图,在ABC V 中,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交AB 于点D ,连接CD ,若ABC V 的周长为24,9BC =,则ADC △的周长为.12.如图,直线m n ∥,点A 是直线m 上一点,点B 是直线n 上一点,AB 与直线m ,n 均不垂直,点P为线段AB 的中点,直线l 分别与m ,n 相交于点C ,D ,若90,CPD CD ∠=︒=m ,n 之间的距离为2,则PC PD ⋅的值为.13.如图,A EGF ∠=∠,F 为BE CG ,的中点,58DB DE ==,,则AD 的长为.14.如图所示,在平面直角坐标系中,ABC V 满足45,90BAC CBA ∠=︒∠=︒,点A ,C 的坐标分别是()()2,0,3,5--,点B 在y 轴上,在坐标平面内存在一点D (不与点C 重合),使ABC ABD △≌△,且AC 与AD 是对应边,请写出点D 的坐标.15.如图,60AOB ∠=︒,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t =s 时,MON △是等腰三角形.16.如图,锐角ABC 中,30A ∠=︒,72BC =,ABC 的面积是6,D ,E ,F 分别是三边上的动点,则DEF 周长的最小值是.17.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ,…在x 轴正半轴上,点1B ,2B ,3B ,…在直线()0y x =≥上,若()11,0A ,且112A B A △,223A B A △,334A B A △,…均为等边三角形,则线段20212022A A 的长度为.18.如图,将长方形纸片ABCD 沿EF 折叠(折线EF 交AD 于E ,交BC 于F ),点C D 、的对应点分别是1C 、1D ,1ED 交BC 于G ,再将四边形11C D GF 沿FG 折叠,点1C 、1D 的对应点分别是2C 、2D ,2GD 交EF 于H ,给出下列结论:①2EGD EFG∠=∠②2180EFC EGC ∠=∠+︒③若26FEG ∠=︒,则2102EFC ∠=︒④23FHD EFB∠=∠上述正确的结论是.三、解答题(本大题共6小题,共58分)19.(8分)在ABC V 中,90ACB ∠=︒,AC BC BE ==,AD EC ⊥,交EC 延长线于点D .求证:2CE AD =.20.(8分)如图,点P 是AOB ∠外的一点,点E 与点P 关于OA 对称,点F 与点P 关于OB 对称,直线FE 分别交OA OB 、于C 、D 两点,连接PC PD PE PF 、、、.(1)若20OCP F ∠=∠=︒,求CPD ∠的度数;(2)若求=CP DP ,13CF =,3DE =,求CP 的长.21.(10分)如图,在ABC V 中,AD 平分BAC ∠,点E 为AC 中点,AD 与BE 相交于点F .(1)若38,82ABC ACB ∠=︒∠=︒,求ADB ∠的度数;(2)过点B 作BH AD ⊥交AD 延长线于点H ,作ABH 关于AH 对称的AGH ,设BFH △,AEF △的面积分别为12,S S ,若6BCG S V =,试求12S S -的值.22.(10分)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠+∠=︒.(1)如图1,当BP OM ∥时,求证:OB PB =.(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:2OA OB AC -=.23.(10分)已知,在ABC V 中,90CAB ∠=︒,AD BC ⊥于点D ,点E 在线段BD 上,且CD DE =,点F 在线段AB 上,且45BEF ∠=︒(1)如图1,求证:DAE B∠=∠(2)如图1,若2AC =,且2AF BF =,求ABC V 的面积(3)如图2,若点F 是AB 的中点,求AEF ABCS S的值.24.(12分)如图,在ABC V 中,90ACB ∠=︒,30ABC ∠=︒,CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE EB=(2)如图2,当点E 在ABC V 内部时,猜想ED 和EB 数量关系,并加以证明;(3)如图3,当点E 在ABC V 外部时,EH AB ⊥于点H ,过点E 作GE AB ,交线段AC 的延长线于点G ,5AG CG =,3BH =,求CG 的长.。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
第13章轴对称单元测试题B卷[含答案解析]
![第13章轴对称单元测试题B卷[含答案解析]](https://img.taocdn.com/s3/m/196b0362767f5acfa1c7cdac.png)
第13章轴对称单元测试题B卷(考试时间:120分钟满分:120分)第一卷选择题一、选择题(每小题3分,共30分)1.下列四个交通标志中,轴对称图形是()..2.从镜子里看到位于镜子对面电子钟的像如图所示,则实际时间是()A.12:01 B. 10:21 C. 15:01 D. 10:51 3.将三角形ABC的各顶点的横坐标都乘以﹣1,则所得三角形与三角形ABC的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将三角形ABC向左平移了一个单位4.已知等腰三角形的一个内角为70°,则另两个内角的度数是()A.55°,55°B. 70°,40°C.55°,55°或70°,40°D.以上都不对5.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B. 11 C. 7或11 D. 7或10 6.在平面直角坐标系xOy内,已知A(3,﹣3),点P是y轴上一点,则使△AOP为等腰三角形的点P共有()A.2个B. 3个C. 4个D. 5个7.等腰三角形一腰上的高是腰长的一半,则这个三角形的顶角的度数是()A.30°B. 60°C. 150°D. 30°或150°8.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()..9.如图,在边长为1正方形ABCD 中,E 、F 、G 分别是AB 、BC 、CD 、DA 上的点,3AE =EB ,有一只蚂蚁从E 点出发,经过F 、G 、H ,最后回点E 点,则蚂蚁所走的最小路程是( ) A . 2B . 4C .D .第9题 第10题10.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC于F ,AD 交CE 于G .则下列结论中错误的是( ) A . AD =BEB . BE ⊥AC C .△CFG 为等边三角形D . FG ∥BC第二卷非选择题二、填空题(每小题3分,共18分)11.已知点P 到x 轴,y 轴的距离分别是2和3,且点P 关于y 轴对称的点在第四象限,则点P 的坐标是 .12.如图在Rt △ABC 中,∠ACB =90°,∠B =30°,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,连接CE ,则图中的等腰三角形共有 个.13.已知如图,BC=3,∠ABC和∠ACB的平分线相交于点O,OE∥AB,OF∥AC,则三角形OEF的周长为.第13题第14题第15题第16题14.如图,等边△ABC中,D、E分别在AB、AC上,且AD=CE,BE、CD交于点P,若∠ABE:∠CBE=1:2,则∠BDP=度.15.如图,光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角.若已知∠1=50°,∠2=55°,则∠3=°.16.如图,矩形纸片ABCD,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EBD 落在同一平面内),则A、E两点间的距离为.三、解答题(共8小题,共72分)17.如图画出△ABC关于y轴对称的△,再写出△ABC关于x轴对称的△各点坐标(不用画).(5分)18.已知△ABC中,BC=a,AB=c,∠B=30°,P是△ABC内一点,求P A+PB+PC的最小值.(6分)19.在△ABC中,D,E分别是AC,AB上的点,BD与CE交于O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(8分)(1)请你从上述四个条件中选出两个能证明△ABC是等腰三角形的条件(选出所有满足要求的情况,用序号表示)(2)选择其中一种进行证明.20.如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE 折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.(1)试求BF的长;(2)试求AD的长;(3)试求ED的长.(9分)21.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(10分)(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数?(3)猜想∠EDC与∠BAD的数量关系?(不必证明)22.(10分)如图,A、B、C在同一直线上,且△ABD,△BCE都是等边三角形,AE交BD 于点M,CD交BE于点N,求证:(1)∠BDN=∠BEM;(2)△BMN是等边三角形.23.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<180°,连接AD、BD.(12分)(1)如图1,当∠BAC=100°,α=60°时,∠CBD的大小为;(2)如图2,当∠BAC=100°,α=20°时,求∠CBD的大小;(3)已知∠BAC的大小为m(60°<m<120°),若∠CBD的大小与(2)中的结果相同,请直接写出α的大小.24.如图所示,△ABC为直角三角形,∠ACB=90°,BF平分∠ABC,CD⊥AB于D,CD交BF于点G,GE∥CA,求证:CE与FG互相垂直平分.(12分)参考答案一、选择题(每小题3分,共30分)3、解:将三角形ABC的各顶点的横坐标都乘以﹣1,则所得三角形与三角形ABC的关系是关于y轴对称.故选:B.4、解:当70°为顶角时,另外两个角是底角,它们的度数是相等的,为(180°﹣70°)÷2=55°,当70°为底角时,另外一个底角也是70°,顶角是180°﹣140°=40°.故选C.5、解:设等腰三角形的底边长为x,腰长为y,则根据题意,得①或②解方程组①得:,根据三角形三边关系定理,此时能组成三角形;7、解:①如图1,高BD在三角形的内部时,∵高BD是腰长AB的一半,∴∠A=30°,②如图2,高在三角形的外部时,∵高CD是腰长AC的一半,∴∠1=30°,∴∠BAC=180°﹣30°=150°,综上所述,这个三角形的顶角的度数是30°或150°.故选D.最小路程为EE'===2.故选C.10、解:A、∵△ABC和△CDE均为等边三角形,∴AC=BC,EC=DC,∠ACB﹦∠ECD=60°,∴∠ACD﹦∠ECB,在△ACD与△BCE中,∵,故选B.第二卷非选择题二、填空题(每小题3分,共18分)11、解:因为点P关于y轴对称的点在第四象限,所以点P在第3象限,点P的坐标是(﹣3,﹣2).∴∠1=∠2,∠4=∠5,∵OE∥AB,OF∥AC,∴∠1=∠3,∠4=∠6,∴∠2=∠3,∠5=∠6,∴BE=OE,OF=FC,∴BC=BE+EF+FC=OF+OE+EF,∵BC=3,∴OF+OE+EF=3∴△OEF的周长=OF+OE+EF=3.有AE=AF=AB=2.三、解答题(共8小题,共72分)从而P A+PB+PC=AP+PP′+P′C′≥AC′=,当A、P′、P、C′四点共线时取等号,最小值为;(2)若有一个角大于120°时,此时以该点为中心,以180°减去该角大小为旋转角进行旋转,①∠A≥120°时,当P点与A重合时,P A+PB+PC最小,最小值为a+;②∠C≥120°时,当P点与C重合时,P A+PB+PC最小,最小值为a+.故答案为:或a+.∴AD=AF=13cm.(3)设DE=x,则EC=(5﹣x)cm,∵BF=12cm,AD=13cm,∴FC=AD﹣BF=13﹣12=1cm,在Rt△EFC中,12+(5﹣x)2=x2,解得x=,∴ED=cm.21、(1)解:∵∠BAC=90°,AB=AC,∴∠B=∠C=(180°﹣∠BAC)=45°,∴∠ADC=∠B+∠BAD=45°+30°=75°,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS)∴∠BDN=∠BEM;(2)∵△ABE≌△DBC,∴∠AEB=∠DCB,又∵∠ABD=∠EBC=60°,∴∠MBE=180°﹣60°﹣60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠F AC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠F AD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.24、证明:过G作GK⊥BC于K,连接EF,∵BF平分∠ABC,∴∠GBK=∠GBD,GK=GD,∵∠GKB=∠GDB∴△GBK≌△GBD(AAS),。
第13章《轴对称》单元测试卷附答案

B.2 个
C.3 个
D.4 个
9.如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线交 AB 于点 D,垂足为 E,当 AB=10,∠B=30°时,△ACD 的 周长为( C )
A.12
B.14
C.15
D.16
10.如图,在平面直角坐标系中,O 为坐标原点,A(0, 3), B(-1,0),平行于 AB 的直线 l 交 y 轴于点 C,若直线 l 上存在 点 P,使得△PAB 是等边三角形,则点 C 的坐标为( C ) A.(1,0)或(-3,0) B.(0,1)或(0,- 3) C.(0,- 3)或(0,3 3) D.(- 3,0)或(3, 3)
第十三章《轴对称》单元测试卷
(时间100分钟,满分120分)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 1.下列图案属于轴对称图形的是( A )
2.下列说法错误的是( C ) A.关于某直线成轴对称的两个图形一定能完全重合 B.线段是轴对称图形 C.全等的两个三角形一定关于某直线成轴对称 D.轴对称图形的对称轴至少有一条
解:(1)如图,△A1B1C1 为所作.
(2)写出△A1B1C1 各顶点 A1,B1,C1 的坐标:A1 (3,2)
,
B1
(4,-3)
,C1
(1,-1)
;
(3)直接写出△ABC 的面积= 6.5
.
21.如图,D 是等边△ABC 的边 AB 上的一动点,以 CD 为一 边向上作等边△EDC,连接 AE,找出图中的一组全等三角形, 并说明理由.
解:△CEB 是等边三角形.理由如下: ∵AB=BC,∠ABC=120°,BE⊥AC, ∴∠CBE=∠ABE=60°. 又 DE=DB,BE⊥AC,∴CB=CE, ∴△CEB 是等边三角形.
初中八年级数学人教版 尖子生提能训练 第十三章 轴对称(提分小卷)-【单元测试】

第十三章轴对称(人教版)提分小卷(考试时间:50分钟试卷满分:100分)一、选择题:本题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2021·河北七年级期末)下面的图形是用数学家名字命名的,其中是轴对称图形的是()A.赵爽弦图B.费马螺线C.科克曲线D.斐波那契螺旋线【答案】C【分析】根据轴对称图形的概念,对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项符合题意;D.不是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(2021·重庆南开中学八年级期末)下列对三角形ABC的判断,错误的是()A.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.若AB=BC,∠A=60°,则△ABC是等边三角形C.若∠A=20°,∠C=80°,则△ABC是等腰三角形D.若AB=BC,∠C=50°,则∠B=50°【答案】D【分析】根据直角三角形的定义、等边三角形的判定、等腰三角形的性质和判定逐一进行判定即可;【详解】解:A、∵∠A:∠B:∠C=1:2:3,则设∠A=x,∠B=2x,∠C=3x,∵∠A+∠B+∠C=180°∴6x =180°,∴x =30°,∴∠C =3x =90°,∴△ABC 是直角三角形,选项A 正确,不符合题意; B 、∵AB =BC ,∠A =60°,则△ABC 是等边三角形,选项B 正确,不符合题意;C 、∵∠A =20°,∠C =80°,∴∠B =80°=∠C ,∴AB =AC , ∴△ABC 是等腰三角形, 选项C 正确,不符合题意;D 、∵AB =BC ,∴∠A =∠C =50°,∴∠B=180°-100°=80°,选项D 错误,符合题意;故选:D【点睛】本题考查了直角三角形的定义、等边三角形的判定、等腰三角形的性质和判定,熟练掌握相关的性质是解题的关键3.(2021.绵阳市八年级月考)下列说法错误的是( )A .E ,D 是线段AB 的垂直平分线上的两点,则AD BD =,AE BE =B .若AD BD =,AE BE =,则直线DE 是线段AB 的垂直平分线C .若PA PB =,则点P 在线段AB 的垂直平分线上D .若PA PB =,则过点P 的直线是线段AB 的垂直平分线【答案】D【分析】根据垂直平分线的性质和判定逐项判断即可.【详解】A 、E 是线段AB 的垂直平分线上的点,AE BE ∴=,AD BD =.故A 正确,不符合题意;B 、若AD BD =,D ∴在AB 的垂直平分线上.同理E 在AB 的垂直平分线上.∴直线DE 是线段AB 的垂直平分线.故B 正确,不符合题意;C 、若PA PB =,则点P 在线段AB 的垂直平分线上,故C 正确,不符合题意;D 、若PA PB =,则点P 在线段AB 的垂直平分线上.但过点P 的直线有无数条,不能确定过点P 的直线是线段AB 的垂直平分线.故D 错误,符合题意.故选:D .【点睛】本题考查了垂直平分线的性质与判定,解题关键是熟练掌握垂直平分线的性质与判定,准确进行推理判断.4.(2021河南省安阳市八年级期末)如图,若ABC 是等边三角形,6AB =,BD 是AC 边上的高,延长BC 到E ,使CE CD =,则BE =( )A .7B .8C .9D .10【答案】C 【分析】因为△ABC 是等边三角形,所以∠ABC =∠ACB =60°,BD 是AC 边上的高,则∠DBC =30°,AD =CD =12AC ,再由题中条件CE =CD ,即可求得BE .【详解】解:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB =BC =6,∵BD 是AC 边上的高,∴AD =CD =12AC =3,∠DBC =12∠ABC =30°,∵CE =CD ,∴CE =12AC =3,∴BE =BC +CE =6+3=9.故选:C .【点睛】本题考查了等腰三角形的性质及等边三角形的性质,考查了学生综合运用数学知识的能力,得到AD =CD =12AC 是正确解答本题的关键. 5.(2021·四川八年级期末)如图,已知ABC 与A B C '''关于直线l 对称,110,25B A '∠=︒∠=︒,则C ∠的度数为( )A .25︒B .45︒C .70︒D .110︒【答案】B 【分析】根据成轴对称的两个图形全等求得未知角即可.【详解】解:∵ABC 与A B C '''关于直线l 对称,∴△ABC ≌△A′B′C′,∴∠A =∠A′=25°,∵∠B =110°,∴∠C =180°−∠B−∠A =180°−25°−110°=45°.故选B .【点睛】本题考查轴对称的性质,属于基础题,解题的关键是熟知成轴对称的两个图形全等. 6.(2021·湖北大冶·)在平面直角坐标系中,点()1,2A -关于x 轴对称的点的坐标为( ) A .()1,2B .()1,2-C .()2,1D .()1,2--【答案】A【分析】根据关于x 轴对称的点,其横坐标相等,纵坐标互为相反数进而得出答案.【解析】解:点A (1,-2)关于x 轴对称的点的坐标为:(1,2).故选:A .【点睛】本题考查关于x 轴对称点的性质,正确记忆横纵坐标的关系是解题关键. 7.(2021·河北保定市·八年级期末)如图,在ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若ABC 的周长为16,3BE =,则ABD △的周长为( )A .6B .10C .12D .20【答案】B 【分析】根据线段垂直平分线的性质可得BD CD =,BE CE =,即可得到10AB AC +=、ABD △的周长为AB AD BD AB AD CD AB AC ++=++=+,即可求解.【详解】解:∵DE 为BC 的垂直平分线,∴BD CD =,BE CE =,∵ABC 的周长为16,3BE =,∴10AB AC +=,∴ABD △的周长为10AB AD BD AB AD CD AB AC ++=++=+=,故选:B .【点睛】本题考查线段垂直平分线的性质,掌握线段垂直平分线的定义与性质是解题的关键.8.(2021·江苏汇文实验初中八年级月考)如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是( )A .1 号袋B .2 号袋C .3 号袋D .4 号袋【答案】B 【分析】根据轴对称的性质画出图形即可得出正确选项.【详解】解:根据轴对称的性质可知,台球走过的路径为:∴最后落入2号球袋,故选B.【点睛】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴;画出图形是正确解答本题的关键.9.(2021·鄱阳县第二中学八年级月考)如图,等腰三角形ABC 的底边BC 长为4,面积是18,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点G 为线段EF 上一动点,则△CDG 周长的最小值为( )A .7B .9C .11D .13【答案】C 【分析】连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CG+GD 的最小值,由此即可得出结论.【详解】解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC = 12BC•AD= 12×4×AD=18,解得AD=9, ∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CG+GD 的最小值,∴△CDG 的周长最短=(CG+GD )+CD=AD+12BC=9+ 12×4=9+2=11.故选C. 【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.10.(2021·贵州印江·初二月考)如图,已知1111222233334,,,AB A B A B A A A B A B A B A B ==== ……,若∠A =70°,则11n n n A A B --∠的度数为( )A .702nB .1702n +C .1702n -D .2702n - 【答案】C【分析】根据等边对等角可得∠AA 1B=∠A=70°,然后根据三角形外角的性质和等边对等角可得∠A 1A 2B 1=12∠AA 1B=702︒=35°,同理可得:∠A 2A 3B 2=12∠A 1A 2B 1=2702︒=17.5︒,∠A 3A 4B 3=12∠A 2A 3B 2=3702︒=8.75︒,找出规律即可得出结论. 【解析】∵1AB A B =,70A ∠=︒∴∠AA 1B=∠A=70° ∵1112A B A A =∴∠A 1A 2B 1=∠A 1 B 1A 2∵∠AA 1B=∠A 1A 2B 1+∠A 1 B 1A 2∴∠A 1A 2B 1=12∠AA 1B=702︒=35° 同理可得:∠A 2A 3B 2=12∠A 1A 2B 1=2702︒=17.5︒ ∠A 3A 4B 3=12∠A 2A 3B 2=3702︒=8.75︒ ∴11n n n A A B --∠=1702n -︒ 故选C . 【点睛】此题考查的是等腰三角形的性质和三角形外角的性质,掌握等边对等角和三角形外角的性质是解决此题的关键.二、填空题:本题共5个小题,每题4分,共20分。
人教版八年级数学上《第13章轴对称》单元测试题(含答案解析)

2018年秋人教版八年级上册数学《第13章轴对称》单元测试题一.选择题(共10小题)1.下列图形中为轴对称图形的是()A.B.C.D.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC =10,AC=6,则△ACD的周长是()A.14B.16C.18D.204.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°9.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.9D.10二.填空题(共8小题)11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为.13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是.14.等腰三角形ABC中,∠A=110°,则∠B=°.15.等腰三角形的一个底角比顶角大30°,那么顶角度数为.16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于°.17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=.18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.三.解答题(共7小题)19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).2018年秋人教版八年级上册数学《第13章轴对称》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列图形中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【分析】首先根据对称的两个图形全等求得∠C的度数,然后在△ABC中利用三角形内角和求解.【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.【点评】本题考查了轴对称的性质,理解轴对称的两个图形全等是关键.3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC =10,AC=6,则△ACD的周长是()A.14B.16C.18D.20【分析】由AB的垂直平分线DE交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,继而可得△ACD的周长为:AC+BC,则可求得答案.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∵AC=6,BC=10,∴△ACD的周长为:AC+CD+AD=AC+CD+BD=AC+BC=6+10=16.故选:B.【点评】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.4.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)【分析】先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P1的坐标,再根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【解答】解:∵将点P(2,1)向右平移3个单位得到点P1,∴点P1的坐标是(5,1),∴点P1关于x轴的对称点P2的坐标是(5,﹣1).故选:B.【点评】本题考查了坐标与图形变化﹣平移,以及关于x轴、y轴对称点的坐标的关系,熟练掌握并灵活运用是解题的关键.5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm【分析】题目给出等腰三角形有两条边长为6cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①6cm为腰,2cm为底,此时周长为14cm;②6cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是14cm.故选:A.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条【分析】根据等腰三角形的性质分别利用AB为底以及AB为腰得出符合题意的图形即可.【解答】解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.【点评】此题主要考查了等腰三角形的判定等知识,正确利用图形分类讨论得出等腰三角形是解题关键.7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°【分析】分两种情况:∠BAC为锐角,∠BAC为钝角,根据线段垂直平分线的性质可求出AE=BE,然后根据三角形内角和定理即可解答.【解答】解:如图1,∵DE垂直平分AB,∴AE=BE,∴∠BAC=∠ABE,∵∠AEB=80°,∴∠BAC=∠ABE=50°,∵AB=AC,∴∠ABC==65°,∴∠EBC=∠ABC﹣∠ABE=15°如图2,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠ABE,∵∠AEB=80°,∴∠BAE=∠EBA=50°,∴∠BAC=130°∵AB=AC,∴∠ABC==25°∴∠EBC=∠EBA+∠ABC=75°故选:C.【点评】此题主要考查线段的垂直平分线及等腰三角形的判定和性质.线段的垂直平分线上的点到线段的两个端点的距离相等.8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.9.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形【分析】分别利用等边三角形的判定方法分析得出即可.【解答】解:A、根据有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B、有一个外角等于120°的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C、三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;D、边上的高也是这边的中线的三角形,也可能是等腰三角形,故此选项正确.故选:D.【点评】此题主要考查了等边三角形的判定,注意熟练掌握:由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.9D.10【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×6×AD=18,解得AD=6,∴S△ABC∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=6+×6=6+3=9.故选:C.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二.填空题(共8小题)11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=5【分析】根据垂直平分线的性质可得AD=CD,进而求出BD的长度.【解答】解:∵DE是△ABC边AC的垂直平分线,∴AD=CD,∵BC=9,AD=4,∴BD=BC﹣CD=BC﹣AD=9﹣4=5,故答案为:5.【点评】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为14.【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴DA=DB,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=14,故答案为:14.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是(1,2).【分析】直接利用关于y轴对称点的性质得出点P坐标.【解答】解:∵P关于y轴的对称点P1的坐标是(﹣1,2),∴点P坐标是(1,2).故答案是:(1,2).【点评】此题主要.考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.等腰三角形ABC中,∠A=110°,则∠B=35°.【分析】根据钝角只能是顶角和等腰三角形的性质求得两个底角即可确定答案.【解答】解:∵等腰三角形中,∠A=110°>90°,∴∠B==35°,故答案为:35.【点评】本题考查了等腰三角形的性质,解题的关键是了解钝角只能是等腰三角形的顶角.15.等腰三角形的一个底角比顶角大30°,那么顶角度数为40°.【分析】设顶角的度数为x,表示出底角的度数.根据三角形内角和定理列方程求解.【解答】解:设顶角的度数为x°,则底角的度数为(x+30)°.根据题意,得x+2(x+30)=180,解得x=40.故答案为:40°.【点评】此题考查等腰三角形性质和三角形内角和定理,属基础题.16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于45°.【分析】根据等腰三角形的性质以及三角形的外角的性质即可解决问题;【解答】解:∵AB=BC,∴∠BAC=∠BCA=15°,∴∠CBD=∠A+∠BCA=30°,∵CB=CD,∴∠CBD=∠CDB=30°,∴∠ECD=∠A+∠CDB=15°+30°=45°,故答案为45.【点评】本题考查等腰三角形的性质、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=45°.【分析】先根据线段垂直平分线的性质及BE⊥AC得出△ABE是等腰直角三角形,再由等腰三角形的性质得出∠ABC的度数,由AB=AC,AF⊥BC,可知BF=CF,BF =EF;根据三角形外角的性质即可得出结论.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF;∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45°.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是9.6.【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ 的长,如图所示.=BC•AD=AC•BQ,∵S△ABC∴BQ===9.6.故答案为:9.6.【点评】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC+PQ的最小值为BQ是解题的关键.三.解答题(共7小题)19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.【分析】连接PB,根据线段垂直平分线的性质即可得出结论.【解答】解:PA=PC.理由:∵直线MN和直线DE分别是线段AB,BC的垂直平分线,∴PA=PB,PC=PB,∴PA=PC.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解答此题的关键.20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.【分析】利用线段垂直平分线的性质计算.【解答】解:已知DE垂直且平分AB⇒AE=BE⇒∠EAB=∠B又因为∠CAE=∠B+30°故∠CAE=∠B+30°=90°﹣2∠B⇒∠B=20°∴∠AEB=180°﹣20°×2=140°.【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,注意角与角之间的转换.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.【分析】(1)、(2)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积减去三个三角形的面积计算△ABC的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)点C1的坐标为(4,3);(3)△ABC的面积=3×5﹣×3×1﹣×3×2﹣×5×2=.【点评】本题考查了作图﹣对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.【分析】分两种情况:①设AB=AC=5,②设BC=5,根据等腰三角形的性质和三角形的三边关系即可得到结论.【解答】解:∵△ABC是等腰三角形,∴不妨设AB=AC,又∵一边长为5,①设AB=AC=5,∵△ABC的周长为22,∴BC=22﹣5﹣5=12;∵5+5<12,∴不成立(舍);②设BC=5,∵△ABC的周长为22,∴AB=AC=(22﹣5)÷2=8.5,∵8.5+5>8.5,符合题意,∴△ABC另两边长分别为8.5,8.5.【点评】本题考查了等腰三角形的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.【分析】根据角平分线的定义和余角的性质即可得到结论.【解答】解:∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【点评】此题考查了等腰三角形的判定、直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.【分析】先利用角平分线的定义和平行线的性质得到∠1=∠2,所以DB=DO,同理可得EO=CE,利用等线段代换得到△ADE的周长=AB+AC,然后利用△ABC的周长为15得到AB+AC=9,从而得到△ADE的周长.【解答】解:∵点O是∠BCA与∠ABC的平分线的交点,∴∠1=∠3,∵DE∥BC,∴∠2=∠3,∴∠1=∠2,∴DB=DO,同理可得EO=CE,∴△ADE的周长=AD+AE+DE=AD+DO+AE+OE=AD+BD+AE+CE=AB+AC,∵△ABC的周长为15,∴AB+AC+BC=15,而BC的长为6,∴AB+AC=9,∴△ADE的周长为9.【点评】本题考查了等腰三角形的判定与性质:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.也考查了平行线的性质.25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).【分析】①如图1,连接PA,根据三角形的面积公式列方程即可得到结论;②连接PA ,根据三角形的面积公式即可得到结论;(3)如图2,连接PA ,根据三角形的面积列方程即可得到结论;如图3,过点C 作CG ⊥PE 于G ,根据矩形的性质和全等三角形的性质即可得到结论.【解答】解:(1)CD =PE +PF ,理由:如图1,连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAB +S △PAC∴AB ×CD =AB ×PE +AC ×PF ,∵AB =AC∴CD =PE +PF ;(2)①中关系还成立,理由:连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAB +S △PAC∴AB ×CD =AB ×PE +AC ×PF ,∵AB =AC∴CD =PE +PF ;(3)结论:PE ﹣PF =CD 或PF ﹣PE =CD ,如图2,连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAC ﹣S △PAB∴AB ×CD =AC ×PF +AB ×PE ,∵AB =AC ,∴CD =PF ﹣PE ;如图3,过点C 作CG ⊥PE 于G ,∵PE ⊥AB ,CD ⊥AB ,∴∠CDE=∠DEG=∠EGC=90°.∴四边形CGED为矩形.∴CD=GE,GC∥AB.∴∠GCP=∠B.∵AB=AC,∴∠B=∠ACB.∴∠FCP=∠ACB=∠B=∠GCP.在△PFC和△PGC中,,∴△PFC≌△PGC(AAS),∴PF=PG.∴PE﹣PF=PE﹣PG=GE=CD;【点评】本题考查了等腰三角形的性质;在解决一题多变的时候,基本思路是相同的;注意通过不同的方法计算同一个图形的面积,来进行证明结论的方法,是非常独特的,也是一种很好的方法,注意掌握应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第13章轴对称》单元测试题
一.选择题(共10小题,30分)
1.下列图形中为轴对称图形的是()
2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()
A.25°B.45°C.30°D.20°
3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC=10,AC=6,则△ACD的周长是()
A.14B.16C.18D.20
4.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()
A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)
5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm
6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()
A.2条B.3条C.4条D.5条
7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()
A.15°B.25°C.15°或75°D.25°或85°
8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()
A.15°B.30°C.45°D.60°
9.下列三角形,不一定是等边三角形的是()
A.有两个角等于60°的三角形
B.有一个外角等于120°的等腰三角形
C.三个角都相等的三角形
D.边上的高也是这边的中线的三角形
10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()
A.6B.8C.9D.10
二.填空题(共8小题,24分)
11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=
12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为.
13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是.14.等腰三角形ABC中,∠A=110°,则∠B=°.
15.等腰三角形的一个底角比顶角大30°,那么顶角度数为.
16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于°.
17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=.
18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.
三.解答题(共7小题,66分)
19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.
20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.
21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).
(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;
(2)写出点C1的坐标;
(3)求△ABC的面积.
22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.
23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.
24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.
25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.
①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?
②若P为线段BC上任意一点,则①中关系还成立吗?
③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).
《第13章轴对称》单元测试题答案1.D.2.B.3.B.4.B.5.A.6.C.7.C.8.A.9.D.10.C.11.5.12.14.13.(1,2).14.35.15.40°.16.45.17.45°.18.9.6.19.解:PA=PC.
理由:∵直线MN和直线DE分别是线段AB,BC的垂直平分线,
∴PA=PB,PC=PB,
∴PA=PC.
20.解:已知DE垂直且平分AB⇒AE=BE⇒∠EAB=∠B
又因为∠CAE=∠B+30°
故∠CAE=∠B+30°=90°﹣2∠B⇒∠B=20°
∴∠AEB=180°﹣20°×2=140°.
21.解:(1)如图,△A1B1C1为所作;
(2)点C1的坐标为(4,3);
(3)△ABC的面积=3×5﹣×3×1﹣×3×2﹣×5×2=.
22.解:∵△ABC是等腰三角形,
∴不妨设AB=AC,
又∵一边长为5,
①设AB=AC=5,
∵△ABC的周长为22,
∴BC=22﹣5﹣5=12;
∵5+5<12,
∴不成立(舍);
②设BC=5,
∵△ABC的周长为22,
∴AB=AC=(22﹣5)÷2=8.5,
∵8.5+5>8.5,符合题意,
∴△ABC另两边长分别为8.5,8.5.
23.解:∵BF平分∠ABC,
∴∠ABF=∠CBF,
∵∠BAC=90°,AD⊥BC,
∴∠ABF+∠AFB=∠CBF+∠BED=90°,
∴∠AFB=∠BED,
∵∠AEF=∠BED,
∴∠AFE=∠AEF,
∴AE=AF.
24.解:∵点O是∠BCA与∠ABC的平分线的交点,
∴∠1=∠3,
∵DE∥BC,
∴∠2=∠3,
∴∠1=∠2,
∴DB=DO,
同理可得EO=CE,
∴△ADE的周长=AD+AE+DE=AD+DO+AE+OE=AD+BD+AE+CE=AB+AC,∵△ABC的周长为15,
∴AB+AC+BC=15,
而BC的长为6,
∴AB+AC=9,
∴△ADE的周长为9.
25.解:(1)CD=PE+PF,
理由:如图1,连接PA,
∵CD⊥AB于D,PE⊥AB于E,PF⊥AC于F
∵S
△ABC =AB×CD,S
△PAB
=AB×PE,S
△PAC
=AC×PF,
又∵S
△ABC =S
△PAB
+S
△PAC
∴AB×CD=AB×PE+AC×PF,
∵AB=AC
∴CD=PE+PF;
(2)①中关系还成立,
理由:连接PA,
∵CD⊥AB于D,PE⊥AB于E,PF⊥AC于F
∵S
△ABC =AB×CD,S
△PAB
=AB×PE,S
△PAC
=AC×PF,
又∵S
△ABC =S
△PAB
+S△PAC
∴AB×CD=AB×PE+AC×PF,
∵AB=AC
∴CD=PE+PF;
(3)结论:PE﹣PF=CD或PF﹣PE=CD,如图2,连接PA,
∵CD⊥AB于D,PE⊥AB于E,PF⊥AC于F
∵S
△ABC =AB×CD,S
△PAB
=AB×PE,S
△PAC
=AC×PF,
又∵S
△ABC =S
△PAC
﹣S
△PAB
∴AB×CD=AC×PF+AB×PE,
∵AB=AC,
∴CD=PF﹣PE;
如图3,过点C作CG⊥PE于G,
∵PE⊥AB,CD⊥AB,
∴∠CDE=∠DEG=∠EGC=90°.
∴四边形CGED为矩形.
∴CD=GE,GC∥AB.
∴∠GCP=∠B.
∵AB=AC,
∴∠B=∠ACB.
∴∠FCP=∠ACB=∠B=∠GCP.
在△PFC和△PGC中,,
∴△PFC≌△PGC(AAS),
∴PF=PG.
∴PE﹣PF=PE﹣PG=GE=CD;。