天线基本知识解析
物理天线知识点总结

物理天线知识点总结一、天线的分类天线可以根据它的结构、工作频率、工作方式等不同特征进行分类。
根据天线的结构,天线可以分为线性天线、面状天线、体状天线等。
根据天线的工作频率,天线可以分为超高频天线、甚高频天线、高频天线等。
根据天线的工作方式,天线可以分为接收天线、发射天线、双工天线等。
此外,根据天线的工作原理,天线还可以分为定向天线、全向天线等。
二、天线的工作原理天线是通过改变电流和电压的分布来产生电磁波。
当电流通过天线时,会在天线上产生一个电磁场。
这个电磁场会向周围空间辐射出去,形成电磁波。
同时,当有外界的电磁波作用在天线上时,天线也会感应出电流和电压。
这样,天线在电磁波的发射和接收中发挥作用。
三、天线的设计方法天线的设计是一个复杂的过程,需要考虑多种因素,包括天线的工作频率、方向性、增益、波束宽度、阻抗匹配等。
在天线的设计中,通常需要用到一些工具,如天线模拟软件、电磁场仿真软件等。
天线的设计方法包括复合结构天线的设计、微带天线的设计、阵列天线的设计等。
这些设计方法大大提高了天线的工作性能和可靠性。
四、天线的性能分析天线的性能分析是对天线的工作性能进行评估和优化的过程。
通过对天线的参数和特性进行测试和分析,可以了解天线的工作状况和性能指标,为天线的改进和优化提供依据。
常用的天线性能分析方法包括天线参数测量、天线阻抗匹配、波束宽度测量等。
五、天线的应用天线在无线通信、雷达、卫星通信、电视广播等领域中有着广泛的应用。
在无线通信系统中,天线是信息传输的关键设备,它的工作性能直接影响到通信系统的稳定性和可靠性。
在雷达系统中,天线是用来发射和接收雷达信号,它的性能直接影响到雷达的探测性能和分辨率。
在卫星通信系统中,天线是用来与卫星间进行通信,它的性能直接影响到卫星通信的质量和覆盖范围。
在电视广播系统中,天线是用来接收广播信号的,它的性能直接影响到电视节目的清晰度和稳定性。
总结:物理天线是无线通信和雷达系统中不可或缺的重要组成部分。
天线基本知识介绍

天线基本知识介绍天线是将电信号转换为电磁波并将其传输或接收的装置。
它是电磁学的一个分支,用于无线通信、电视和广播接收、雷达以及天体物理学研究等领域。
本文将对天线的基本知识进行介绍。
1.天线的作用和原理:天线的主要作用是将电信号转换为电磁波并将其辐射到空间中,或者将接收到的电磁波转换为电信号。
它的工作原理基于法拉第电磁感应定律和亥姆霍兹理论,即通过电流在导体中产生的磁场和由变化的磁场产生的感应电流来实现电磁波的辐射或接收。
2.天线的分类:天线可以根据其结构、工作频率、功率和应用等方面进行分类。
根据结构,天线可分为线性天线(如偶极子天线)、面型天线(如片极天线、光波导天线)和体型天线(如反射天线、波导天线)。
根据工作频率,天线可分为超高频、高频、甚高频、极高频和微波天线等。
根据功率,天线可分为小功率天线和大功率天线。
根据应用,天线还可细分为通信天线、雷达天线、电视天线、卫星天线和微波天线等。
3.天线参数:天线的性能取决于其设计参数。
常见的天线参数包括增益、方向性、波束宽度、驻波比、频率响应、极化方式和带宽等。
增益是天线辐射功率与等效输入功率之比,方向性衡量天线在一些方向上的辐射能力,波束宽度是主瓣的半功率宽度,驻波比是反射功率与输入功率之比,频率响应表示天线在不同频率下的性能表现,极化方式表示电磁波的电场分量与地面垂直或平行的相对方向,带宽表示天线能够工作的频率范围。
4.天线设计方法:天线的设计是一个综合考虑电磁学原理、工作频率和应用要求的过程。
常见的天线设计方法包括试验法、数值法和半经验法。
试验法通过制作实物天线并进行实际测量来调整参数和优化天线性能。
数值法使用计算机模拟和数值算法来预测和分析天线性能,例如有限元法、谱域法和时域法等。
半经验法结合实验和数值方法,通过经验公式和优化算法来设计天线。
5.天线应用:天线的应用非常广泛,涵盖了通信、广播、雷达、航天、医疗和科学研究等领域。
在通信领域,天线用于无线电通信、移动通信和卫星通信等。
有关天线的知识点总结

有关天线的知识点总结一、天线的工作原理天线的工作原理可以简单地理解为两个方面:接收信号和辐射信号。
当接收信号时,天线将接收到的电磁波转换成电信号;而在辐射信号时,天线将电信号转换成电磁波辐射出去。
这样一来,天线就起到了收发信号的作用。
二、天线的分类根据不同的分类标准,天线可以分为很多种类。
其中最常见的分类方法有以下几种:1. 按照频率分类:根据天线工作的频率范围不同,可以分为超高频天线、甚高频天线、超高频天线、微波天线等;2. 按照结构分类:根据天线的结构和形状不同,可以分为偶极子天线、单极天线、方向性天线、非方向性天线等;3. 按照用途分类:根据天线的用途不同,可以分为通信天线、导航天线、雷达天线、电视天线等。
三、天线的特性1. 增益:天线的增益是指天线辐射的电磁波功率与理想点源辐射的电磁波功率的比值。
增益越高,天线的辐射效率越高。
2. 阻抗:天线的输入阻抗是指天线在工作频率下的端口电阻。
一般来说,天线的阻抗要与传输线的阻抗匹配,否则会导致信号回波,影响通信质量。
3. 方向性:天线的方向性是指天线在空间中辐射和接收电磁波信号的能力。
方向性越好,天线的指向性就越强。
4. 带宽:天线的带宽是指天线可以工作的频率范围。
一般来说,带宽越宽,天线的适用范围就越广。
四、天线的设计和调试天线的设计和调试是天线工程师的主要工作之一。
在设计天线时,需要考虑到天线的工作频率、带宽、增益、方向性等参数,并根据具体的应用场景选择合适的天线结构和材料。
在调试天线时,需要使用专业的测试设备进行天线的性能测试,一般包括驻波比测量、辐射图测量、方向图测量等。
五、天线的应用天线的应用非常广泛,几乎涵盖了各个领域。
在通信领域,天线用于手机、基站、卫星通信等设备;在雷达领域,天线用于目标探测和跟踪;在导航领域,天线用于车载导航、航空导航等设备;在电视领域,天线用于接收地面数字电视信号等。
总的来说,天线作为一种重要的通信装置,在现代社会中有着不可替代的作用。
天线基础知识及超40种天线介绍

天线基础知识及超40种天线介绍SUBSCRIBE to US巨大的接收天线阵列天线总输入功率的比值,称该天线的最大增益系数。
它是比天线方向性系数更全面的反映天线对总的射频功率的有效利用程度。
并用分贝数表示。
可以用数学推证,天线最大增益系数等于天线方向性系数和天线效率的乘积。
天线效率它是指天线辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比。
是恒小于1的数值。
天线极化波电磁波在空间传播时,若电场矢量的方向保持固定或按一定规律旋转,这种电磁波便叫极化波,又称天线极化波,或偏振波。
通常可分为平面极化(包括水平极化和垂直极化)、圆极化和椭圆极化。
极化方向极化电磁波的电场方向称为极化方向。
极化面极化电磁波的极化方向与传播方向所构成的平面称为极化面。
垂直极化无线电波的极化,常以大地作为标准面。
凡是极化面与大地法线面(垂直面)平行的极化波称为垂直极化波。
其电场方向与大地垂直。
水平极化凡是极化面与大地法线面垂直的极化波称为水平极化波。
其电场方向与大地相平行。
平面极化如果电磁波的极化方向保持在固定的方向上,称为平面极化,也称线极化。
在电场平行于大地的分量(水平分量)和垂直于大地表面的分量,其空间振幅具有任意的相对大小,可以得到平面极化。
垂直极化和水平极化都是平面极化的特例。
圆极化当无线电波的极化面与大地法线面之间的夹角从0~360°周期的变化,即电场大小不变,方向随时间变化,电场矢量末端的轨迹在垂直于传播方向的平面上投影是一个圆时,称为圆极化。
在电场的水平分量和垂直分量振幅相等,相位相差90°或270°时,可以得到圆极化。
圆极化,若极化面随时间旋转并与电磁波传播方向成右螺旋关系,称右圆极化;反之,若成左螺旋关系,称左圆极化。
椭圆极化若无线电波极化面与大地法线面之间的夹角从0~2π周期地改变,且电场矢量末端的轨迹在垂直于传播方向的平面上投影是一个椭圆时,称为椭圆极化。
天线基本知识汇总

天线基本知识汇总天线是无线通信系统的重要组成部分,它负责将电能转换为电磁波,将信号从传输介质(如空气)中发射出去或接收回来。
天线的性能直接影响着无线通信系统的质量和可靠性。
下面是关于天线基本知识的汇总。
1.天线的分类:根据应用领域和工作频率不同,天线可以分为不同的类型,如定向天线、全向天线、扇形天线、微带天线等。
2.天线的工作原理:天线的工作原理基于法拉第电磁感应定律,当电流通过天线时,它会产生一个电磁场,从而形成电磁波。
接收时,电磁波会被天线吸收,然后产生电流。
3.天线的参数:天线的主要参数包括频率范围、阻抗、增益、方向性、辐射效率等。
这些参数决定了天线的性能和适用场景。
4.天线的性能指标:-增益:天线将电能转换为电磁能的能力,通常以分贝(dB)为单位表示。
增益越高,天线的发射和接收距离越远。
-方向性:天线辐射或接收信号的特定方向能力。
定向天线具有较高的方向性,可以减少多径传播和干扰。
-阻抗:天线的输入或输出端口的电阻性质。
与发射端口匹配的阻抗可以最大程度地传递电能,减少反射损耗。
-波束宽度:天线主瓣的角度范围。
较窄的波束宽度意味着更好的方向性和更高的增益。
-辐射效率:天线将输入功率转换为有效辐射功率的能力。
辐射效率高的天线可以更好地实现远距离通信。
5.天线的结构和设计:天线的结构包含一个或多个导体元件,并且根据应用需求进行设计。
常见的天线设计包括垂直极化天线、水平极化天线、天线阵列、圆极化天线等。
6.天线的应用:天线在各种无线通信系统中广泛应用,包括移动通信、卫星通信、无线局域网、雷达、无线电广播等。
7.天线的安装和调整:为了确保天线的性能,需要正确地进行安装和调整。
安装位置和方向的选择对天线的性能和覆盖范围至关重要。
8.天线的特殊设计:根据应用需求,一些特殊设计的天线得到了广泛应用,如室内小型天线、宽带天线、增强型天线等。
9.天线的未来发展:随着无线通信技术的不断发展,天线也在不断创新和改进。
天线基础知识

第一讲天线的基础知识发射电磁波所用的导线,在无线电通信中一般叫做“发射天线”。
高频电磁波在空中流传,如遇着导体,就会发生感觉作用,在导体内产生高频电流,使我们能够用导线接收来自远处的无线电信号。
接收电磁波所用的导线,一般叫做“接收天线”。
任何导线都能够作为发信天线和接收天线。
高频电子设备中每一段导线都可能向外发射电磁波,敏捷的收信机中每一段导线都可能拾取空中的各样电磁波所以需要采纳各种的障蔽举措!免得不该有的“天线”接收到扰乱信号!不一样形状、尺寸的导线在发射和接收某一频次的无线电信号时,效率相差好多,所以要获得理想的通信成效,一定采纳适合的天线才行!天线影响无线电通信成效的主要原由有极化方向、方向特征、阻抗般配、辐射效率和频带宽度等。
天线的输入阻抗输入阻抗是天线馈电端输入电压与输入电流的比值。
天线与馈线的连结,最正确情况是天线输入阻抗是纯电阻且等于馈线的特征阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频次的变化比较缓和。
天线的般配工作就是除去天线输入阻抗中的电抗重量,使电阻重量尽可能地凑近馈线的特征阻抗。
般配的好坏一般用四个参数来权衡即反射系数,行波系数,驻波比和回波消耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。
在我们平时保护中,用的许多的是驻波比和回波消耗。
一般挪动通信天线的输入阻抗为50Ω。
驻波比:它是行波系数的倒数,其值在1到无量大之间。
驻波比为1,表示完整般配;驻波比为无量大表示全反射,完整失配。
在挪动通信系统中,一般要求驻波比小于,但实质应用中VSWR应小于。
过大的驻波比会减小基站的覆盖并造成系统内扰乱加大,影响基站的服务性能。
2.回波消耗:它是反射系数绝对值的倒数,以分贝值表示。
回波消耗的值在0dB3.的到无量大之间,回波消耗越大表示般配越差,回波消耗越大表示般配越好。
4.表示全反射,无量大表示完整般配。
在挪动通信系统中,一般要求回波消耗大于14dB。
天线设计中的基础知识

天线设计中的基础知识无线通信在现代社会中已经成为了不可或缺的一部分,而天线则是无线通信的核心技术。
天线设计的好坏直接影响着无线通信的质量和稳定性。
本文将介绍天线设计中的基础知识。
一、天线的类型天线的类型很多,不同的天线适用于不同的场合和需求。
根据天线的结构和原理,可以将天线分为以下几类。
1.偶极子天线:偶极子天线是最常见的一种天线,它主要用于无线电通信中,广泛应用于电视天线、拉杆天线等。
2.单极天线:单极天线和偶极子天线极为相似,也称为垂直天线,通常用于低频通信。
3.反射天线:反射天线是一种折射天线,在无线电通信网络中广泛应用,最常见的形式是发射塔、电视塔等类型。
4.全向天线:全向天线适用于需要进行全方位通信的场合,比如无线通信基站。
5.定向天线:定向天线是一种方向性天线,能够集中把无线信号发射到某一方向上,适用于需要进行定向通信的场合。
二、天线的性能指标在天线设计中,要考虑的因素较多,其主要性能指标包括以下几点。
1.增益:天线增益是指天线在某个方向上的信号强度与无指向性原点的同一方向上的信号强度之比。
增益值越大,这个方向上的信号捕捉效果就越好。
2.方向性:天线的方向性指天线在某一个方向上集中发射或接收信号的能力。
3.波束宽度:波束宽度是指天线集中发射或接收信号的范围大小,一般用立体角表示。
波束宽度越小,天线方向性越强。
4.驻波比:当天线在工作频段内的传输中遇到其它阻抗时,会引起信号的反射和干扰,这个指标就是反射能量和传输能量之间的比值,通常用于评价天线性能的优劣。
三、天线设计流程天线的设计流程一般包括如下几个步骤。
1. 定义问题:明确天线设计的应用需求及要达成的目标,进行参数筛选和定义。
2. 选取天线类型:根据实际情况选取合适的天线类型。
3. 设计实现:根据天线类型的特点及要求,进行天线设计。
根据需求制定天线的结构参数以及驱动功率、频率范围和增益等指标,以及阻抗、匹配网络等。
4. 仿真模拟:使用仿真软件模拟天线性能,优化天线设计。
天线知识点总结

天线知识点总结天线是电子设备中最基本的元件之一,它能够将电磁波转换为电信号或者将电信号转换为电磁波,是广泛应用在通讯、雷达、导航、电视等领域的不可或缺的元器件。
本文将简要介绍一些天线的相关知识点。
1. 天线的基础理论 - 反射、辐射以及电磁波的特性天线的工作原理基于电磁波的传播特性及其与天线之间的相互作用。
天线通过反射、辐射等方式将电磁波与电信号进行转换,因此温度、介质、空气湿度等环境因素都会对天线的性能产生影响。
2. 天线的类型 - 主动、被动及扫描式天线天线可以根据其在电路中的位置和作用方式分为主动和被动两种类型。
主动天线通常带有放大器来增加信号强度,而被动天线则不带放大器。
此外,扫描式天线可以通过旋转、摆动等方式改变辐射方向,以实现扫描覆盖目标区域的效果。
3. 天线的指标 - 增益、方向性、VSWR、带宽等天线的性能可由其各种指标来描述,其中增益、方向性、VSWR、带宽等是较为重要的指标。
增益是天线的辐射能力,方向性是天线辐射能力随方向变化的能力,VSWR是天线对来自外部信号反射时的反射率指标,带宽则是天线能够工作的频率范围。
4. 天线的尺寸 - λ/2、λ/4、全波长天线等天线的尺寸与工作频率密切相关,常见的天线长度有λ/2、λ/4、全波长天线等。
λ/2天线通常用于VHF和UHF频段,λ/4天线适用于较低频段,全波长天线则通常用于HF 等较低频段。
5. 天线的应用 - 通讯、雷达、导航、电视等天线在通讯、雷达、导航、电视等领域都有广泛的应用。
不同应用场景对天线的要求不同,例如通讯领域需要天线具有良好的增益和方向性,而雷达和导航领域则需要具有较高的扫描速度和快速响应能力。
6. 天线的制作和测试 - PCB天线、红外按摩仪等天线的制作和测试涉及到复杂的技术和设备,常用的制作方法包括PCB天线、红外按摩仪等。
测试方法则通常包括VSWR测试、增益测试、方向性测试等。
7. 天线的未来发展趋势 - 新材料、智能化、多功能化等随着技术的不断进步,未来天线的发展趋势将会趋向于新材料、智能化、多功能化等方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天线基本知识1.1 天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。
可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。
天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。
1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
两臂长度相等的振子叫做对称振子。
每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。
另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。
1.3 天线方向性的讨论1.3.1 天线方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。
垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图(图1.3.1 a)。
立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。
从图1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1c 可以看出,在水平面上各个方向上的辐射一样大。
1.3.2 天线方向性增强若干个对称振子组阵,能够控制辐射,产生“扁平的面包圈”,把信号进一步集中到在水平面方向上。
下图是4个半波对称振子沿垂线上下排列成一个垂直四元阵时的立体方向图和垂直面方向图。
也可以利用反射板可把辐射能控制到单侧方向平面反射板放在阵列的一边构成扇形区覆盖天线。
下面的水平面方向图说明了反射面的作用--反射面把功率反射到单侧方向,提高了增益。
天线的基本知识全向阵(垂直阵列不带平面反射板)。
抛物反射面的使用,更能使天线的辐射,像光学中的探照灯那样,把能量集中到一个小立体角内,从而获得很高的增益。
不言而喻,抛物面天线的构成包括两个基本要素:抛物反射面和放置在抛物面焦点上的辐射源。
1.3.3增益增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。
它定量地描述一个天线把输入功率集中辐射的程度。
增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。
可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号。
如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为G = 13 dB = 10*log20的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W . 换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
半波对称振子的增益为G = 2.15 dBi ; 4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G = 8.15 dBi ( dBi这个单位表示比较对象是各向均匀辐射的理想点源) 。
如果以半波对称振子作比较对象,则增益的单位是dBd 。
半波对称振子的增益为G = 0 dBd (因为是自己跟自己比,比值为1,取对数得零值。
);垂直四元阵,其增益约为G = 8.15 – 2.15 = 6 dB。
.1.3.4 波瓣宽度方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣。
参见图1.3.4 a , 在主瓣最大辐射方向两侧,辐射强度降低3 dB(功率密度降低一半)的两点间的夹角定义为波瓣宽度(又称波束宽度或主瓣宽度或半功率角)。
波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。
还有一种波瓣宽度,即10dB波瓣宽度,顾名思义它是方向图中辐射强度降低10dB (功率密度降至十分之一)的两个点间的夹角,见图1.3.4 b .1.3.5 前后比方向图中,前后瓣最大值之比称为前后比,记为F / B 。
前后比越大,天线的后向辐射(或接收)越小。
前后比F / B 的计算十分简单--- F / B = 10 Lg {(前向功率密度)/(后向功率密度)}对天线的前后比F / B 有要求时,其典型值为(18 --- 30)dB,特殊情况下则要求达(35 --- 40)dB 。
1.3.6 天线增益的若干近似计算式1)天线主瓣宽度越窄,增益越高。
对于一般天线,可用下式估算其增益:G(dBi )= 10 Lg { 32000 / (2θ3dB,E ×2θ3dB,H )}式中,2θ3dB,E 与2θ3dB,H 分别为天线在两个主平面上的波瓣宽度;32000 是统计出来的经验数据。
2)对于抛物面天线,可用下式近似计算其增益:G(dB i )= 10 Lg { 4.5 ×(D / λ0 )2}式中,D 为抛物面直径;λ0 为中心工作波长;4.5 是统计出来的经验数据。
3)对于直立全向天线,有近似计算式G(dBi )= 10 Lg { 2 L / λ0 }式中,L 为天线长度;λ0 为中心工作波长;1.3.7 上旁瓣抑制对于基站天线,人们常常要求它的垂直面(即俯仰面)方向图中,主瓣上方第一旁瓣尽可能弱一些。
这就是所谓的上旁瓣抑制。
基站的服务对象是地面上的移动电话用户,指向天空的辐射是毫无意义的。
1.3.8天线的下倾为使主波瓣指向地面,安置时需要将天线适度下倾。
1.4 天线的极化天线向周围空间辐射电磁波。
电磁波由电场和磁场构成。
人们规定:电场的方向就是天线极化方向。
一般使用的天线为单极化的。
下图示出了两种基本的单极化的情况:垂直极化---是最常用的;水平极化---也是要被用到的。
1.4.1 双极化天线下图示出了另两种单极化的情况:+45°极化与-45°极化,它们仅仅在特殊场合下使用。
这样,共有四种单极化了,见下图。
把垂直极化和水平极化两种极化的天线组合在一起,或者,把+45°极化和-45°极化两种极化的天线组合在一起,就构成了一种新的天线---双极化天线。
下图示出了两个单极化天线安装在一起组成一付双极化天线,注意,双极化天线有两个接头. 双极化天线辐射(或接收)两个极化在空间相互正交(垂直)的波。
1.4.2 极化损失垂直极化波要用具有垂直极化特性的天线来接收,水平极化波要用具有水平极化特性的天线来接收。
右旋圆极化波要用具有右旋圆极化特性的天线来接收,而左旋圆极化波要用具有左旋圆极化特性的天线来接收。
当来波的极化方向与接收天线的极化方向不一致时,接收到的信号都会变小,也就是说,发生极化损失。
例如:当用+ 45°极化天线接收垂直极化或水平极化波时,或者,当用垂直极化天线接收+45°极化或-45°极化波时,等等情况下,都要产生极化损失。
用圆极化天线接收任一线极化波,或者,用线极化天线接收任一圆极化波,等等情况下,也必然发生极化损失------只能接收到来波的一半能量。
当接收天线的极化方向与来波的极化方向完全正交时,例如用水平极化的接收天线接收垂直极化的来波,或用右旋圆极化的接收天线接收左旋圆极化的来波时,天线就完全接收不到来波的能量,这种情况下极化损失为最大,称极化完全隔离。
1.4.3极化隔离理想的极化完全隔离是没有的。
馈送到一种极化的天线中去的信号多少总会有那么一点点在另外一种极化的天线中出现。
例如下图所示的双极化天线中,设输入垂直极化天线的功率为10W,结果在水平极化天线的输出端测得的输出功率为10mW。
1.5 天线的输入阻抗Zin定义:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。
输入阻抗具有电阻分量Rin 和电抗分量Xin ,即Zin = Rin + j Xin 。
电抗分量的存在会减少天线从馈线对信号功率的提取,因此,必须使电抗分量尽可能为零,也就是应尽可能使天线的输入阻抗为纯电阻。
事实上,即使是设计、调试得很好的天线,其输入阻抗中总还含有一个小的电抗分量值。
输入阻抗与天线的结构、尺寸以及工作波长有关,半波对称振子是最重要的基本天线,其输入阻抗为Zin = 73.1+j42.5 (欧) 。
当把其长度缩短(3~5)%时,就可以消除其中的电抗分量,使天线的输入阻抗为纯电阻,此时的输入阻抗为Zin = 73.1 (欧) ,(标称75 欧)。
注意,严格的说,纯电阻性的天线输入阻抗只是对点频而言的。
顺便指出,半波折合振子的输入阻抗为半波对称振子的四倍,即Zin = 280 (欧) ,(标称300欧)。
有趣的是,对于任一天线,人们总可通过天线阻抗调试,在要求的工作频率范围内,使输入阻抗的虚部很小且实部相当接近50 欧,从而使得天线的输入阻抗为Zin = Rin = 50 欧------这是天线能与馈线处于良好的阻抗匹配所必须的。
1.6 天线的工作频率范围(频带宽度)无论是发射天线还是接收天线,它们总是在一定的频率范围(频带宽度)内工作的,天线的频带宽度有两种不同的定义------一种是指:在驻波比SWR ≤ 1.5 条件下,天线的工作频带宽度;一种是指:天线增益下降3 分贝范围内的频带宽度。
在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的驻波比SWR 不超过1.5 时,天线的工作频率范围。
一般说来,在工作频带宽度内的各个频率点上, 天线性能是有差异的,但这种差异造成的性能下降是可以接受的。
1.7 移动通信常用的基站天线、直放站天线与室内天线1.7.1板状天线的基本知识无论是GSM 还是CDMA,板状天线是用得最为普遍的一类极为重要的基站天线。
这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。
板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。
a 基站板状天线基本技术指标示例b 板状天线高增益的形成B. 在直线阵的一侧加一块反射板(以带反射板的二半波振子垂直阵为例)C. 为提高板状天线的增益,还可以进一步采用八个半波振子排阵前面已指出,四个半波振子排成一个垂直放置的直线阵的增益约为8 dB;一侧加有一个反射板的四元式直线阵,即常规板状天线,其增益约为14 --- 17 dB 。