合金元素的作用

合集下载

合金元素在铝合金中的作用

合金元素在铝合金中的作用

合金元素在铝合金中的作用铝合金是一种优良的轻金属材料,广泛应用于汽车、航空航天、建筑等领域。

为了进一步改善铝合金的性能,常常添加一定比例的合金元素。

合金元素的添加可显著提高铝合金的强度、硬度、耐热性和耐腐蚀性,同时还可以改善其加工加工性能和耐磨性能。

下面将详细介绍各种合金元素在铝合金中的作用。

1.硅(Si)硅是最常用的合金元素之一,其添加能够显著提高铝合金的抗拉强度和屈服强度,同时降低膨胀系数。

硅还有助于改善铝合金的液态流动性,提高铸造性能和可压性。

因此,硅在铝合金中的含量通常在0.2~1.5%之间。

2.铜(Cu)铜是一种重要的合金元素,在铝合金中的含量通常为2~10%。

添加铜可显著提高铝合金的抗拉强度、疲劳强度和抗磨损性能。

此外,铜还能够改善铝合金的导电性和导热性,提高对高温场合的耐腐蚀性。

3.锰(Mn)锰是一种常见的合金元素,其主要作用是增加铝合金的强度。

锰在铝合金中的含量通常在0.1~1.0%之间。

适量添加锰能够显著提高铝合金的硬度和强度,同时还能提高铝合金的热处理响应性,使其能够通过热处理来进一步改善性能。

4.镁(Mg)镁是一种重要的合金元素,其在铝合金中的含量通常在0.5~7.5%之间。

添加镁可显著提高铝合金的强度、硬度和耐腐蚀性。

此外,镁还能够提高铝合金的塑性和可焊性,改善耐热性。

镁铝合金是一种重要的铝合金系列,其具有优异的强度和耐腐蚀性能,被广泛应用于航空航天等领域。

5.锌(Zn)锌是一种重要的合金元素,其主要作用是提高铝合金的强度和耐腐蚀性。

锌在铝合金中的含量通常为0.2~12%。

适量添加锌能够显著提高铝合金的强度和耐热性,同时还能降低合金的膨胀系数,提高铝合金的切削性能。

综上所述,合金元素在铝合金中起到了至关重要的作用。

添加适量的合金元素能够显著提高铝合金的强度、硬度、耐热性和耐腐蚀性,同时还能改善其加工性能和耐磨性能。

合理选择和控制合金元素的含量,可以根据不同的使用要求来定制铝合金材料,满足各种工业领域对材料性能的要求。

合金元素的主要作用

合金元素的主要作用

合金元素的主要作用嘿,朋友们!今天咱来聊聊合金元素那些事儿。

你说这合金元素啊,就像是做菜时加的调料,那作用可老大了!咱先说说这铬吧,它就像是一个厉害的卫士,能让合金变得特别耐腐蚀。

就好比一件坚固的铠甲,保护着合金不受外界的侵蚀。

你想想看,要是没有铬,那合金还不得轻易就被腐蚀得不成样子啦?还有镍呢,它呀,就如同一位神奇的魔法师,能让合金的韧性大大增强。

就像给合金施了魔法一样,让它变得不那么容易断裂。

这韧性一好,合金就能在各种环境下稳稳地发挥作用啦,是不是很厉害?再讲讲钼,它可是个能提升合金强度的高手。

就好像给合金注入了一股强大的力量,让它变得超级结实。

有了钼的加持,合金就能承担更重的任务,更不容易变形。

锰呢,就像是一个勤劳的工人,默默地为合金的性能提升做贡献。

它能帮助合金更好地抵抗磨损,让合金在长时间的使用中依然能保持良好的状态。

这些合金元素啊,各自发挥着自己独特的作用,它们相互配合,就像一个默契的团队。

要是把合金比作一辆汽车,那这些元素就是汽车的各个零部件,少了谁都不行呀!比如说,要是没有了那些能提升强度和韧性的元素,那合金做出来的东西不就容易坏嘛。

这就好像盖房子没有坚固的基石,那房子能稳当吗?反过来说,如果合金元素搭配得好,那就能制造出超级棒的合金材料,应用在各种重要的领域。

咱平时生活中很多东西都离不开合金元素的功劳呢。

像那些坚固耐用的工具、高质量的机械零件,不都是因为有了合适的合金元素才变得那么可靠嘛。

所以说啊,这合金元素可真是个宝,它们的作用可千万不能小瞧。

它们就像是隐藏在幕后的英雄,默默地为我们的生活带来便利和保障。

下次当你看到那些由合金制成的物品时,可别忘了想想这些小小的合金元素发挥的大作用哟!这就是合金元素的魅力所在,它们让我们的世界变得更加丰富多彩,更加坚实可靠!。

镁合金中各元素的作用

镁合金中各元素的作用

镁合金中各元素的作用
镁合金是一种轻质金属合金,通常由镁、铝、锌、锰等元素组成。

不同元素在镁合金中起着不同的作用:
1. 镁(Mg)是镁合金的主要成分,它的存在使合金具有轻质、高强度、耐腐蚀等特点。

镁的加入可以降低合金的密度,提高其比强度和比刚度,使得合金在航空航天、汽车制造等领域有着广泛的应用。

2. 铝(Al)是常见的合金元素,它可以增加镁合金的强度和硬度,提高耐热性和抗腐蚀性。

铝的加入还可以改善合金的加工性能和热处理性能,使得合金在制造过程中更容易成形和加工。

3. 锌(Zn)的加入可以提高镁合金的强度和耐腐蚀性能,同时也可以改善合金的热处理性能和机械性能,使得合金在高温和高压下仍能保持稳定的性能。

4. 锰(Mn)通常用于提高镁合金的强度和硬度,同时还可以改善合金的热处理性能和耐蚀性能。

锰的加入可以有效地提高合金的抗冲击性和疲劳寿命。

总的来说,镁合金中的各元素都起着不同的作用,它们的合理配比可以使合金具有理想的性能,满足不同领域的需求。

在实际应用中,根据具体的工程要求和制造工艺,可以对合金的成分进行调整,以获得最佳的性能表现。

合金元素及其在合金中的作用

合金元素及其在合金中的作用

合金元素及其在合金中的作用合金是由两个或更多的金属元素或金属与非金属元素按照一定比例混合而成的固态材料。

在合金中,各个元素的作用是不同的,下面我将详细介绍几种常见的合金元素及其在合金中的作用。

1.镍(Ni):镍是一种重要合金元素,常用于不锈钢、合金钢和高温合金中。

镍能够提高合金的抗腐蚀性能,使合金具有良好的耐酸、耐碱和耐海水腐蚀的能力。

此外,镍还可以提高合金的强度和韧性,增加合金的耐热性能。

2.铬(Cr):铬是一种常见的合金元素,常用于不锈钢中。

铬能够增加合金的耐蚀性能,形成一层致密、不易被氧化的氧化铬膜,防止氧、水和其他腐蚀介质侵蚀基体材料。

此外,铬还能够提高合金的硬度和高温强度。

3.钼(Mo):钼是一种高温合金的重要元素,常用于高速钢、硬质合金和高温合金中。

钼能够提高合金的硬度、强度和热稳定性,使合金在高温下仍然保持较好的机械性能。

4.钛(Ti):钛是一种轻、强度高、耐腐蚀的合金元素,常用于航空航天、汽车、船舶和化工等领域。

钛能够提高合金的强度、刚性和耐腐蚀性能,同时具有较低的密度,可以减轻整个结构的重量。

5.铝(Al):铝是一种轻量化、高强度的合金元素,常用于航空航天、汽车和建筑等领域。

铝能够提高合金的强度、硬度和耐热性能,同时具有较低的密度和良好的导热性能,使得合金更加轻量化和高效。

6.硅(Si):硅是一种常见的合金元素,常用于铝合金和镁合金中。

硅能够提高合金的强度和耐磨性能,同时还能够改善合金的铸造性能和热处理性能。

7.钒(V):钒是一种强化元素,常用于合金钢中。

钒能够提高合金的硬度、强度和耐磨性能,同时还能够在高温下保持较好的韧性和切削性能。

8.锰(Mn):锰是一种重要的合金元素,常用于耐磨锰板、合金钢和不锈钢中。

锰能够提高合金的硬度、强度和耐磨性能,并且可以改善焊接性能、热处理性能和耐蚀性能。

总结起来,不同的合金元素在合金中起到的作用也不同,有的提高合金的抗腐蚀性能,有的提高合金的强度和硬度,有的提高合金的耐高温性能。

合金元素在钢中的作用

合金元素在钢中的作用

1. 合金元素对钢性能的影响钢材中合金元素可以提高钢铁材料洁净度、均匀度、组织细度等影响材料性能,提高冶金行业资源、能源利用效率,实现节能、环保,促进钢铁行业可持续发展。

主要有以下几个方面:(1)结晶强化。

结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。

它包括:(2)形变强化。

金属材料经冷加工塑性变形可以提高其强度。

这是由于材料在塑性变形后位错运动的阻力增加所致。

(3)固溶强化.通过合金化(加入合金元素)组成固溶体,使金属材料得到强化称为固溶强化。

(4)相变强化。

合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料得到强化,称为相变强化。

(5)晶界强化。

晶界部位的自由能较高,而且存在着大量的缺陷和空穴,在低温时,晶界阻碍了位错的运动,因而晶界强度高于晶粒本身;但在高温时,沿晶界的扩散速度比晶内扩散速度大得,晶界强度显著降低。

因此强化晶界对提高钢的热强性是很有效的。

硼对晶界的强化作用,是由于硼偏集于晶界上,使晶界区域的晶格缺位和空穴减少,晶界自由能降低;硼还减缓了合金元素沿晶界的扩散过程;硼能使沿晶界的析出物降低,改善了晶界状态,加入微量硼、锆或硼+锆能延迟晶界上的裂纹形成过程;此外,它们还有利于碳化物相的稳定。

(6)综合强化。

在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,以充分发挥强化能力。

例如:1)固溶强化十形变强化,常用于固溶体系合金的强化。

2)结晶强化+沉淀强化,用于铸件强化。

3)马氏体强化+表面形变强化。

对一些承受疲劳载荷的构件,常在调质处理后再进行喷丸或滚压处理。

4)固溶强化+沉淀强化。

对于高温承压元件常采用这种方法,以提高材料的高温性能。

有时还采用硼的强化晶界作用,进一步提高材料的高温强度。

2.合金元素的存在形式根据合金元素与碳的作用不同,可将合金元素分为两大类:碳化物形成元素,它们比Fe具有更强的亲碳能力,在钢中将优先形成碳化物,依其强弱顺序为Zr、Ti、Nb、V、W、Mo、Cr、Mn、Fe等,它们大多是过渡族元素,在周期表上均位于Fe的左侧;非碳化物形成元素,主要包括Ni、Si、Co、Al等,他们与碳一般不生成碳化物而固溶于固溶体中,或生成其它化合物如AlN,一般位于周期表的右侧。

合金元素作用

合金元素作用

合金元素作用
合金是由两种或两种以上金属或金属与非金属元素混合而成的材料。

在工程领域中,合金具有许多重要作用,因为它们可以提高金属的物理和化学特性。

下面介绍合金元素的作用。

1. 提高强度和硬度
合金元素的添加可以提高金属的强度和硬度。

例如,钢经过高温淬火、淬透和回火,可以通过安排合理的合金成分,使其具有高强度、高弹性和高韧性。

2. 改善耐腐蚀性能
合金元素的添加也可以改善金属的耐蚀性能。

例如,不锈钢是一种含有铬、镍和其他合金元素的钢类,具有优异的耐腐蚀性,特别是在酸性和碱性环境中。

3. 提高耐磨性能
含有合金元素的金属材料通常具有良好的耐磨性能。

铜合金、钼合金、铬钼钢和淬火处理的高铬合金等都是可以用来制造机器和设备零件的优秀材料。

4. 提高热稳定性
通过添加稀有金属(如钽、铌和钨等)制造的合金,可以提高金属的高温强度和热稳定性。

这些合金常用于高温下的石化、核电、航空航天等行业。

5. 改善电导率和磁导率
某些合金元素的添加可以改善电导率和磁导率。

例如,铝合金中添加一些铜、镁等元素,可以增加其电导率;而由带有铬或钴合金制成的磁体,具有高磁导率和特定的磁特性。

总之,合金元素的添加可以提高金属的物理、化学和机械特性,从而使它们在各种工业领域中应用得更加广泛,这些领域包括汽车、航空航天、船舶、电子、精密机械、医疗器械等。

合金元素及其在合金中的作用

合金元素及其在合金中的作用一、合金元素钢中的作用为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼过程中加入的元素称为合金元素。

常用的合金元素有铬(Cr ) 、镍(Ni ) 、钼(Mo)、钨(w )、钒(V)。

钛( Ti)、铌(Nb )、锆(Zr)、钴(Co)、硅(Si)、锰(Mn)、铝(Al )、铜(Cu ) 、硼(B ) 、稀土 ( Re)等。

磷(P)、硫(S ) 、氮(N )等在某些情况下也起到合金元素的作用。

1、铬(Cr)铬能增加钢的淬透性并有二次硬化作用。

可提高高碳钢的硬度和耐磨性而不使钢变脆;含量超过12%时。

使钢有良好的高温抗氧化性和耐氧化性介质腐蚀的作用。

还增加钢的热强性,铬为不锈耐酸钢及耐热钢的主要合金元素。

铬能提高碳素钢轧制状态的强度和硬度。

降低伸长率和断面收缩率。

当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。

含铬钢的零件经研磨容易获得较高的表面加工质量。

铬在调质结构钢中的主要作用是提高淬透性。

使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。

含铬的弹簧钢在热处理时不易脱碳。

铬能提高工具钢的耐磨性、硬度和红硬性。

有良好的回火稳定性。

在电热合金中,铬能提高合金的抗氧化性、电阻和强度。

(1)对钢的显做组织及热处理的作用A、铬与铁形成连续固溶体,缩小奥氏体相区城。

铬与碳形成多种碳化物,与碳的亲和力大于铁和锰而低于钨、钼等.铬与铁可形成金属间化合物σ相(FeCr)B、铬使珠光体中碳的浓度及奥氏体中碳的极限溶解度减少C、减缓奥氏体的分解速度,显著提高钢的淬透性.但亦增加钢的回火脆性倾向(2)对钢的力学性能的作用A、提高钢的强度和硬度.时加入其他合金元素时,效果较显著B、显著提高钢的脆性转变温度C、在含铬量高的Fe-Cr合金中,若有σ相析出,冲击韧性急剧下降(3)对钢的物理、化学及工艺性能的作用A、提高钢的耐磨性,经研磨,易获得较高的表面光洁度B、降低钢的电导率,降低电阻温度系数C、提高钢的矫顽力和剩余磁感.广泛用于制造永磁钢D、铬促使钢的表面形成钝化膜,当有一定含量的铭时,显著提高钢的耐腐蚀性能(特别是硝酸)。

合金元素在钢中的作用

1. 合金元素对钢性能的影响钢材中合金元素可以提高钢铁材料洁净度、均匀度、组织细度等影响材料性能,提高冶金行业资源、能源利用效率,实现节能、环保,促进钢铁行业可持续发展。

主要有以下几个方面:(1)结晶强化。

结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。

它包括:(2)形变强化。

金属材料经冷加工塑性变形可以提高其强度。

这是由于材料在塑性变形后位错运动的阻力增加所致。

(3)固溶强化.通过合金化(加入合金元素)组成固溶体,使金属材料得到强化称为固溶强化。

(4)相变强化。

合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料得到强化,称为相变强化。

(5)晶界强化。

晶界部位的自由能较高,而且存在着大量的缺陷和空穴,在低温时,晶界阻碍了位错的运动,因而晶界强度高于晶粒本身;但在高温时,沿晶界的扩散速度比晶内扩散速度大得,晶界强度显著降低。

因此强化晶界对提高钢的热强性是很有效的。

硼对晶界的强化作用,是由于硼偏集于晶界上,使晶界区域的晶格缺位和空穴减少,晶界自由能降低;硼还减缓了合金元素沿晶界的扩散过程;硼能使沿晶界的析出物降低,改善了晶界状态,加入微量硼、锆或硼+锆能延迟晶界上的裂纹形成过程;此外,它们还有利于碳化物相的稳定。

(6)综合强化。

在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,以充分发挥强化能力。

例如:1)固溶强化十形变强化,常用于固溶体系合金的强化。

2)结晶强化+沉淀强化,用于铸件强化。

3)马氏体强化+表面形变强化。

对一些承受疲劳载荷的构件,常在调质处理后再进行喷丸或滚压处理。

4)固溶强化+沉淀强化。

对于高温承压元件常采用这种方法,以提高材料的高温性能。

有时还采用硼的强化晶界作用,进一步提高材料的高温强度。

2.合金元素的存在形式根据合金元素与碳的作用不同,可将合金元素分为两大类:碳化物形成元素,它们比Fe具有更强的亲碳能力,在钢中将优先形成碳化物,依其强弱顺序为Zr、等,它们大多是过渡族元素,在周期表上均位Fe、Mn、Cr、Mo、W、V、Nb、Ti 于Fe的左侧;非碳化物形成元素,主要包括Ni、Si、Co、Al等,他们与碳一般不生成碳化物而固溶于固溶体中,或生成其它化合物如AlN,一般位于周期表的右侧。

cr元素在合金中的作用

cr元素在合金中的作用
Cr(铬)是一种常用的合金元素,在合金中起着重要的作用,主要表现在以下几个方面:
1. 增加硬度和强度:Cr可以形成固溶体或者析出相,使得合金的晶体结构更加稳定,从而增加了合金的硬度和强度。

特别是在高温下,铬可以形成稳定的氧化物膜,提高了合金的耐热性。

2. 提高耐腐蚀性:Cr可以形成致密的氧化物膜,阻止了氧、水和其他腐蚀介质的进一步侵蚀,提高了合金的耐腐蚀性。

特别是在不锈钢中,Cr是提高不锈钢耐腐蚀性的主要合金元素之一。

3. 改善热处理性能:Cr可以提高合金的热处理稳定性,使得合金在热处理过程中的性能更加稳定和可控,从而有利于制备出具有特定性能要求的合金材料。

4. 改善机械性能:适量的Cr添加可以改善合金的塑性和韧性,提高其冲击韧性和抗疲劳性,使得合金材料更适合于复杂工程应用的制造。

总的来说,Cr作为一种重要的合金元素,具有提高合金硬度、强度和耐腐蚀性、改善热处理性能和机械性能等作用,广泛应用于钢铁、不锈钢、合金钢等合金材料的制备中。

1/ 1。

合金元素的作用

钒、钛、铌 是强碳化物形成元素,能形成细小弥散的碳化物,提高钢的高温强度。钛、铌与碳结合还可防止奥氏体钢在高温下或焊后产生晶间腐蚀。
碳、氮 可扩大和稳定奥氏体,从而提高耐热钢的高温强度。钢中含铬、锰较多时,可显著提高氮的溶解度,并可利用氮合金化以代替价格较贵的镍。
硼、稀土均为耐热钢中的微量元素。硼溶入固溶体中使晶体点阵发生畸变,晶界上的硼又能阻止元素扩散和晶界迁移,从而提高钢的高温强度;稀土元素能显著提高钢的抗氧化性,改善热塑性。
合பைடு நூலகம்元素的作用
铬、铝、硅 这些铁素体形成的元素,在高温下能促使金属表面生成致密的氧化膜,防止继续氧化,是提高钢的抗氧化性和抗高温气体腐蚀的主要元素。但铝和硅含量过高会使室温塑性和热塑性严重恶化。铬能显著提高低合金钢的再结晶温度,含量为2%时,强化效果最好。
镍、锰 可以形成和稳定奥氏体。镍能提高奥氏体钢的高温强度和改善抗渗碳性。锰虽然可以代镍形成奥氏体,但损害了耐热钢的抗氧化性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1-2.4
0.4-0.6
0.40
0.15
HT150
<20
20-30
>30
3.5-3.7
3.4-3.6
3.3-3.5
2.2-2.4
2.0-2.3
1.8-2.2
0.4-0.6
0.40
0.15
HT200
<20
20-40
>40
3.3-3.5
3.2-3.4
3.1-3.3
1.9-2.3
1.8-2.2
1.6-1.9
Sb(锑)
1.强烈促进形成珠光体
2.0.002%~0.01%时,对球墨铸铁有使石墨球细化的作用,尤其对大断面球墨铸铁有效
3.其干扰球化的作用,可用稀土元素中和
4.灰铸铁中的加入量为<0.02%,球墨铸铁中的适宜量为0.002%~0.010%
Bi(铋)
1.球墨铸铁中加铋能很有效地细化石墨球
2.大断面球墨铸铁中加铋能防止石墨畸变
0.15
0.10
HT400
>25
2.8-3.0
1.0-1.5
0.8-1.2
0.15
0.10
反球化元素的界限量
元素
Al
Ti
Pb
As
Sb
Bi
Zr
Sn
Te
Se界限量(%)0.Fra bibliotek50.07
0.002
0.05
0.01
0.002
0.03
0.05
0.003
0.0SSS3
2.能细化石墨,增加化合碳量,白口倾向有所增加,强度、硬度有提高趋势,加入量可在0.1%~0.3%
3.可能生成Fe3ZnC复合碳化物
不同壁厚灰铸铁的成分
铸铁牌号
铸件壁厚
(mm)
化学成分(%)
C
Si
Mn
P
S
不大于
HT100
<10
10-30
>30
3.6-3.8
3.5-3.7
3.4-3.6
2.3-2.6
2.2-2.5
3.使“C”曲线右移,同时使Ms点下降
4.Mn>7%时得奥氏体基体
V(钒)
1.强烈形成碳化物;能形成VC、V2C、V4C3等
2.能细化石墨,有促进形成珠光体的作用
3.亦有增加珠光体高温稳定性的作用
4.因太贵,很少单独使用
Ti(钛)
1.亦能形成碳化物;与碳氮亲和力极强
2.V和Ti的碳化物都有极高的硬度(TiC为3200HV,VC为2800HV)
2.铬是缩小γ区元素,Cr20%时,γ区消失
3.用量0.15%~30%
4.Cr<1.0%,仍属灰铸铁(可能出现少量自由Fe3C,但力学性能及耐热性有所提高。铬量提高至2.0%~3.0%时,得白口组织,Fe3C变成(FeCr)3C,即M3C型
5.铬含量高至10%~30%,主要用作抗磨,耐热零件,高铬铸铁中的碳化物主要为(FeCr)7C3,即M7C3型
5.Mo能使“C”曲线右移,并有使之形成2个“鼻子”的作用,故容易得贝氏体
W(钨)
1.属稳定碳化物元素,作用与钼相似,但较弱
2.能使“C”曲线右移,提高淬透性,但作用较钼弱
Mn(锰)
1.可分别溶于基体及碳化物中,既强化基体,又增加碳化物(FeMn)3C的弥散度和稳定性
2.降低A1温度,促使形成细珠光体、索氏体,甚至马氏体
0.6-0.8
0.30
0.12
HT250
<20
20-40
>40
3.2-3.4
3.1-3.3
3.0-3.2
1.7-2.0
1.6-1.8
1.4-1.6
0.7-0.9
0.25
0.12
HT300
>15
3.0-3.2
1.4-1.7
0.7-0.9
0.20
0.10
HT350
>20
2.9-3.1
1.2-1.6
0.8-1.0
6.高铬时,由于形成铬氧化膜,防止或阻碍铸铁进一步氧化,可提高耐热性
Mo(钼)
01.Mo<0.6时,稳定碳化物的作用比较温和,主要作用在于细化珠光体,亦能细化石墨
2.Mo<0.8%时,对铸铁的强化作用较大
3.用Mo合金化时,磷量一定要低,否则形成P-Mo四元共晶,增加脆性
4.Mo>1%,达到1.8%~2.0%时,可抑制珠光体的转变,而形成针状基体
3.其碳化物,氮化物常以细颗粒(方形、多边形)存在于铸铁中,可提高耐磨性
4.有强化铁素体的效果
Sn(锡)
1.为增加珠光体量而加入,一般用量<0.1%,可提高铸铁强度,>0.1%时有可能使铸铁出现脆性
2.Sn>0.1%时,可出现反球化作用
3.共晶团边界易形成FeSn2的偏析化合物,因此有韧性要求时,应注意锡量的控制
3.干扰球化的作用,可由稀土元素中和
Pb(铅)
1.少量铅可在灰铸铁中出现魏氏组织石墨,严重降低强度,因而认为铅对灰铸铁总是有害的
2.在球墨铸铁中,可加0.003%以消除大断面球墨铸铁中的厚片状石墨
3.其干扰球化作用,可由稀土元素中和
Zn(锌)
1.灰铸铁中加入0.3%能去氧,使氧量降低到原有量的1/3
各合金元素在铸铁中的具体作用
合金元素
作用
Ni(镍)
1.溶于液体铁及奥氏体
2.共晶期间促进石墨化,其作用相当于1/3Si
3.降低奥氏体转变温度,扩大奥氏体区,能细化并增加珠光体
4.Ni<3.0%,珠光体型,可提高强度,主要用作结构材料;Ni3%~8%,马氏体型,主要用作耐磨材料;Ni>12%,奥氏体型,主要用作耐腐蚀材料、无磁性材料等
5.对石墨粗细影响较小
Cu(铜)
1.奥氏体中的极限溶解量为3.5%(当碳为3.5%时)
2.进共晶阶段石墨化,能力约为硅的1/5
3.降低奥氏体转变临界温度,细化并增加珠光体
4.有弱的细化石墨作用
5.常用量<1.0%
Cr(铬)
1.反石墨化作用属中强,如硅的石墨化作用为+1,则铬的反石墨化作为-1,共析转变时稳定珠光体
相关文档
最新文档