一元多项式计算

合集下载

第1关:基于链表的两个一元多项式的基本运算

第1关:基于链表的两个一元多项式的基本运算

第1关:基于链表的两个一元多项式的基本运算在计算机科学中,一元多项式是常见的代数表达式形式,通常用来表示多项式函数。

虽然一元多项式的计算看似简单,但如果使用数据结构来实现,将会大大提高计算效率。

这篇文档将详细介绍基于链表的两个一元多项式的基本运算。

一元多项式的定义:在代数学中,一元多项式是一种含有一个未知数的代数多项式。

它是指一个代数式,它是由保持仅仅又有限个多项式的乘积。

此外,一元多项式在基本运算方面具有封闭性,这也是为什么它被广泛应用的原因之一。

在这里,我们将讨论在计算机科学中对一元多项式的实现。

链表的定义:链表是一种线性数据结构,其中数据元素不是常规的数组索引组织,而是通过信息存储元素之间的链来相互连接。

每个元素被称为节点,并且每个节点包含一个下一个节点的指针。

基于链表的一元多项式的实现:基于链表的一元多项式的实现涉及到将每个多项式的系数和指数存储为链表中的节点。

这种实现的主要优点是,它可以轻松地进行添加和删除操作,可以有效地分配内存,而不会浪费存储空间。

考虑到一元多项式的基本运算包括加法,减法和乘法,我们将详细介绍每种操作的实现。

一、基于链表的两个一元多项式的加法操作在实现一元多项式加法时,我们需要创建两个链表来存储两个多项式。

链表节点应该包含两个属性:系数和指数。

然后我们可以使用以下方法将两个多项式相加。

1. 定义两个指针p1和p2分别指向多项式链表的头部。

2. 定义一个新链表,用于存储相加的项。

3. 当p1和p2都不为空时循环进行以下操作:a. 如果p1当前节点的指数小于p2当前节点的指数,则将p1的节点添加到新链表中并将p1指针向下移动一个节点。

b. 如果p1当前节点的指数大于p2当前节点的指数,则将p2的节点添加到新链表中并将p2指针向下移动一个节点。

c. 如果p1和p2当前节点的指数相等,则将两个节点的系数相加,并将结果添加到新链表中,并将p1和p2指针都向下移动一个节点。

的所有剩余项添加到新链表中。

一元多项式的计算数据结构课程设计

一元多项式的计算数据结构课程设计

一元多项式的计算—加,减摘要(题目)一元多项式计算任务:能够按照指数降序排列建立并输出多项式;能够完成两个多项式的相加、相减,并将结果输入;目录1.引言2.需求分析3.概要设计4.详细设计5.测试结果6.调试分析7.设计体会8.结束语一:引言:通过C语言使用链式存储结构实现一元多项式加法、减法和乘法的运算。

按指数降序排列。

二:需求分析建立一元多项式并按照指数降序排列输出多项式,将一元多项式输入并存储在内存中,能够完成两个多项式的加减运算并输出结果三:概要设计存储结构:一元多项式的表示在计算机内可以用链表来表示,为了节省存储空间,只存储多项式中系数非零的项。

链表中的每一个结点存放多项式的一个系数非零项,它包含三个域,分别存放该项的系数、指数以及指向下一个多项式项结点的指针。

创建一元多项式链表,对一元多项式的运算中会出现的各种可能情况进行分析,实现一元多项式的相加、相减操作。

1.单连表的抽象数据类型定义:ADT List{ 数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0} 数据关系:R1={<ai-1,ai>| ai-1, ai∈D,i=2,…,n}基本操作:InitList(&L)//操作结果:构造一个空的线性表CreatPolyn(&L)//操作结果:构造一个以单连表存储的多项试DispPolyn(L)//操作结果:显示多项试Polyn(&pa,&pb)//操作结果:显示两个多项试相加,相减的结果} ADT List2.本程序包含模块: typedef struct LNode //定义单链表{}LNode,*LinkList;void InitList(LinkList &L) //定义一个空表{ }void CreatPolyn(LinkList &L) //用单链表定义一个多项式{ }void DispPolyn(LinkList L) //显示输入的多项式{ }void Polyn(LinkList &pa,LinkList &pb){}void main(){//定义一个单连表;cout<<endl<<" *****************欢迎来到一元多项式计算程序*************** "<<endl;LNode *L1,*L2;Polyn(L1,L2); }2.1 加,减操作模块——实现加减操作各模块之间的调用关系如下:主程序模块加法操作模块减法操作模块基本算法:1、输入输出(1)功能:将要进行运算的多项式输入输出。

一元多项式的定义和运算讲解

一元多项式的定义和运算讲解
定理 2.4.1
令f (x)是F [x]的一个次数大于零的多项式,并且
此处
定理 2.4.2
例 在有理数域上分解多项式 为不可约因式的乘积.容易看出
(2)
一次因式x + 1自然在有理数域上不可约.我们证明, 二次因式 也在有理数域上不可约.不然的话, 将能写成有理数域上两个次数小于2的因式 的乘积,因此将能写成
这个定义的条件也可以用另一种形式来叙述
若多项式 有一个非平凡因式 而 ,那么 与 的次数显然都小于 的次数.反之,若 能写成两个这样的多项式的乘积,那么 有非平凡因式.因此我们可以说:
这里
多项式的减法
2.1.5 多项式加法和乘法的运算规则
(1)加法交换律:
(2)加法结合律:
(3)乘法交换律:
(4)乘法结合律:
(5)乘法对加法的分配律:
注意:
要把一个多项式按“降幂”书写

时,
叫做多项式的首项.
2.1.6 多项式的运算性质
定理
是数环R上两个多项式,并且
定义 2
设 是多项式 与 的一个公因式.若是 能被 与 的每一个公因式整除,那么 叫做 与 的一个最大公因式.
定义 1
的任意两个多项式 与 一定有最大公因式.除一个零次因式外, 与 的最大公因式是唯一确定的,这就是说,若 是 与 的一个最大公因式,那么数域F的任何一个不为零的数 c与 的乘积 ,而且当 与 不全为零多项式时,只有这样的乘积是 与 的最大公因式.
由此得出,


的最大公因式,而
定理 2.3.3
的两个多项式 与 互素的充分且必要条 件是:在 中可以求得多项式 与 ,使

一元多项式计算(数据结构课程设计)

一元多项式计算(数据结构课程设计)

一元多项式计算(数据结构课程设计)一、系统设计1、算法思想根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应指数相加(减),若其和(差)不为零,则构成“和(差)多项式”中的一项;对于两个一元多项式中所有指数不相同的项,则分别写到“和(差)多项式”中去。

因为多项式指数最高项以及项数是不确定的,因此采用线性链表的存储结构便于实现一元多项式的运算。

为了节省空间,我采用两个链表分别存放多项式a 和多项式b,对于最后计算所得的多项式则利用多项式a进行存储。

主要用到了单链表的插入和删除操作。

(1)一元多项式加法运算它从两个多项式的头部开始,两个多项式的某一项都不为空时,如果指数相等的话,系数就应该相加;相加的和不为零的话,用头插法建立一个新的节点。

P 的指数小于q的指数的话就应该复制q的节点到多项式中。

P的指数大于q的指数的话,就应该复制p节点到多项式中。

当第二个多项式空,第一个多项式不为空时,将第一个多项式用新节点产生。

当第一个多项式空,第二个多项式不为空时,将第二个多项式用新节点产生。

(2)一元多项式的减法运算它从两个多项式的头部开始,两个多项式的某一项都不为空时,如果指数相等的话,系数就相减;相加的和不为零的话,用头插法建立一个新的节点。

p的指数小于q的指数的话,就应该复制q的节点到多项式中。

P的指数大于q的指数的话就应该复制p的节点到多项式中,并且建立的节点的系数为原来的相反数;当第二个多项式空,第一个多项式不为空时,将第一个多项式用新节点产生。

当第一个多项式空,第二个多项式不为空时,将第二个多项式用新节点产生,并且建立的节点的系数为原来的相反数。

2、概要设计(1)主函数流程图:(注:a代表第一个一元二次方程,b代表第二个一元二次方程)(2)一元多项式计算算法用类C语言表示:Typedef struct00{ //项的表示,多项式的项作为LinkList的数据元素Float coef;//细数Int expn;//指数}term,ElemType;//两个类型名:term用于本ADT,ElemType为LinkList的数据对象名Typedef LinkList polynomial://用带表头的节点的有序链表表示多项式//基本操作的函数原型说明Void CreatePolyn(polynomail&P);//输入n的系数和指数,建立表示一元多项式的有序链表P 销毁一元多项式P Void DestroyPolyn(polynomailP);销毁一元多项式PvoidPrintPoly(polynomail P);//打印输入一元多项式PIntPolynLength(polynnomail P);//返回一元多项式P中的项数void CreatPolyn(polynomail&Pa.polunomail&Pb);//完成多项式相加运算,即:Pa=Pa+Pb,并贤惠一元多项式Pb voidSubtractPolyn(polunomail&Papolunomail&Pb);//完成多项式相减运算,即:Pa=Pa-Pb,并销毁一元多项式Pb//基本操作的算法描述Int cmp(tem a,temp b);//依a的指数值<(或=)(或>b的住数值,分别返回-1、0和+1Void CreatePolyn(polynomail&P,int m){//输入m项的系数和指数,建立表示一元多项式的有序链表PInitList(P);h=GetHead(P);E.coef=0.0; e.expn=-1;S erCurElem(h,e);//设置头结点的数据元素For (i=1;i<=m;++i){ //依次输入m个非零项Scanf(e.coef,e.epn);If(!LocateElem(P,e,q,(*cmp)())){//当前链表中不存在该指数项If(MakeNode(s,e))InsFirst(q,s);//生成节点并插入链表}}}//CreatPolun二、详细设计1、算法实现(1)输入一元多项式函数:void shuchu(pnode *head){pnode *p;int one_time=1;p=head;while(p!=NULL) /*如果不为空*/{if(one_time==1){if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/printf("%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/else if(p->xishu==1||p->xishu==-1)printf("X^%d",p->zhishu); /*如果系数是1的话就直接输出+x*//*如果系数是-1的话就直接输出-x号*/else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);one_time=0;}else{if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/{if(p->xishu>0)printf("+%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/}else if(p->xishu==1) /*如果系数是1的话就直接输出+x号*/printf("+X^%d",p->zhishu);else if(p->xishu==-1) /*如果系数是-1的话就直接输出-x号*/printf("X^%d",p->zhishu);else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("+%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/printf("%5.2fX^%d",p->xishu,p->zhishu);}p=p->next; /*指向下一个指针*/}printf("\n");}(2)加法函数/*两个多项式的加法运算*/pnode * add(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r; /*headc为头指针,r,s为临时指针,p指向第1个多项式并向右移动,q指向第2个多项式并向右移动*/float x; /*x为系数的求和*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*2个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu+q->xishu; /*系数就应该相加*/if(x!=0) /*相加的和不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话,就应该复制q节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next; /*q向右移动*/}else/*p的系数大于q的系数的话,就应该复制p节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}/*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/ while(p!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}/*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/ while(q!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}(3)减法函数/*两个多项式的加法运算*/pnode * add(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r; /*headc为头指针,r,s为临时指针,p指向第1个多项式并向右移动,q指向第2个多项式并向右移动*/float x; /*x为系数的求和*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*2个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu+q->xishu; /*系数就应该相加*/if(x!=0) /*相加的和不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话,就应该复制q节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next; /*q向右移动*/}else/*p的系数大于q的系数的话,就应该复制p节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}/*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/ while(p!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}/*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/ while(q!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}2、程序代码/*一元多项式计算*//*程序功能:能够按照指数降序排列建立并输出多项式;能够完成两个多项式的相加、相减,并将结果输出;*//*提示:输入完一元多项式之后,输入“0 0”结束本一元多项式的输入*//*注意:系数只精确到百分位,最大系数只能为999.99,指数为整数.如果需要输入更大的系数,可以对程序中5.2%f进行相应的修改*/#include<stdio.h>#include<malloc.h>#include<stdlib.h>#include<conio.h>/*建立结构体*/typedef struct pnode{float xishu; /*系数*/int zhishu; /*指数*/struct pnode *next; /*下一个指针*/}pnode;/*用头插法生成一个多项式,系数和指数输入0时退出输入*/pnode * creat()int m;float n;pnode *head,*rear,*s; /*head为头指针,rear和s为临时指针*/ head=(pnode *)malloc(sizeof(pnode));rear=head; /*指向头*/scanf("%f",&n); /*系数*/scanf("%d",&m); /*输入指数*/while(n!=0) /*输入0退出*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=n;s->zhishu=m;s->next=NULL;rear->next=s; /*头插法*/rear=s;scanf("%f",&n); /*输入系数*/scanf("%d",&m); /*输入指数*/}head=head->next; /*第一个头没有用到*/return head;}/*调整多项式*/void tiaozhen(pnode *head){pnode *p,*q,*t;float temp;p=head;while(p!=NULL){q=p;t=q->next;while(t!=NULL){if(t->zhishu>q->zhishu)q=t;t=t->next;}temp=p->xishu;p->xishu=q->xishu;q->xishu=temp;temp=p->zhishu;p->zhishu=q->zhishu;q->zhishu=temp;p=p->next;}/*显示一个多项式*/void shuchu(pnode *head){pnode *p;int one_time=1;p=head;while(p!=NULL) /*如果不为空*/{if(one_time==1){if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/printf("%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/else if(p->xishu==1||p->xishu==-1)printf("X^%d",p->zhishu); /*如果系数是1的话就直接输出+x*//*如果系数是-1的话就直接输出-x号*/else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);one_time=0;}else{if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/{if(p->xishu>0)printf("+%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/}else if(p->xishu==1) /*如果系数是1的话就直接输出+x号*/printf("+X^%d",p->zhishu);else if(p->xishu==-1) /*如果系数是-1的话就直接输出-x号*/printf("X^%d",p->zhishu);else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("+%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);}p=p->next; /*指向下一个指针*/}printf("\n");/*两个多项式的加法运算*/pnode * add(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r; /*headc为头指针,r,s为临时指针,p指向第1个多项式并向右移动,q指向第2个多项式并向右移动*/float x; /*x为系数的求和*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*2个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu+q->xishu; /*系数就应该相加*/if(x!=0) /*相加的和不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话,就应该复制q节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next; /*q向右移动*/}else/*p的系数大于q的系数的话,就应该复制p节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}/*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/ while(p!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}/*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/ while(q!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}/*两个多项式的减法运算*/pnode * sub(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r;float x; /*x为系数相减*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*两个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu-q->xishu; /*系数相减*/if(x!=0) /*相减的差不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=-q->xishu; /*建立的节点的系数为原来的相反数*/s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}else{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}while(p!=NULL) /*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}while(q!=NULL) /*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=-q->xishu; /*建立的节点的系数为原来的相反数*/ s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}void add_main(){pnode * a,*b,*c;printf("\n输入第一个一元多项式:\n系数指数\n");a=creat();tiaozhen(a);printf("\n输入第二个一元多项式:\n系数指数\n");b=creat();tiaozhen(b);c=add(a,b);printf("第一个一元多项式如下:");shuchu(a);printf("第二个一元多项式如下:");shuchu(b);printf("两式相加如下:");shuchu(c);}void sub_main(){pnode * a,*b,*c;printf("\n输入第一个一元多项式:\n系数指数\n");a=creat();tiaozhen(a);printf("\n输入第二个一元多项式:\n系数指数\n");b=creat();tiaozhen(b);c=sub(a,b);printf("第一个一元多项式如下:");shuchu(a);printf("第二个一元多项式如下:");shuchu(b);printf("两式相减如下:");shuchu(c);}void open(){printf("\n****************************************************\n");printf(" 功能项: * 1 两个一元多项式相加;2 两个一元多项式相减;0 退出*\n");printf("****************************************************\n\n请选择操作: ");}void main(){int choose;open();while(choose!=0){scanf("%d",&choose);getchar();switch(choose){case 0:return;case 1:printf("\n 两个一元多项式相加\n");add_main();choose=-1;open();break;case 2:printf("\n 两个一元多项式相减\n");sub_main();choose=-1;open();break;default:printf("没有该选项!请重新选择操作!\n\n");open();}}}三、测试方案及结果1、测试方案在Visual C++ 6.0环境中调试运行。

数据结构一元多项式的运算

数据结构一元多项式的运算

目录一、问题分析.................................... 错误!未定义书签。

问题描述 ........................................................................ 错误!未定义书签。

问题的数学模型............................................................. 错误!未定义书签。

构造数据结构................................................................. 错误!未定义书签。

二、系统分析 ...................................................................... 错误!未定义书签。

可行性研究..................................................................... 错误!未定义书签。

系统结构与主要功能模块 ............................................. 错误!未定义书签。

三、系统设计 ...................................................................... 错误!未定义书签。

系统设计目的与要求 ....................................................... 错误!未定义书签。

系统设计内容................................................................... 错误!未定义书签。

功能算法描述与数据结构说明........................................ 错误!未定义书签。

高等代数一元多项式

高等代数一元多项式
∂(f(x)g(x)) = ∂(f(x)) + ∂(g(x)).
证设
f(x) = anxn + an−1xn−1 + · · · + a0, g(x) = bmxm + bm−1xm−1 + · · · + b0,
其中 an ̸= 0, bm ̸= 0. 则 ∂(f(x)) = n, ∂(g(x)) = m.
. .. . . ..
次数公式
(1) 在考虑多项式 f(x) 和 g(x) 的和时,不妨设 n ≥ m 且令 bm+1 = bm+2 = · · · = bn = 0,则
f(x)
+
g(x)
=
∑n (ai
+
bi)xi.
i=0
从而 ∂(f(x) + g(x)) ≤ n = max(∂(f(x)), ∂(g(x))). (2) f(x)g(x) 的首项是 anbmxn+m,显然 anbm ̸= 0,因之,f(x)g(x) ̸= 0 而且它的次数就是 n + m.
. .. . . ..
多项式的运算律
1 加法交换律:f(x) + g(x) = g(x) + f(x). 2 加法结合律:(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)). 3 乘法交换律:f(x)g(x) = g(x)f(x). 4 乘法结合律:(f(x)g(x))h(x) = f(x)(g(x)h(x)).
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
次数公式

一元多项式的运算

一元多项式的运算

数据结构课程设计实验报告专业班级:学号:姓名:2011年1月1日题目:一元多项式的运算1、题目描述一元多项式的运算在此题中实现加、减法的运算,而多项式的减法可以通过加法来实现(只需在减法运算时系数前加负号)。

在数学上,一个一元n次多项式P n(X)可按降序写成:P n(X)= P n X^n+ P(n-1)X^(n-1)+......+ P1X+P0它由n+1个系数惟一确定,因此,在计算机里它可以用一个线性表P来表示:P=(P n,P(n-1),......,P1,P0)每一项的指数i隐含在其系数P i的序号里。

假设Q m(X)是一元m次多项式,同样可以用一个线性表Q来表示:Q=(q m,q(m-1),.....,q1,q0)不是一般性,假设吗吗m<n,则两个多想是相加的结果:R n(X)= P n(X)+ Q m(X)很显然,可以对P,Q和R采用顺序存储结构,使得多项式相加的算法定义和实现简单化。

然而,在通常的应用中,多项式的次数可能变化很大而且很高,使得顺序存储结构的最大长度很难确定。

特别是在处理项数少且次数特别高的情况下,对内存空间的浪费是相当大的。

因此,一般情况下,都采用链式存储结构来处理多项式的运算,使得两个线性链表分别表示一元多项式P n(X)和Q m(X),每个结点表示多项式中的一项。

通过分析多项式的特征,不难看出多项式是由单项式构成的,而每个单项式都具有系数和指数,当系数为0时,该项就是去了意义,在计算机内要表示一个多项式,至少具有以下数据信息:系数信息、指数信息和指向下一个单项式的指针。

通过指针,我们就可以把多个单项式连接起来,形成一个多项式。

2、任务要求系数定义的是float型,范围是3.4*10^-38~3.4*10^38;指数定义的是int型,范围是-2147483648~+2147483647;输入多项式系数及指数,系统会自动将系数转化为浮点型。

功能:(1).提示输入数据。

一元多项式的乘法与加法运算

一元多项式的乘法与加法运算

一元多项式的乘法与加法运算
一元多项式的乘法与加法运算
一、乘法运算
1、定义
一元多项式的乘法运算是指在一元多项文的基础上的乘法运算,其中
乘数和被乘数均为一元多项式。

2、运算规则
(1)同序项相乘:两个一元多项式的相同次方项,按照乘法规则运算,系数相乘,指数相加。

(2)求和:将相乘之后的项按次方合起来,系数相加,指数相同。

二、加法运算
1、定义
一元多项式的加法运算是指在一元多项式的基础上的加法运算,其中
加数和被加数均为一元多项式。

2、运算规则
(1)同序项相加:两个一元多项式的相同次方项,按照加法规则运算,系数相加,指数相同。

(2)求和:将相加之后的项按次方合起来,系数相加,指数相同。

以上就是一元多项式的乘法与加法运算,总之,一元多项式的乘法与加法运算主要有以下几点:
(1)乘法运算:同序项相乘,求和,系数相乘,指数相加。

(2)加法运算:同序项相加,求和,系数相加,指数相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构课内实验实验报告实验1一元多项式计算
姓名______李晓伟__________
学号______________
班级_____13软二__________
完成时间____2014/11/17________
(1)对于多项式的运算的,运算符的输出很重要,一开始多输出一个‘+’,并且当为负数时会输出+--。

还有当系数为0时的输出都没有专门考虑。

和周围的同学交流一下算法,相互探讨了出现的问题,和解决的方法。

讨论中改掉很多不足。

使代码更加完善。

(2)通过本次试验,我发现自己分析问题不是很全面,忽略掉一些细节。

以后分析问题时要仔细考虑,认真分析,避免在细节上犯错误。

(3)通过这次实验,我发现自己编程能力相当欠缺,尤其是用链表实现。

自己以后要勤加练习。

相关文档
最新文档