实验一:进程调度实验报告书
进程调度程序实验报告

一、实验目的通过本次实验,加深对进程调度原理和算法的理解,掌握进程调度程序的设计与实现方法。
实验要求我们使用高级编程语言编写一个简单的进程调度程序,实现不同调度算法的模拟,并通过实验验证算法的性能。
二、实验环境1. 操作系统:Windows 102. 编程语言:Java3. 开发工具:IntelliJ IDEA三、实验内容本次实验主要实现以下调度算法:1. 先来先服务(FCFS)2. 最短作业优先(SJF)3. 时间片轮转(RR)四、实验步骤1. 定义进程类(Process):```javapublic class Process {private String processName; // 进程名称private int arrivalTime; // 到达时间private int burstTime; // 运行时间private int waitingTime; // 等待时间private int turnaroundTime; // 周转时间// 构造函数public Process(String processName, int arrivalTime, int burstTime) {this.processName = processName;this.arrivalTime = arrivalTime;this.burstTime = burstTime;}// 省略getter和setter方法}```2. 定义调度器类(Scheduler):```javapublic class Scheduler {private List<Process> processes; // 进程列表private int currentTime; // 当前时间// 构造函数public Scheduler(List<Process> processes) {this.processes = processes;this.currentTime = 0;}// FCFS调度算法public void fcfs() {for (Process process : processes) {process.setWaitingTime(currentTime -process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime -process.getArrivalTime());}}// SJF调度算法public void sjf() {processes.sort((p1, p2) -> p1.getBurstTime() -p2.getBurstTime());for (Process process : processes) {process.setWaitingTime(currentTime -process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime -process.getArrivalTime());}}// RR调度算法public void rr(int quantum) {List<Process> sortedProcesses = new ArrayList<>(processes);sortedProcesses.sort((p1, p2) -> p1.getArrivalTime() -p2.getArrivalTime());int timeSlice = quantum;for (Process process : sortedProcesses) {if (process.getBurstTime() > timeSlice) {process.setWaitingTime(currentTime - process.getArrivalTime());currentTime += timeSlice;process.setTurnaroundTime(currentTime - process.getArrivalTime());process.setBurstTime(process.getBurstTime() - timeSlice);} else {process.setWaitingTime(currentTime - process.getArrivalTime());currentTime += process.getBurstTime();process.setTurnaroundTime(currentTime - process.getArrivalTime());process.setBurstTime(0);}}}}```3. 测试调度程序:```javapublic class Main {public static void main(String[] args) {List<Process> processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P3", 4, 2));processes.add(new Process("P4", 6, 4));Scheduler scheduler = new Scheduler(processes); System.out.println("FCFS调度结果:");scheduler.fcfs();for (Process process : processes) {System.out.println(process);}processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P2", 1, 3));processes.add(new Process("P3", 4, 2));processes.add(new Process("P4", 6, 4));System.out.println("SJF调度结果:");scheduler.sjf();for (Process process : processes) {System.out.println(process);}processes = new ArrayList<>();processes.add(new Process("P1", 0, 5));processes.add(new Process("P2", 1, 3));processes.add(new Process("P3", 4, 2));System.out.println("RR调度结果(时间片为2):");scheduler.rr(2);for (Process process : processes) {System.out.println(process);}}}```五、实验结果与分析通过实验,我们可以观察到以下结果:1. FCFS调度算法简单,但可能导致长作业等待时间过长。
实验一、进程调度实验报告

实验一、进程调度实验报告一、实验目的进程调度是操作系统中的核心功能之一,其目的是合理地分配 CPU 资源给各个进程,以提高系统的整体性能和资源利用率。
通过本次实验,我们旨在深入理解进程调度的原理和算法,掌握进程状态的转换,观察不同调度策略对系统性能的影响,并通过实际编程实现来提高我们的编程能力和对操作系统概念的理解。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验原理1、进程状态进程在其生命周期中会经历不同的状态,包括就绪态、运行态和阻塞态。
就绪态表示进程已经准备好执行,只等待 CPU 分配;运行态表示进程正在 CPU 上执行;阻塞态表示进程由于等待某个事件(如 I/O操作完成)而暂时无法执行。
2、调度算法常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)等。
先来先服务算法按照进程到达的先后顺序进行调度。
短作业优先算法优先调度执行时间短的进程。
时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片执行。
四、实验内容1、设计并实现一个简单的进程调度模拟器定义进程结构体,包含进程 ID、到达时间、执行时间、剩余时间等信息。
实现进程的创建、插入、删除等操作。
实现不同的调度算法。
2、对不同调度算法进行性能测试生成一组具有不同到达时间和执行时间的进程。
分别采用先来先服务、短作业优先和时间片轮转算法进行调度。
记录每个算法下的平均周转时间、平均等待时间等性能指标。
五、实验步骤1、进程结构体的定义```c++struct Process {int pid;int arrivalTime;int executionTime;int remainingTime;int finishTime;int waitingTime;int turnaroundTime;};```2、进程创建函数```c++void createProcess(Process processes, int& numProcesses, int pid, int arrivalTime, int executionTime) {processesnumProcessespid = pid;processesnumProcessesarrivalTime = arrivalTime;processesnumProcessesexecutionTime = executionTime;processesnumProcessesremainingTime = executionTime;numProcesses++;}```3、先来先服务调度算法实现```c++void fcfsScheduling(Process processes, int numProcesses) {int currentTime = 0;for (int i = 0; i < numProcesses; i++){if (currentTime < processesiarrivalTime) {currentTime = processesiarrivalTime;}processesistartTime = currentTime;currentTime += processesiexecutionTime;processesifinishTime = currentTime;processesiwaitingTime = processesistartTime processesiarrivalTime;processesiturnaroundTime = processesifinishTime processesiarrivalTime;}}```4、短作业优先调度算法实现```c++void sjfScheduling(Process processes, int numProcesses) {int currentTime = 0;int minExecutionTime, selectedProcess;bool found;while (true) {found = false;minExecutionTime = INT_MAX;selectedProcess =-1;for (int i = 0; i < numProcesses; i++){if (processesiarrivalTime <= currentTime &&processesiremainingTime < minExecutionTime &&processesiremainingTime > 0) {found = true;minExecutionTime = processesiremainingTime;selectedProcess = i;}}if (!found) {break;}processesselectedProcessstartTime = currentTime;currentTime += processesselectedProcessremainingTime;processesselectedProcessfinishTime = currentTime;processesselectedProcesswaitingTime =processesselectedProcessstartTime processesselectedProcessarrivalTime;processesselectedProcessturnaroundTime =processesselectedProcessfinishTime processesselectedProcessarrivalTime;processesselectedProcessremainingTime = 0;}}```5、时间片轮转调度算法实现```c++void rrScheduling(Process processes, int numProcesses, int timeSlice) {int currentTime = 0;Queue<int> readyQueue;for (int i = 0; i < numProcesses; i++){readyQueueenqueue(i);}while (!readyQueueisEmpty()){int currentProcess = readyQueuedequeue();if (processescurrentProcessarrivalTime > currentTime) {currentTime = processescurrentProcessarrivalTime;}if (processescurrentProcessremainingTime <= timeSlice) {currentTime += processescurrentProcessremainingTime;processescurrentProcessfinishTime = currentTime;processescurrentProcesswaitingTime =processescurrentProcessstartTime processescurrentProcessarrivalTime;processescurrentProcessturnaroundTime =processescurrentProcessfinishTime processescurrentProcessarrivalTime;processescurrentProcessremainingTime = 0;} else {currentTime += timeSlice;processescurrentProcessremainingTime = timeSlice;readyQueueenqueue(currentProcess);}}}```6、性能指标计算函数```c++void calculatePerformanceMetrics(Process processes, int numProcesses, double& averageWaitingTime, double& averageTurnaroundTime) {double totalWaitingTime = 0, totalTurnaroundTime = 0;for (int i = 0; i < numProcesses; i++){totalWaitingTime += processesiwaitingTime;totalTurnaroundTime += processesiturnaroundTime;}averageWaitingTime = totalWaitingTime / numProcesses; averageTurnaroundTime = totalTurnaroundTime / numProcesses;}```7、主函数```c++int main(){Process processes100;int numProcesses = 0;//创建进程createProcess(processes, numProcesses, 1, 0, 5);createProcess(processes, numProcesses, 2, 1, 3);createProcess(processes, numProcesses, 3, 2, 4);createProcess(processes, numProcesses, 4, 3, 2);//先来先服务调度fcfsScheduling(processes, numProcesses);double fcfsAverageWaitingTime, fcfsAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, fcfsAverageWaitingTime, fcfsAverageTurnaroundTime);cout <<"先来先服务调度的平均等待时间:"<<fcfsAverageWaitingTime << endl;cout <<"先来先服务调度的平均周转时间:"<<fcfsAverageTurnaroundTime << endl;//短作业优先调度sjfScheduling(processes, numProcesses);double sjfAverageWaitingTime, sjfAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, sjfAverageWaitingTime, sjfAverageTurnaroundTime);cout <<"短作业优先调度的平均等待时间:"<<sjfAverageWaitingTime << endl;cout <<"短作业优先调度的平均周转时间:"<<sjfAverageTurnaroundTime << endl;//时间片轮转调度(时间片为 2)rrScheduling(processes, numProcesses, 2);double rrAverageWaitingTime, rrAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, rrAverageWaitingTime, rrAverageTurnaroundTime);cout <<"时间片轮转调度(时间片为 2)的平均等待时间:"<< rrAverageWaitingTime << endl;cout <<"时间片轮转调度(时间片为 2)的平均周转时间:"<< rrAverageTurnaroundTime << endl;return 0;}```六、实验结果与分析1、先来先服务调度平均等待时间:40平均周转时间:85分析:先来先服务调度算法简单直观,但对于短作业可能会造成较长的等待时间,导致平均等待时间和平均周转时间较长。
操作系统进程调度实验报告

《计算机操作系统》课程实验报告题目实验一进程调度学院: 计算机学院专业: 计算机科学与技术姓名班级学号2015年10月21日实验一进程调度1.实验目的:通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。
2.实验内容:用C语言实现对N个进程采用某种进程调度算法先来先服务调度、短作业优先调度的调度。
3.设计实现:要求给出设计源码,设计源码要有详细注释,#include <stdio.h>#include<iostream>using namespace std;struct program{char name; /*进程名*/int atime; /*到达时间*/int stime; /*服务时间*/int ftime; /*完成时间*/int rtime; /*周转时间*/float qrtime; /*带权周转时间*/};void xianshi(struct program a[],int n){int i,j;struct program t;/*将进程按时间排序*/printf("根据到达时间重新排序:\n");printf("*****进程*************到达时间***************服务时间*****\n");for(j=0;j<n-1;j++)for(i=0;i<n-1-j;i++)if(a[i].atime>a[i+1].atime){t.atime=a[i].atime;a[i].atime=a[i+1].atime;a[i+1].atime=t.atime;=a[i].name;a[i].name=a[i+1].name;a[i+1].name=;t.stime=a[i].stime;a[i].stime=a[i+1].stime;a[i+1].stime=t.stime;}for(i=0;i<n;i++)printf(" %c %d %d |\n",a[i].name,a[i].atime,a[i].stime);printf("----------------------------------------------------\n"); }void fcfs(struct program a[],int n){int i;int time=0;for(i=0;i<n;i++){time=time+a[i].stime;a[i].ftime=a[0].atime+time;a[i].rtime=a[i].ftime-a[i].atime;a[i].qrtime=(float)a[i].rtime/a[i].stime;}printf("\nFCFS算法:\n");printf("*****进程****到达时间****完成时间******周转时间*******带权周转时间*****\n");for(i=0;i<n;i++){printf(" %c %d %.2d %.2d %.2f |\n",a[i].name,a[i].atime,a[i].ftime,a[i].rtime,a[i].qrtime);}printf("-----------------------------------------------------------------------\n");}void main(){int i,m;struct program pro[4];/*创建进程 */printf(" ******先来先服务算法****** \n");printf("请输入进程的数目:\n");scanf("%d",&m);i=m;for(i=0;i<m;i++){printf("请输入进程%d的进程名,到达时间,服务时间\n",i+1);cin>>pro[i].name>>pro[i].atime>>pro[i].stime;}xianshi(pro,m);fcfs(pro,m);getchar();}#include <stdio.h>#include<iostream>using namespace std;struct program{char name; /*进程名*/float atime; /*到达时间*/float stime; /*服务时间*/float ftime; /*完成时间*/float rtime; /*周转时间*/float qrtime; /*带权周转时间*/};void xianshi(struct program a[],int n){int i,j;struct program t;/*将进程按时间排序*/printf("重新排序:\n");printf("*****进程*************到达时间***************服务时间*****\n");for(j=0;j<n-1;j++)for(i=1;i<n-1-j;i++)if(a[i].stime>a[i+1].stime){t.atime=a[i].atime;a[i].atime=a[i+1].atime;a[i+1].atime=t.atime;=a[i].name;a[i].name=a[i+1].name;a[i+1].name=;t.stime=a[i].stime;a[i].stime=a[i+1].stime;a[i+1].stime=t.stime;}for(i=0;i<n;i++)printf(" %c %f %f |\n",a[i].name,a[i].atime,a[i].stime);printf("----------------------------------------------------\n"); }void SJF(struct program a[],int n){int i;a[0].ftime=a[0].atime+a[0].stime;a[0].rtime=a[0].ftime-a[0].atime;a[0].qrtime=a[0].rtime/a[0].stime;for(i=1;i<n;i++){a[i].ftime=a[i-1].ftime+a[i].stime;a[i].rtime=a[i].ftime-a[i].atime;a[i].qrtime=a[i].rtime/a[i].stime;}printf("\nSJF算法:\n");printf("*****进程****到达时间****完成时间******周转时间*******带权周转时间*****\n");for(i=0;i<n;i++){printf(" %c %.2f %.2f %.2f %.2f |\n",a[i].name,a[i].atime,a[i].ftime,a[i].rtime,a[i].qrtime);}printf("-----------------------------------------------------------------------\n");}void main(){int i,m;struct program pro[4];/*创建进程 */printf(" ******短作业优先算法****** \n");printf("请输入进程的数目:\n");scanf("%d",&m);i=m;for(i=0;i<m;i++){printf("请输入进程%d的进程名,到达时间,服务时间\n",i+1);cin>>pro[i].name>>pro[i].atime>>pro[i].stime;}xianshi(pro,m);SJF(pro,m); getchar(); }4.实验结果5.实验过程中出现的问题及解决办法先来先服务调度算法就是根据进程达到的时间为依据,哪一个进程先来那么该进程就会先执行;最短进程优先调度算法则是以每个进程执行所需时间长短为依据,某一个进程执行所需花的时间要短些那么该进程就先执行。
实验进程调度的实验报告

一、实验目的1. 加深对进程概念和进程调度算法的理解。
2. 掌握进程调度算法的基本原理和实现方法。
3. 培养编程能力和系统分析能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验内容1. 实现进程调度算法2. 创建进程控制块(PCB)3. 模拟进程调度过程四、实验原理进程调度是操作系统核心功能之一,负责将CPU分配给就绪队列中的进程。
常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转(RR)等。
1. 先来先服务(FCFS)算法:按照进程到达就绪队列的顺序进行调度。
2. 短作业优先(SJF)算法:优先调度运行时间最短的进程。
3. 优先级调度算法:根据进程的优先级进行调度,优先级高的进程优先执行。
4. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行,时间片结束后进行调度。
五、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、运行时间、优先级、状态等信息。
2. 创建进程队列,用于存储就绪队列、等待队列和完成队列。
3. 实现进程调度算法:a. FCFS算法:按照进程到达就绪队列的顺序进行调度。
b. SJF算法:优先调度运行时间最短的进程。
c. 优先级调度算法:根据进程的优先级进行调度。
d. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行。
4. 模拟进程调度过程:a. 初始化进程队列,将进程添加到就绪队列。
b. 循环执行调度算法,将CPU分配给就绪队列中的进程。
c. 更新进程状态,统计进程执行时间、等待时间等指标。
d. 当进程完成时,将其移至完成队列。
六、实验结果与分析1. FCFS算法:按照进程到达就绪队列的顺序进行调度,简单易实现,但可能导致短作业等待时间过长。
2. SJF算法:优先调度运行时间最短的进程,能提高系统吞吐量,但可能导致进程饥饿。
进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。
二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。
2. 实现三种调度算法:FCFS、RR和DP。
3. 创建一个进程队列,用于存储所有进程。
4. 实现调度函数,根据所选算法选择下一个执行的进程。
5. 模拟进程执行过程,打印进程执行状态和就绪队列。
四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。
进程调度实验报告[1]
![进程调度实验报告[1]](https://img.taocdn.com/s3/m/5e4b5c1cfc4ffe473368ab21.png)
实验一进程调度一.实验题目:(1)、编写并调试一个模拟的进程调度程序,采用“最高优先数优先”调度算法对五个进程进行调度。
2)、编写并调试一个模拟的进程调度程序,采用“轮转法”调度算法对五个进程进行调度。
二:实验目的用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解.三.实验内容:<一>最高优先级优先调度算法1)优先级简介动态优先数是指在进程创建时先确定一个初始优先数,以后在进程运行中随着进程特性的改变不断修改优先数,这样,由于开始优先数很低而得不到CPU的进程,就能因为等待时间的增长而优先数变为最高而得到CPU运行。
例如:在进程获得一次CPU后就将其优先数减少1。
或者,进程等待的时间超过某一时限时增加其优先数的值,等等。
2)详细设计优先权调度算法:1、设定系统中有五个进程,每一个进程用一个进程控制块( PCB)表示,进程队列采用链表数据结构。
2、进程控制块包含如下信息:进程名、优先数、需要运行时间、已用CPU时间、进程状态等等。
3、在每次运行设计的处理调度程序之前,由终端输入五个进程的“优先数”和“要求运行时间”。
4、进程的优先数及需要的运行时间人为地指定.进程的运行时间以时间片为单位进行计算。
5、采用优先权调度算法,将五个进程按给定的优先数从大到小连成就绪队列。
用头指针指出队列首进程,队列采用链表结构。
6、处理机调度总是选队列首进程运行。
采用动态优先数办法,进程每运行一次优先数减“1”,同时将已运行时间加“1”。
7、进程运行一次后,若要求运行时间不等于已运行时间,则再将它加入就绪队列;否则将其状态置为“结束”,且退出就绪队列。
8、“就绪”状态的进程队列不为空,则重复上面6,7步骤,直到所有进程都成为“结束”状态。
9、在设计的程序中有输入语句,输入5个进程的“优先数”和“要求运行时间”,也有显示或打印语句,能显示或打印每次被选中进程的进程名、运行一次后队列的变化,以及结束进程的进程名。
实验一进程调度实验报告书

淮海工学院计算机工程学院实验报告书课程名:《操作系统原理A》题目:进程调度班级:软件132学号:2013122907姓名:孙莹莹操作系统原理实验——进程调度实验报告一、目的与要求1)进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C 语言编写一个进程调度模拟程序,使用优先级或时间片轮转法实现进程调度。
本实验可加深对进程调度算法的理解。
2)按照实验题目要求独立正确地完成实验内容(编写、调试算法程序,提交程序清单及及相关实验数据与运行结果)3)于2015年4月18日以前提交本次实验报告(含电子和纸质报告,由学习委员以班为单位统一打包提交)。
二、实验内容或题目1)设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。
2)模拟调度程序可任选两种调度算法之一实现(有能力的同学可同时实现两个调度算法)。
3)程序执行中应能在屏幕上显示出各进程的状态变化,以便于观察调度的整个过程。
4)本次实验内容(项目)的详细说明以及要求请参见实验指导书。
三、实验步骤与源程序(1)流程图(2)实验步骤1)PCB的结构:优先级算法中,设PCB的结构如下图所示,其中各数据项的含义如下:Id:进程标识符号,取值1—5。
Priority:优先级,随机产生,范围1—5。
Used:目前已占用的CPU时间数,初值为0;当该进程被调用执行时,每执行一个时间片,Used加1。
Need:进程尚需的CPU时间数,初值表示该进程需要运行的总时间,取值范围为5—10。
并随机产生,每运行一个时间片need减1;need为0则进程结束。
Status:进程状态R(运行),W(就绪),F(完成);初始时都处于就绪状态。
Next:指向就绪队列中下一个进程的PCB的指针。
2)初始状态及就绪队列组织:5个进程初始都处于就绪状态,进程标识1—5,used初值都为0。
各进程的优先级随机产生,范围1—5。
处于就绪状态的进程,用队列加以组织,队列按优先级由高到低依次排列,队首指针设为head,队尾指针为tail。
操作系统(进程调度)实验报告

操作系统原理(进程调度)实验报告实验一:动态优先权一.实验目的:(1).理解进程创建的相关理论;(2).掌握进程创建方法;(3).掌握进程相关的数据结构;(4).了解进程的调度算法;二.实验内容:1、最好采用图形界面;2、可随时增加进程;3、规定道数,设置后备队列和挂起状态。
若内存中进程少于规定道数,可自动从后备队列调度一作业进入。
被挂起进程入挂起队列,设置解挂功能用于将指定挂起进程解挂入就绪队列。
4、每次调度后,显示各进程状态。
三.实验步骤1.创建进程PCB。
包括进程ID,优先权,执行时间,占用cpu时间,状态五个部分;struct Process{int id;int priority;int cputime;int alltime;enum STATE state;}process[N];2.初始化进程队列。
进程号用ID表示,优先权随机设定,状态均置为ready;void Init(){srand((unsigned)time(NULL));for(int i=0;i<N;i++){process[i].id = Rseq[i] = i;process[i].priority = rand()%20;process[i].cputime = 0;process[i].alltime = rand()%3+3;process[i].state = ready;TIME += process[i].alltime;}Sort();Print();flag = 1;}3.运行进程。
首轮按优先权大小排列进程执行顺序,优先权最大的最先执行,首轮执行后,运行程序优先权减2,未执行程序优先权加1.第二轮再按优先权顺序排序执行,以此类推,直到所有程序执行完成。
..........附录(源代码):#include<stdio.h>#include<stdlib.h>#include<time.h>#define N 5enum STATE{ready,run,finish};struct Process{int id;int priority;int cputime;int alltime;enum STATE state;}process[N];int Rseq[N];int flag = 0;int TIME = 0;void Print(){printf("=============================================================\n");printf(" id priority cputime alltime state \n");for(int i=0;i<N;i++){printf(" %d %d %d %d",process[i].id,process[i].priority,process[i].cputime,process[i].alltime);switch(process[i].state){case 0:printf("ready\n");break;case 1:printf("run\n");break;case 2:printf("finish\n");}}printf(" Next Run sequence :");for(int i=0;i<N;i++)if(i != N-1)printf("%d -> ",Rseq[i]);else printf("%d\n",Rseq[i]);printf("=============================================================\n\n"); }void Sort(){int temp;for(int i=0;i<N-1;i++)for(int j=i+1;j<N;j++)if(process[Rseq[i]].priority <= process[Rseq[j]].priority){temp = Rseq[i];Rseq[i] = Rseq[j];Rseq[j] = temp;}}void Init(){srand((unsigned)time(NULL));for(int i=0;i<N;i++){process[i].id = Rseq[i] = i;process[i].priority = rand()%20;process[i].cputime = 0;process[i].alltime = rand()%3+3;process[i].state = ready;TIME += process[i].alltime;}Sort();Print();flag = 1;}void Run(){for(int i=0;i<=TIME;i++){printf(" run process:%d\n",Rseq[0]);for(int j=0;j<N;j++){if(process[j].state == run) process[j].state = ready;}for(int j=0;j<N;j++){if(process[Rseq[j]].alltime == 0){process[Rseq[j]].priority = 0;process[Rseq[j]].state = finish;}else if(j == 0 && process[Rseq[j]].alltime != 0){process[Rseq[j]].priority -= 2;process[Rseq[j]].cputime++;process[Rseq[j]].alltime--;process[Rseq[j]].state = run ;}else process[Rseq[j]].priority++;}Sort();Print();}}main(){Init();Run();}实验二:循环首次适应法(一)需求分析该算法是首次适应算法的变种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮海工学院计算机科学系实验报告书课程名:《操作系统原理A》题目:进程调度班级:软件1学号:201112258姓名:操作系统原理实验——进程调度实验报告一、目的与要求1)进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C语言编写一个进程调度模拟程序,使用优先级或时间片轮转法实现进程调度。
本实验可加深对进程调度算法的理解。
2)按照实验题目要求独立正确地完成实验内容(编写、调试算法程序,提交程序清单及及相关实验数据与运行结果)3)于2013年10月22日以前提交本次实验报告(含电子和纸质报告,由学习委员以班为单位统一打包提交)。
2 实验内容或题目1)设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。
2)模拟调度程序可任选两种调度算法之一实现(有能力的同学可同时实现两个调度算法)。
3)程序执行中应能在屏幕上显示出各进程的状态变化,以便于观察调度的整个过程。
4)本次实验内容(项目)的详细说明以及要求请参见实验指导书。
3 实验步骤与源程序1.PCB的结构:优先级算法中,设PCB的结构如右图所示,其中各数据项的含义如下:Prior:优先级,随机产生,范围1—5。
Used:目前已占用的CPU时间数,初值为0;当该进程被调用执行时,每执行一个时间片,Used加1。
Need:进程尚需的CPU时间数,初值表示该进程需要运行的总时间,取值范围为5—10。
并随机产生,每运行一个时间片need减1;need为0则进程结束。
Status:进程状态R(运行),J(就绪),F(完成);初始时都处于就绪状态。
Next:指向就绪队列中下一个进程的PCB的指针。
2.初始状态及就绪队列组织:5个进程初始都处于就绪状态,进程标识1—5,used初值都为0。
各进程的优先级随机产生,范围1—5。
处于就绪状态的进程,用队列加以组织,队列按优先级由高到低依次排列,队首指针设为head,队尾指针设为tail。
3.调度原则以及运行时间的处理:正在执行的进程每执行一个时间片,其优先级减1(允许优先级为负)。
进程调度将在以下情况发生:当正在运行的程序其优先级小于就绪队列队首进程的优先级时。
程序中进程的运行时间以逻辑时间片为单位。
4.流程图:5.源程序:#include <string>#include <iomanip>#include <iostream>#define N 5using namespace std;struct Gzuo{char Id;int Arrtime;int Sevtime;int Fintime;int Runtime;float Wtime;};Gzuo jobline[N];void Menu(){cout<<"┌─────────┐"<<endl;cout<<"│作业调度程序│"<<endl; cout<<"├─────────┤"<<endl; cout<<"│ a.数据输入│"<<endl; cout<<"│ b.FCFS算法│"<<endl; cout<<"│ c.SJF 算法│"<<endl; cout<<"│ d.退出│"<<endl; cout<<"└─────────┘"<<endl; cout<<"请输入操作序号a-d:";}void Input(){for(int b=0;b<N;b++){cout<<"作业编号(0-4):";cin>>jobline[b].Id;cout<<"到达时间(单位为分钟):";cin>>jobline[b].Arrtime;cout<<"服务时间(单位为分钟):";cin>>jobline[b].Sevtime;}void FCFS(){int b,j,i;float t=0;float time1=0.00,time2=0.00;int temp;int TempArr,TempSev;for(b=0;b<N;b++){for(j=0;j<b;j++)if(jobline[b].Arrtime<jobline[j].Arrtime){temp=jobline[j].Id;jobline[j].Id=jobline[b].Id;jobline[b].Id=temp;TempArr=jobline[j].Arrtime;jobline[j].Arrtime=jobline[b].Arrtime;jobline[b].Arrtime=TempArr;TempSev=jobline[j].Sevtime;jobline[j].Sevtime=jobline[b].Sevtime;jobline[b].Sevtime=TempSev;}}cout<<"┌────────┬────┬────┬────┬────┬────┐"<<endl;cout<<"│FCFS运行顺序"<<" "<<"│";for( b=0;b<N;b++){cout<<setw(8)<<jobline[b].Id<<"│";}cout<<endl;jobline[0].Fintime=jobline[0].Sevtime-jobline[0].Arrtime;for(b=1;b<N;b++){jobline[b].Fintime=jobline[b-1].Fintime+jobline[b].Sevtime;cout<<"├────────┼────┼────┼────┼────┼────┤"<<endl;cout<<"│完成时间分别"<<" "<<"│";for(b=0;b<N;b++){cout<<setw(8)<<jobline[b].Fintime<<"│";}cout<<endl;jobline[0].Runtime=jobline[0].Sevtime-jobline[0].Arrtime;for(b=1;b<N;b++){jobline[b].Runtime=jobline[b-1].Fintime+jobline[b].Sevtime-jobline[b].Arrtime;}cout<<"├────────┼────┼────┼────┼────┼────┤"<<endl;cout<<"│周转时间分别"<<" "<<"│";for(b=0;b<N;b++){cout<<setw(8)<<jobline[b].Runtime<<"│";}cout<<endl;for(b=0;b<N;b++){jobline[b].Wtime=(float)jobline[b].Runtime/(float)jobline[b].Sevtime;}cout<<"├────────┼────┼────┼────┼────┼────┤"<<endl;cout<<"│带权周转时间"<<" "<<"│";for(b=0;b<N;b++){cout<<setw(8)<<jobline[b].Wtime<<"│";}cout<<endl;cout<<"├────────┼────┴────┴────┴────┴────┤"<<endl;time1+=jobline[b].Runtime;time2+=jobline[b].Wtime;}cout<<"│平均周转时间│"<<" "<<setw(8)<<time1<<" │"<<endl;cout<<"├────────┼────────────────────────┤"<<endl;cout<<"│平均带权周转时间│"<<" "<<setw(8)<<time2<<" │"<<endl;cout<<"└────────┴────────────────────────┘"<<endl;}void SJF(){int b,j,i;float t=0;float time1=0.00,time2=0.00;int temp;int TempArr,TempSev;for(b=0;b<N;b++){for(j=0;j<b;j++)if(jobline[b].Arrtime<jobline[j].Arrtime){temp=jobline[j].Id;jobline[j].Id=jobline[b].Id;jobline[b].Id=temp;TempArr=jobline[j].Arrtime;jobline[j].Arrtime=jobline[b].Arrtime;jobline[b].Arrtime=TempArr;TempSev=jobline[j].Sevtime;jobline[j].Sevtime=jobline[b].Sevtime;jobline[b].Sevtime=TempSev;}}for(j=1;j<b;j++){int temp;if(jobline[b].Sevtime<jobline[j].Sevtime){temp=jobline[b].Id;jobline[b].Id=jobline[j].Id;jobline[j].Id=temp;temp=jobline[b].Arrtime;jobline[b].Arrtime=jobline[j].Arrtime;jobline[j].Arrtime=temp;temp=jobline[b].Sevtime;jobline[b].Sevtime=jobline[j].Sevtime;jobline[j].Sevtime=temp;}}}cout<<"┌────────┬────┬────┬────┬────┬────┐"<<endl;cout<<"│SJF运行顺序"<<" "<<"│";for( b=0;b<N;b++){cout<<setw(8)<<jobline[b].Id<<"│";}cout<<endl;jobline[0].Fintime=jobline[0].Sevtime-jobline[0].Arrtime;for(b=1;b<N;b++){jobline[b].Fintime=jobline[b-1].Fintime+jobline[b].Sevtime;}cout<<"├────────┼────┼────┼────┼────┼────┤"<<endl;cout<<"│完成时间"<<" "<<"│";for(b=0;b<N;b++){cout<<setw(8)<<jobline[b].Fintime<<"│";}cout<<endl;jobline[0].Runtime=jobline[0].Sevtime-jobline[0].Arrtime;for(b=1;b<N;b++){jobline[b].Runtime=jobline[b-1].Fintime+jobline[b].Sevtime-jobline[b].Arrtime;}cout<<"├────────┼────┼────┼────┼────┼────┤"<<endl;cout<<"│周转时间"<<" "<<"│";for(b=0;b<N;b++){cout<<setw(8)<<jobline[b].Runtime<<"│";}cout<<endl;for(b=0;b<N;b++){jobline[b].Wtime=(float)jobline[b].Runtime/(float)jobline[b].Sevtime;}cout<<"├────────┼────┼────┼────┼────┼────┤"<<endl;cout<<"│带权周转时间"<<" "<<"│";for(b=0;b<N;b++){cout<<setw(8)<<jobline[b].Wtime<<"│";}cout<<endl;for(b=0;b<N;b++){time1+=jobline[b].Runtime;time2+=jobline[b].Wtime;}cout<<"├────────┼────┴────┴────┴────┴────┤"<<endl;cout<<"│平均周转时间│"<<" "<<setw(8)<<time1<<" │"<<endl;cout<<"├────────┼────────────────────────┤"<<endl;cout<<"│平均带权周转时间│"<<" "<<setw(8)<<time2<<" │"<<endl;cout<<"└────────┴────────────────────────┘"<<endl;}void main(){char n;while(1){Menu();cin>>n;switch(n){case 'a':Input();continue;case 'b':FCFS();continue;case 'c':SJF();continue;case 'd':exit(0);default:cout<<"输入错误,请重新输入"<<endl;continue;}}}4 测试数据与实验结果(可以抓图粘贴)5 结果分析与实验体会实验中,我遇到到了一些困难,主要是些概念东西,然后通过查看本以及上网查阅相关知识,自己独立克服了这些困难。