斯伦贝谢水平井随钻测井地质导向技术介绍
美国斯伦贝谢随钻声波测井新技术

根 据 所 需 的 物 理 记 录, 可 将 声
波信号中识别出来 [1]。
波测井仪设计成一组发射器(声源),
很 多 物 质 都 有 各 自 具 体 的 声 波 用于产生特定形式的压力脉冲。最基
慢度(下表)。例如纵波通过钢材的 本 的 方 式, 也 是 各 种 声 波 测 井 仪 常
慢度是 187 微秒 / 米(57 微秒 / 英尺)。 用 的 类 型 是 单 极 子 声 源。 单 极 子 声
波快。
于快地层这种情况。
声源的测井仪记录的资料中提取。在
临界折射的纵波在井筒中产生的
如果地层的横波慢度大于井筒流 非常需要这些资料的井段通常也无法
头波以地层纵波速度传播 [3]。根据惠 体的纵波慢度(这种情况被称为慢地 获得。
更斯原理,井壁上每一点上的纵波都 层),纵波在到达井筒时仍然会发生折
单极子声源在测量慢地层横波资
偶极子声源也具有定向性,利用
ཀྵհ
࢙հ
ୁ༹հ
ጻհ ཀྵհ
ୁ༹հ
定向接收器阵列和两个互成 90°的声 源,工程师能够得到井筒周围的定向 横波资料。这种交叉偶极测井方法提 供了最大、最小应力方位,径向速度
ڇटጱำᇸ
ڇटጱำᇸ
分布和各向异性横波资料的方向。 上世纪 80 年代引入了将快地层中
使用的单极子声源纵波和横波数据与
Jeff Alford Matt Blyth Ed Tollefsen 美国得克萨斯州休斯敦
John Crowe 雪佛龙卡宾达海湾石油有限公司 安哥拉罗安达
Julio Loreto 得克萨斯州Sugar Land
Saeed Mohammed 沙特阿拉伯宰赫兰
随钻声波测井新技术
工程师根据声波测井仪记录的声波资料以更高的安全系数提 高钻井效率,优化完井方式。LWD 声波测井仪是在上世纪 90 年 代中期问世的,能够记录纵波资料,但不能记录所有地层的横波 资料。新型 LWD 声波测井仪能记录以前无法得到的横波资料,工 程师正在利用横波资料优化钻井作业,确定最佳钻进方向,识别 具有更好完井特征的岩层。
水平井随钻地质导向方法的应用

水平井随钻地质导向方法的应用摘要:地质导向技术是水平井在钻进过程中,根据油层地质资料和随钻的测量数据,实时地调整井眼轨迹的测量控制技术。
该技术是先在水平井钻前建立地质导向模型,并根据测井资料,对随钻测井曲线及可能钻遇的地层岩性进行预测;然后在钻进过程中,建立好地层模型,利用随钻的测井和测量资料,以及地质导向软件,在水平井的钻进过程中不断调整最初的设计,调整优化选进的方向,将井眼轨迹调整到油藏最佳的位置,在高效开发复杂油藏方面具有极大的优势。
关键词:水平井;地质导向;钻井轨迹;地层预测;1 随钻地质导向的重要性地质导向钻井技术是在世界范围内的勘探开发形势面临复杂地质条件的背景下和随钻测量技术日趋成熟的基础上发展起来的,是20世纪90年代国际钻井界发展起来的前沿钻井技术之一,该钻井技术以实时测量多种井底信息为前提,利用随钻测量数据和随钻地层评价测井数据与没定的储层地质特征进行实时评价和分析,根据评价结果来精确地控制井下钻具命中最佳地质目标。
实时测得的井底信息包括两类:一类是地质参数,包括电阻率、自然伽玛、岩性密度、声波、地层倾角等;另一类是工程参数,包括井斜、方位、工具面角、井底钻压、井底扭矩和井底压力等。
无线随钻测量系统是地质导向钻井技术的主要组成部分,可以在随钻测量井眼轨迹几何参数的同时实时测取地质参数,绘制出电阻率、自然伽玛等测井曲线,并以此作为地层分析对比的依据。
地质导向技术的优越性有以下几个方面:(1)连续的井眼轨迹控制,减少了起下钻次数。
(2)钻头处的井斜传感器减少了大斜度井、水平井的井斜误差,减少了井眼的曲折度,增强了井眼位移延伸能力,减少了摩阻对钻柱的磨损。
(3)钻头钻速传感器能使司钻最佳使用导向马达,由此可提高机械钻速,延长马达的使用寿命,减少起下钻换钻具的时间。
(4)近钻头传感器使钻头处参数测量的滞后时间接近于零,能使井眼最大限度地保持在油藏内。
(5)方位伽玛射线测量能在钻头处进行地层对比,这对探测标志层、确定套管下深和取心层位是非常有用的,同时还可使司钻确知是否钻穿地层的顶部或者底部。
论水平井钻井的测井地质导向方法与技术

论水平井钻井的测井地质导向方法与技术摘要:领先的钻井和采油技术-----水平井钻井,对油田的开发具有划时代的意义。
水平井钻井技术的适用性和先进性,是油藏地质研究和钻完井技术、采油作业技术的有机结合,在油田施工作业中发挥更加重要的作用。
积累水平井钻井的经验资料、参照水平井钻井历史数据、建立预测模型归纳地质特征,为以后水平井钻井奠定了坚实的基础。
关键词:水平井应用局限前景一、测井地质导向方法与技术的意义与效益地质导向钻井施工过程中,技术人员将井下动力钻具和可调径稳定器与地质仪器有机的结合起来,使地质参数测量点与钻头之间的距离有效的减短,地层中的变化数据及早的传输上去,这样控制了钻头的轨迹,有效地避开油与气、油与水的分界点,有利于钻头穿行于油气层的上界或下界,降低了开发完井的费用,提高了单油井的产量,从而提高了施工的效益。
油田施工作业中,以前没有引起重视的小油层、断块油层、认为缺乏开采价值的油层随着水平井钻井技术的推广应用,石油公司改变了陈旧的观念,运用先进的水平井钻井科学技术,降低了开发成本,减少了资金投入,对薄油层进行了有效开采提高了效益,提高了勘探开发效率,获得了丰厚经济利润。
二、测井地质导向方法与技术的实际应用钻井工业是以开发地下石油资源为最初目的的,科学技术的发展、长远宏观的眼光、经济观念的改变促使人们改变陈旧的工作方式,追求更高经济效益。
在实际施工过程中,人们逐渐发现普通的直井、定向井在采油中受到很大的局限,不能彻底完整的实现施工目的,投资大、效益低的弊病逐渐显现出来,只有改变以前的采油方式,才能最低限度减少钻井的数量,而开采出最大限度的石油,获得最大的回报,减轻对环境的影响,成为人们关注的热点问题。
随着科学技术的不断推进,而水平井钻井技术的应用,恰恰改变了这一问题,它改变了井身与储层的接触面积,改变了储层的流动条件,水平井段由垂直井段的转变的施工难度由大逐渐变小。
技术人员对钻井过程中的测量技术随物理学中重力场的开发,测量地磁场测量方位角准确性的提高,天体坐标系测量的变化逐渐提升,井眼轨迹得到了有效的控制,针对不同的井眼轨迹状况及时控制并调整井眼轨迹,圆满实现了地质目的。
【采油 精】旋转导向技术-斯伦贝谢

400
Footage Drilled per Quarter
900,000
Average MTBF
350
800,000 300
700,000
250 600,000
500,000
200
400,000 150
300,000 100
200,000
50 100,000
-
0
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2
2001 World Record #2 PowerDrive900 drills 13.789ft of 12.25” hole in 1 run
2002 World’s First 6” RSS Run PowerDrive475 drills 4712ft of 6 1/8” hole in 1 run
Saved $536,000 1739m , 5705 ft 17.6 m 57.6 ft/hr
Inclination In 74.9 Out 51.1 Turned 10 right
旋转导向 - PowerDrive
• Improved drilling efficiency – 98 m/day with PDM, 193 m/day with RSS
旋转导向 – PowerDrive Xceed
Point-The-Bit Principle
旋转导向 – PowerDrive Xceed
钻进
内部控制导向系统
导向钻进
旋lumberger Rotary Steerable Experience
CGDS近钻头地质导向钻井技术

详细技术指标及其与国外同类产品的对比
– 与世界上仅有的近钻头地质导向产品Schlumberger GST技术对比 • 钻头电阻率技术指标对比:测量范围相同,精度相当
技术指标 测量范围
水基 测量精度 泥浆
垂直分辨率 探测深度 测量范围 油基 泥浆 测量精度
钻头电阻率技术指标对比
CGDS
26 /136
由4个子系统组成。
测传马达 无线接收系统 CGMWD系统
测得的近钻头5个参数通过无线电磁波方式,越过螺 杆马达,短传至上方的无线接收短节。
是一个机电一体化复杂装置,把接收到的近钻头参数 汇入其上部的MWD(无线随钻测量系统)数据总线,向 上传输。
无线短传
无线接收系统
测传马达
无线短传技术国外只有个别公司掌握
22 /136
CGDS系统是中石油集团钻井工程技术研究院主持研 制的近钻头地质导向钻井装备,由北京石油机械厂产业化, 2008年取得“国家自主创新产品证书”,2009年荣获国 家技术发明奖二等奖。
具有测量、传输和导向三大功能。适合于油气探井、 水平井和多分支井等,尤其适用于复杂地层、薄油层开发 井。可提高探井成功率、开发井油层钻遇率和采收率。
23 /136
由4个子系统组成。
测传马达 无线接收系统 CGMWD系统 地面信息综合处
理与导向控制决 策系统
测传马达, CAIMS, China Adjustable Instrumented Motor System
24 /136
由4个子系统组成。
测传马达
下部装有近钻头测量短节。实现近钻头
地面信息综合处理与导向控制决策系统, CFDS, China Formation/Drilling Software System
斯伦贝谢地质导向

s elect a p p r o p r ia te mo d el th en a p p ly s h ift o r tilt
u p d a te g eo lo g ica l cro s s-s ectio n , tu n e n ext w ell's g eo metric ta rg et
GeoSteering*地质导向钻井
• 传统钻井与地质导向钻井的比较
– 传统钻井: 按照设计进行钻井,不考虑实时测井资料. – 地质导向钻井: 依据实时测井资料进行钻井,保证轨 迹位置,减少井眼起伏
地质导向一般流程
clien t g eo scien tis t crea te mu ltip le mea s u remen t mo d els Prejo b Des ig n
64.03 72.79 75.82 78.15 80.86 84.53 91.92 102.85 118.16 123.59 127.19 133.75 135.55 139.67 143.21 Trajectory GR Mod P34H Mod RHOB Mod TNPH Mod GR Act P34H Act RHOB Act TNPH Act A34H Act
斯伦贝谢随钻测量与地质导 向技术
Wang Hong Yun Apr-2004
内容概述
• 随钻测量(MWD) • 随钻测井(LWD) • 地质导向(GeoSteering)
MWD传输方式
SLB MWD 工具选择
• PowerPulse* MWD 工具
– 包括6.75”, 8.25”, 9”, 9.5” 工具 – 适用于最小8.5” 井眼 – 可与各种LWD组合
大斜度水平井生产测井技术(斯伦贝谢)

大斜度/水平井生产测井技术Schlumberger Private斯伦贝谢Schlumberger Private水平井生产所面临的挑战•初期产量较高•含水上升快•产量递减快•产液剖面测量难•井段产液不均匀•措施作业难•有效期较短…主要难点:¾井下多相流态复杂¾产液剖面测量仪器¾仪器传输方式Schlumberger Private油水均匀混合 速度剖面光滑 持率线性变化 单相水在底部,分散相油在顶部速度和持率变化剧烈水有可能回流分层流动,油水分异呈单相井斜微变,相速度和持率剧变井斜<20°井斜20°~85°井斜85°~95°复杂多相流流态-油水两相流试验Schlumberger Private水平井产液剖面测量-流体扫描成像Flow Scanner具有5个微转子测量分层流速,6对光学和电阻探针测量分层三相持率,实时监测数据质量Schlumberger PrivateFlow Scanner* 仪器示意图H y dra u l i c a c t u a t o r F l ow S c a n n e r *4 MS5 O P、5E P1 mi n i s p i n n e r , 1o p t i c a l p r o b e , 1e l e c t r i c a lp r o b e Minispinner cartridgewith integrated one-wire detectorFluid local velocityOptical GHOST*probesGas holdupElectrical FloView*probesWater holdup5 ft11 ftSchlumberger PrivateFlow Scanner* 流速传感器相速度-Minispinner最新技术;5个微型转子流量计垂直于井轴方向分布; 直接测量气相速度;电动短节扫描转子流量计,精确测定相速度。
水平井地质导向技术认识

水平井地质导向技术认识第一部分前言水平井地质导向技术的关键是把以前的几何钻井方式向地质导向钻井的转变。
以前打井,只要钻遇事先确定的几何目标,即使没有发现油层,钻井工作也算大功告成。
地质导向钻井让目标不再固定不变,而是根据储层的位置随时调整,实现了“钻头跟着设计走”到“钻头跟着储层走”的转变。
首先通过对区域地质、地震、测井和油藏资料的综合研究,结合工程施工的要求设计出井眼轨迹,然后交由现场施工人员去实施。
但是钻前研究所使用的资料具有很大的不确定性,往往会导致实钻过程中沿着设计轨迹钻进的水平井不在油藏预期最佳的位置,从而影响了目的层的钻遇效果,以及影响到后期投产后采油或注水效果,进而影响到生产单位的投资回报。
地质导向的过程是互动的钻井方式,地质导向师利用随钻测井,随钻测量,定向工具及导向模型软件,在水平井的钻进过程中不断的调整最初的设计,指挥钻进的方向,将井眼轨迹调整到油藏最佳的位置,以达到最佳的产油(气)或注水效果。
精确的地质导向可帮助油田提高钻井投资的回报。
在水平井钻进的过程中,地质导向人员需要与钻井研究所、录井公司、钻井公司及相关技术人员及时沟通协调。
根据现场掌握的第一手资料及时调整井眼轨迹。
达到施工设计的地质、工程要求。
从事地质导向的地质导向师,需要具有丰富的地质,油藏,测井,地震,及定向井施工知识。
第二部分:地质导向工作流程一、准备阶段1、资料的收集准备阶段包括:设计目的,设计原则,设计风险评估,甲方地质认识,区域构造资料,(油气藏的性质,断层在本井区的分布及认识情况等)地震资料和认识,沉积相的认识,物源的来源方向及特征,砂体的三维二维空间展布情况,区域及本井区油气水分布特征及性质,邻井的测井资料,地质小层数据,邻井的试油数据2、建模阶段:包括:井区的三维模型,所施工井的设计轨迹与地层关系的二维模型3、制定施工实际方案阶段首先由地质导向师制定施工预案,其次把预案与甲方及设计方进行沟通,征求意见,修改施工预案,使预案更完善,从而能有效指导现场施工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
not match not match Actual logs do Actual logs do Actual logs do 实测曲线与模拟曲 modeled modeled not match not 线不吻合 matchmodeled not match logs. logs. logs. modeled logs. modeled logs. 实测曲线与模拟曲 线不吻合
match modeled logs do logs do logs.
Formation Formation Model Model Updated Updated Formation Model Formation Model Formation Model Formation Updated Formation Formation Formation Model Model Model Updated Updated Formation Model Formation Model 更新后地层模型 地层模型 地层模型 Model 更新后地层模型
Porosity / NGD Spectroscopy / Sigma Resistivity
Ultra-Sonic Caliper Azimuthal Density / PEF
钻井优化技术_旋转导向系统
更平滑的轨迹,更规则的井眼,更快的速度
第一代旋转导向系统 全程全部旋转 累积进尺超过一千万 英尺
26” -17 ½” Bit Sizes 14 ¾” -12 ¼” Bit Sizes 10 5/8” Bit Size 9 7/8” -8 ½” Bit Sizes 6 ½ ” -5 3/4” Bit Sizes
PowerDrive Xtra
PowerDrive X5
同样原理 提高工具可靠性与 钻井表现,增加近 钻头井斜、伽玛
为什么进行实时钻井地质导向?
-地质模型的主要不确定性因素
The ThePlan: Plan:
Target 1 40 ft Target 2
T he eality: T heR R eality:
Target 3
为什么进行实时钻井地质导向?
-油藏的不确定性:油水界面
泥岩 薄油层 水层
油水界面解释的不确定性 :(开发初期)通常 +/- 2 米
RSS
•
人员和作业程序
地质导向师进行实时导向服务
客户地质师
钻井工程师和定向井工程师
随钻测井技术_Vision系列
arcVISION 感应电阻率 geoVISION 侧向电阻率 adnVISION 方位中子密度 proVISION 随钻核磁共振
sonicVISION 随钻声波
传感器于一体。 多功能随钻测井仪地层评价测量包括 – 20条电阻率,中子孔隙度,密度 ,PEF测量 – ECS 岩石岩性信息 – 多传感器井眼成像和测径器 – 地层Σ 因子测量碳氢饱和度 钻井和井眼稳定性优化 – 环空压力数据优化泥浆比重 – 三轴震动数据优化机械钻速 更安全、更快、更优化! – 减少组合钻具时间 – 较少的化学放射源,高机械钻速同时得到高 数据质量 – 测量点更靠近钻头,减少口袋长度!
26” -17 ½” Bit Sizes 14 ¾” -12 ¼” Bit Sizes 10 5/8” Bit Size 9 7/8” -8 ½” Bit Sizes 6 ½ ” -5 3/4” Bit Sizes
Xceed
独特的工作原理 减少与井壁接触 更高的改变井轨能 力,近钻头井斜
vorteX
— 斯伦贝谢主要随钻地质导向技术及在国内气藏中应用
美国泥岩气随钻地质导向经验简介
谢谢!
实时图像被传输到地面可识别构造倾角和裂缝,以更好地进行地 质导向 实时方向性伽马测量
sonicVISION 声波
sonicVISION memory
新的高能宽带发射器: 4-25Khz 更强的地层信号,可兼容频率用于地层耦合,
声波孔隙度
这种频宽使得斯通利波能够用于快地层(如
碳酸岩)评价, 裂缝宽度和渗透性评估Stoneley
快速横波用于分析岩石机械特性
随钻测井技术_Scope系列
EcoScope 多功能随钻测井
StethoScope 随钻地层压力测量 PeriScope15 随钻方位性地层边界测量
MicroScope 微电阻率成像
EcoScope – 多功能随钻测井
多功能随钻测井仪:安全的结合钻井和地层评价
-斯伦贝谢水平井随钻测井地质导向技术介绍
2010.5
随钻测量的价值观
客户需求
日进尺
油藏
高效钻井
减少非生产 时间 提高机械钻速 面积
钻井与测量
优化 地质导向 最大化
油层泄油
动力和方向
目录
斯伦贝谢钻井与随钻地质导向技术简介
— 斯伦贝谢随钻地质导向定义 — 斯伦贝谢钻井与随钻地质导向技术核心
— 斯伦贝谢主要随钻地质导向技术及在国内气藏中应用
钻井优化 – 旋转导向系统的优点
所有部件都随着钻具一起旋转
— 更好地携带岩屑,清洁井眼
— 优化时效,缩短钻井周期
— 提高井眼质量 — 减少井眼垮塌和卡钻风险 — 有助于提高测井数据质量 — 精确控制轨迹,提高钻遇率 - 造斜率控制 — 使下套管和完井作业更顺利
斯伦贝谢地质导向的主要技术
方法
1 – 传统无)方向性随钻测井实时地质导向技
seismicVISION 随钻地震
geoVISION 侧向电阻率
适用于高导电性泥浆环境 提供包括钻头,环形电极以及3 个方位聚焦纽扣电极的电阻率 高分辨率侧向测井减小了邻层的影响
钻头电阻率提供实时下套管和取心点的选择 三个方位纽扣电极提供三种深度的微电阻率随钻成像,可解决复 杂的解释问题
工程靶点
测斜不确定性 +/- 10 米 设计井眼轨迹
地质靶点
为什么进行实时钻井地质导向?
-地质模型的主要不确定性因素
Structural Uncertainty (TVD)
Structure Top
Top Base
Lateral Dip Uncertainty
Lateral Stratigraphic Uncertainty
方法2,方位成像技术
方法3:深边界探测技术
22
Real Time Distance to Boundary
Courtesy of Statoil Veslefrikk Field
Real Time Boundary Directi
目录
斯伦贝谢钻井与随钻地质导向技术简介
— 斯伦贝谢随钻地质导向定义 — 斯伦贝谢钻井与随钻地质导向技术核心
井下附加动力 可使用X5或Xceed 承受更大钻压,输出 更高扭矩
26” -17 ½” Bit Sizes 14 ¾” -12 ¼” Bit Sizes
14 ¾” -12 ¼” Bit Sizes 9 7/8” -8 ½” Bit Sizes
10 5/8” Bit Size 9 7/8” -8 ½” Bit Sizes 6 ½ ” -5 3/4” Bit Sizes
术
方法 2 – 随钻成像实时地质导向技术
方法 3 – 储层边界探测实时地质导向技术 方法1-3 导向技术的主动性不断提升
方法1,模型,曲线拟合,实时更新
Red curves show Red curves show Red curves show Red curves show Red curves show the expected the expected the expected the expected the expected the expected response response response response response response 红色曲线代表模拟
为什么进行实时钻井地质导向?
-储层不确定性:储层岩性、物性
白云岩
方解石 石膏
为什么进行随钻地质导向?
地质导向核心技术服务的组成
• 井下工具
钻井技术和工具: – 可钻性和钻井方式(常规钻进/全程旋转钻进)
随钻测井技术和工具: – 岩性,工具测量曲线
•
工程应用软件和电脑技术
可视化的井眼轨迹位置和超前预测的工程应用软件 可实现基于网络的井下数据处理和存取 – 远程服务
美国泥岩气随钻地质导向经验简介
地质导向技术定义
地质导向技术在钻井工程中将随钻测井技术,工程应用
软件与地质导向人员紧密结合的实时互动式服务 它的目标是优化水平井轨迹在储层中的位置降低钻井、 地质风险提高钻井效率帮助实现:单井产量最大化和投 资收益的最大化
为什么进行实时钻井地质导向?
-钻井作业的不确定因素