中点常见的辅助线(八年级)
八年级上册三角形常见构造辅助线方法

八年级常见构造辅助线方法一、倍长中线类看见中点、中线——倍长中线解读:凡是与中点连线的线段都可看作是中线,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的,构成八字全等. 常见模型:1. 如图,CE ,CB 分别是△ABC ,△ADC 的中线,且∠ACB =∠ABC 。
求证:CD =2CE.3. 如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE 。
二、角平分线类(一)向角两边作垂线解读:过角平分线上的点向角两边作垂线,这是常用辅助线,可以利用边角边构造全等. 常见模型:2. 如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC ,延长BE 交AC 于F.求证:AF=EFADC BEEF CDB A1.如图,△ABC中,∠C =90o,BC=10,BD=6,AD平分∠BAC,求点D到AB的距离.2.如图,OC 平分∠AOB,∠DOE +∠DPE =180°。
求证: PD=PE(二)在角两边截取相等的线段看见线段间的数量关系——截长补短解读:在角两边截取相等的线段,常用于解决线段和差问题.只要出现类似EF+的线段关系,AB=CD就可以采取截长补短的方法来做辅助线,注意这个方法可以说是四个方法,由于方向性的不同,所以截长两种,补短两种.常见模型:1.如图,AB∥CD,CE,BE分别平分∠BCD和∠CBA,点E在AD上,求证:BC=AB+CD.2.如图,已知△ABC中,AD是∠BAC的角平分线,AB=AC+CD,求证:∠C=2∠B3.如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .(三)过角平分线上的点作角平分线的垂线解读:过角平分线上的点作角平分线的垂线,常用于构造“三线合一”,构造等腰三角形. 常见模型:1.如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E ,BD 平分∠ABC 。
苏科版八年级数学上册1.2《全等三角形》中常见辅助线

全等三角形⑴----常见辅助线一.已知中点D1.线段倍长(或作平行线)A模型:如图,已知OA=OC,再倍长DO,使OB=OD,则△AOB≌△COD(SAS) C⑴.如图,在△ABC中,D是BC边的中点. BB A①.求证:AB+AC>2AD;②.若AB=5,AC=7,AD的取值范围为.CD1⑵如图,CE是△ACD中线,点B在AD的延长线上,BD=AC,∠ACD=∠ADC,求证:CE= BC.2CA BDEE⑶.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM.DAB CME⑷.如图,四边形BEFC中,D为BC中点,∠EDF=90 ,求证:BE+FC>EF.FB CD2.作垂线(知中点作垂线;证中点作垂线)C模型:如图,OA=OB,BC⊥CD,AD⊥CD,则△AOD ≌△BOC(AAS) A⑴.如图,△ABC 中,D 为 BC 的中点.BO①在图中作出 CM⊥AD,BN⊥AD,垂足分别为点 M,N; D②⑵求证:DM=DN; ③若 AD=3,求 AM+AN 的值.A DBC⑵.如图,CD 为△ABC 的角平分线,E,F 分别在 CD,BD 上,且 DA=DF,EF=AC.求证:EF ∥BC.C EBADFE⑶.如图,BC⊥CE,BC=CE,AC⊥CD,AC=CD,DE 交 AC 的延长线于点 M,M 是 DE 的中点. ①求证:AB⊥AC;②若 AB=8,求 CM 的长.BAC MD⑷.如图,已知 A(-2,1),C(0,2),且 C 为线段 AB 的中点,求点 B 的坐标.y BCAxO3.证中点【方法技巧】证线段的中点,常过线段的端点构造一组平行线,或过线段的两端点向过中点的线段作垂线,根据AAS或ASA构造全等三角形,证题关键往往是证明一组对应边相等.【作平行证中点】⑴.如图,在△ABC中,∠ABC=∠ACB,D,E分别是AC和AC的延长线上的点,连接BD,BE,若AB=CE,∠DBC=∠EBC.求证:D是AC的中点.ADCBE⑵.如图,AB⊥AE,AB=AE,AC⊥AD,AC=AD,AH⊥DE于点H,延长AH交BC于点M.求证:M是BC的中点.ADHCB ME【作垂线证中点】⑶.如图,AB⊥AC,AB=AC,D是AB上一点,CE⊥CD,CE=CD,连接BE交AC于点F,求证:F是BE的中点.EAFDB C⑷如图,A,B,C三点共线,D,C,E三点共线,∠A=∠DBC,EF⊥AC于点F,AE=BD.①求证:C是DE的中点;②求证:AB=2CF. ABFD E二、线段的和差处理1.等线段代换法C⑴如图,CD为△ABC的中线,M,N分别为直线CD上的点,且BM∥AN.①求证:AN=BM;②求证:CM+CN=2CDMA BDN⑵如图,△ABC中,∠BAC=90︒,AB=AC,AN是过点A的一条直线,且BM⊥AN于点M,CN⊥AN于点N.①求证:AM=CN;②求证:MN=BM-CN.AMCBN⑶如图,在△ABC中,AD⊥BC于D,且AD平分∠BAC,CE⊥AB于点E,交AD于点F.①求证:BD=CD; A②若AF=BC,求证:AC-CE=EF.E FB CD⑷.如图,△ABC中,AC=BC,∠ACB=90︒,D为BC延长线上一点,BF⊥AD于点F,交AC于点E. A①求证:BE=AD;②过C点作CM∥AB交AD于点M,连接EM,求证:BE=AM+EM. FEMB DC2.截长补短法(直接和间接)如图,△ABC 中,∠CAB=∠CBA=45 ,CA=CB,点 E 为 BC 的中点,CN ⊥AE 交 AB 于点 N. ①求证:∠1=∠2;②求证:AE=CN+EN. (用多种方法) 方法 1:直接截长BN E12CA方法 2:间接载长BN E12CA方法 3:直接补短BN E12C AAB方法 4:间接补短N E12C三、角平分线模型 A1.作垂线1 P模型:如图,∠1=∠2,PA⊥OA,PB⊥OB,则PA=PB. 2O B⑴如图,△ABC中,CD是角平分线,AC=3,BC=5,求S△ACD∶S△BCD的值.CBA D⑵.如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且∠B+∠D=180︒,求证:AE=AD+BE.CDBA E⑶.如图,△ABC中,AC>AB,F为BC的中点,FD⊥BC,交∠BAC的平分线于点D,DE⊥AC于点E.A C-A B①求证:BD=CD;②求证:AB+AC=2AE;③直接写出的值C EA是.EFB CD⑷如图,△ABC中,AB=AC,D为△ABC外一点,且∠1=∠2,AB⊥BD于点M.①求证:AD平分△BDC的B D-CD A外角;②求的值.D M B 1M2C D2.截长补短 A模型:如图,若∠AOP=∠BOP,OA=OB,则△OAP≌△OBP P ⑴.如图,四边形ABCD中,AC平分∠DAB,∠B+∠D=180 ,求证:CD=CB. O BCD12B B⑵.△ABC中,AB>AC,AD平分∠BAC,AE=AC,连DE.①求证:∠C>∠B;②若AB-AC=2,BC=3,求△BED的周长.AB CD⑶.如图,AD∥BC,E是CD上一点,且∠1=∠2,∠3=∠4,求证:AB=AD+BCCED12 43A B⑷.如图,BC>AB,AD=CD,∠1=∠2,探究∠BAD与∠C之间的数量关系.(多种方法)D DA A1 12 2B C CB3.角平分线+垂线:延长法 AC 模型:如图,若∠1=∠2,AC⊥OC,延长AC交OB于点B,则△OCA≌△OCB.⑴.如图,在△ABC中,AD平分∠BAC,CE⊥AD于点E,探究∠ACE,∠B,O B∠ECD之间的数量关系.AEB CD⑵.如图,在△ABC中,AB<BC,BP平分∠ABC,AP⊥BP于P点,连接PC,若△ABC的面积为4,求△BPC 的面积.APB C⑶.如图,在△AOB中,AO=OB,∠AOB=90 ,BD平分∠ABO交AO于点D,AE⊥BD交BD的延长线于点E,求证:BD=2AE.AEDBO⑷.如图,四边形ABCD中,AD∥BC,AE,BE分别平分∠DAB,∠CBA.①求证:AE⊥BE;②求证:DE=CE;③若AE=4,BE=6,求四边形ABCD的面积.DAEBC四、半角与倍角模型⑴如图,已知 AB=AC,∠BAC=90°,∠MAN=45°,过点 C 作 NC⊥AC 交 AN 于点 N,过点 B 作 BM⊥AB 交 AM 于点 M ,连接 MN.①当∠MAN 在∠BAC 内部时,求证:BM+CN=MN.MBNCA②如图,在①的条件下,当 AM 和 AN 在 AB 同侧时,①的结论是否成立?请说明理由.NCMBA⑵如图,在△ABC 中,CA=CB,∠ACB=120°,E 为 AB 上一点,∠DCE=60°,∠DAE=120°,求证: DE-AD=BE.CABED⑶如图,在△ABC 中,CA=CB,∠ACB=120°,点 E 为 AB 上一点,∠DCE=∠DAE=60°,求证:AD+DE=BE.DCBAE1 ⑷.①如图 1,在四边形 ABCD 中,AB=AD,∠B+∠D=180°,E,F 分别是 BC,CD 上的点,且∠EAF= ∠2 DBAD,求证:EF=BE+DF;AFCBE②如图 2,在①条件下,若将△AEF 绕点 A 逆时针旋转,当点 E,F 分别 FD运动到 BC,CD 延长线上时,则 EF,BE,DF 之间的数量关系是.A。
人教版八年级上册几何常用辅助线秘籍

几何常用辅助线秘籍一、知识要点关于全等的辅助线有以下常见的作法(1) 有角平分线时,常在角两边截取相等的线段,构造全等三角形(2) 在三角形中有中线时,常采取延长中线变为原来的两倍,构造全等三角形来解决(3) 截长补短法:当已知或求证中涉及到线段a、b、c、d有下列情况:①a>b;②a±b=c;③a±b=c±d中的其中一种情况时采用二、例题解析【例1】如图,点P为△AEF外一点,P A平分∠EAF,PE=PF,PB⊥AE于B,求证:AF-AB =BE【例2】如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE +CD【例3】如图,△ABC中,∠ACB=90°,AC=BC.若直线l过顶点A,BM⊥l于M,若l平分∠BAC,求证:(1) AD=2BM;(2) ∠CMA=45°【例4】如图,已知AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF【例5】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB的中点,连结CE、CD,求证:CD=2EC【例6】如图,△ABC中,∠C=90°,BE⊥AB且BE=AB,BD⊥BC且BD=BC,CB的延长线交DE于F(1) 求证:点F是ED的中点(2) 求证:S△AB C=2S△BEF【例7】如图,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF 的平分线上一点,且∠ADC=45°,CD交AB于E(1) 求证:AD=CD(2) 求AE的长三、课堂练习如图,△ABC中,CA=CB,∠CAB=∠CBA=45°,点E为BC的中点,CN⊥AE交AB于N,求证:CN+EN=AE四、反馈练习1.如图,四边形ABCD中,AB>AD,AC平分∠BAD,CE⊥AD于E点,若∠B+∠ADC=180°,求证;CD=CB2.(1) 如图,△ABC中,若AD平分∠BAC,AB+BD=AC,求:∠C∶∠B (2) 如图,△ABC中,若AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC。
八年级上-常见全等辅助线

常见全等辅助线知识集结知识元倍长中线型知识讲解倍长中线型辅助线一般跟中点相关,在初中阶段与中点相关的辅助线大体分成三大类:倍长中线(这里的中线指的是过中点的任意线段)、直角三角形斜边中线、中位线.其中后两种辅助线会在初二下学期的四边形章节中讲到,在此不做过多讲解,本节所讲的中点相关的辅助线主要是倍长中线型辅助线(这里的中线指的是过中点的任意线段),此种模型的本质都是构造“8字型”全等,主要分成三类处理方法:(1)倍长中线型——这里的中线指的是标准的三角形的中线,具体模型如下:已知:点D为AC边的中点作法:延长BD至E,使得DE=BD,连结AE.2.倍长过中点的任意线段型——这里只需要出现中点即可构造,具体模型如下:已知:点D为AC边的中点作法:延长FD至E,使得DE=DF,连结AE.3.平行线构造“8字型”——中点不是三角形的边的中点,具体模型如下:已知:点E为DF的中点作法:过点D作DM//AF,交AC于点M.另外,平行线构造“8字型”的模型还可以有以下两种类型:例题精讲倍长中线型例1.已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是.例2.'如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.'例3.'【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.'倍长过中点的任意线段型知识讲解当题目中出现中点,而没有合适的中线可以倍长时,也可以考虑倍长过中点的任意一条线段,构造“8字型”全等.例题精讲倍长过中点的任意线段型例1.'如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=AC+AF.'例2.'如图,△ABC中,E,F分别在AB,AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.'平行线构造“8字型”知识讲解当题目中出现中点,但此中点不是三角形的某条边的中点,只是与三角形某条边有交点时,则可以考虑利用作平行线的方法构造“8字型”的全等.例题精讲平行线构造“8字型”例1.'如图,△ABC中,AB=AC,D在AB上,F在AC的延长线上,且BD=CF,连接DE交BC于E.求证:DE=EF.'例2.'如图,AC∥BD,E为CD的中点,AE⊥BE(1)求证:AE平分∠BAC,BE平分∠ABD;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.'例3.'阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.'截长法添加辅助线知识讲解在已知条件中、证明的结论中出现某三条线段,甚至是四条线段的关系时(或者猜想某三条线段的关系时),优先考虑的就是方法就是截长、补短法.截长和补短是两种方法:截长是把长线段截成两条短线段;补短是把两条短线段之一补成一条长线段,两种方法有时候可以通用,但是由于证明方法和已知条件的局限性,有时候会需要学生辨别一下具体使用截长还是补短,所以分析已知条件非常重要.举例说明:1.当三线关系出现在已知条件中,如:已知AC=AB+BD,则(1)截长法具体操作:在线段AC上截取AM=AB条件转化:已知条件“AC=AB+BD”就变成了“AM=AB和CM=BD”【注】当然也可以在线段AC上截取AM=BD,具体截取的方法选择,由题中的其他已知条件决定.(2)补短法具体操作:延长AB至N,使得AN=AC条件转化:已知条件“AC=AB+BD”就变成了“AN=AC和BN=BD”【注】当然也可以延长BA、BD、DB,具体延长哪条线段、向哪个方向延长,由题中的其他已知条件决定.2.当三线关系出现在待证明的结论中,如:证明AC=AB+BD,则(1)截长法具体操作:在线段AC上截取AM=AB条件转化:待证明的结论“AC=AB+BD”就变成了“CM=BD”,而多出了一个已知条件“AM=AB”【注】当然也可以在线段AC上截取AM=BD,具体截取的方法选择,由题中的其他已知条件决定.(2)补短法具体操作:延长AB至N,使得AN=AC条件转化:待证明的结论“AC=AB+BD”就变成了“BN=BD”,而多出了一个已知条件“AN=AC”【注】当然也可以延长BA、BD、DB,具体延长哪条线段、向哪个方向延长,由题中的其他已知条件决定.例题精讲截长法添加辅助线例1.'如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.'例2.'如图,△ABC中,∠B=60°,∠BAC,∠ACB的平分线AD,CE交于点O,说明AE+CD=AC的理由.'例3.'如图1,△ABC中,∠BAC=90°,∠ABC=45°,点P为△ABC三条平分线的交点,连PA,PB,PC.(1)求证:BC=AB+AP;(2)如图2,若将“∠ABC=45°”变为“∠ABC=60°”,其余条件不变,求证:AC=AB+BP.'补短法添加辅助线知识讲解当题目中出现两条以上的线段的关系时,常会优先考虑截长补短法,其补短法是将某一条短线段补成长线段,再分别证明线段相等.例题精讲补短法添加辅助线例1.'如图,△ABC内,∠BAC=60°,∠ACB=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的平分线,求证:BQ+AQ=AB+BP.'例2.'(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.'当堂练习填空题已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是.解答题练习1.'如图,△ABC中,E,F分别在AB,AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.'练习2.'如图:在△ABC中,点D在AB边上,点E在AC边的延长线上,CE=BD,DG=GE.求证:AB=AC.'如图,AD为△ABC的角平分线,M为BC的中点,ME∥AD交BA的延长线于E,交AC于F.求证:BE=CF.'练习4.'如图,△ABC内,∠BAC=60°,∠ACB=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的平分线,求证:BQ+AQ=AB+BP.'练习5.'如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.'练习6.'如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=AC+AF.'练习7.'如图,△ABC中,AB=AC,D在AB上,F在AC的延长线上,且BD=CF,连接DE交BC于E.求证:DE=EF.'练习8.'如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.'练习9.'如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.'练习10.'ABCD是正方形,P为BC上任意一点,∠PAD的平分线交CD于Q,求证:DQ=AP-BP.'练习11.'如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.'练习12.'已知,如图:AD是△ABC的中线,AE⊥AB,AE=AB,AF⊥AC,AF=AC,连结EF.试猜想线段AD与EF的关系,并证明.'。
初二数学辅助线常用做法及例题(含答案)

DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
八年级上册数学几何加辅助线

八年级上册数学几何加辅助线一、三角形中线三角形中线是连接-个顶点和相对边的中点的线段。
在三角形中,共有三条中线。
中线可以将三角形分为两个面积相等的部分。
在解决几何问题时,添加三角形中线是一种常见的辅助线方法。
二、三角形的高三角形的高是从一个顶点垂直于相对边的线段。
在直角三角形中,高也称为直角边。
在解决几何问题时,通过添加或构造高来找到新的线段或证明某些性质是非常有用的。
三、三角形的角平分线三角形的角平分线是将一-个角平分为两个相等的小角的线段。
角平分线与相对边相交于-点, 这个点称为角的平分线点。
通过角平分线可以找到-些等长的线段或等大的角,这对于解决几何问题非常有帮助。
四、直角三角形斜边中线角三角形斜边中线是连接直角顶点与斜边中点的线段。
在直角三角形中,斜边中线等于斜边的一半。
通过添加斜边中线,可以证明一些性质或找到一些等长的线段。
五、平行线与截线平行线和截线是解决几何问题时常用的辅助线。
通过添加平行线和截线,可以证明一些性质或找到-些相等的角或线段。
在某些情况下,也可以使用平行线和截线来构诰新的三角形或平行四边形。
六、构造等腰三角形等腰三角形是两边相等的三角形。
在解决几何问题时,通过添加或构造等腰三角形,可以找到一等长的线段或等大的角。
在某些情况下,也可以使用等腰三角形的性质来证明一些结论。
七、三角形内外角三角形内外角是指三角形内部或外部的一些角。
通过研究三角形的内外角,可以找到一些等大的角或相等的角和。
在解决几何问题时,利用三角形内外角性质可以证明一些结论或找到一些有用的信息。
初中几何辅助线大全(很详细哦)

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如 AB=AC+BD....这类的就是想办法作出另一条 AB 等长的线段,再证全等说明 AC+BD=另一条A B,就好了。
还有一些关于平方的考虑勾股,A 字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
中点常见的辅助线

(五)条件中无中点时,完善图形得中位线:
如图,△ABC边长分别为AB=14,BC=16,AC=26,P为∠A的平分线AD 上一点,且BP⊥AD,M为BC的中点,则PM的值是_______.
练习:
在△ABC中,∠B=2∠A,CD⊥AB于D,E为AB的中点,求证:DE=
1 BC 2
(三)添加三角形的第三边,构建中位线:
如图,已知E、F分别为△ABC的边AB、BC的中点,G、H为AC 边上的两个三等分点,连EG、FH,且延长后交于点D, 求证:四边形ABCD是平行四边形
(四)添加三角形的另一边并取中点,构建中位线: 在四边形ABCD中,E、F、M分别是AB、CD、BD的中点,AD=BC. 求证:∠EFM=∠FEM.
A
B
E
D
C
3、等腰三角形:等腰三角形顶角的平分线、底边上的高、 底边上的中线互相重合(三线合一)。
3、如图,四边形ABCD中,∠DAB=∠BCD=90°,M为BD中点, N为AC中点,求证:MN⊥AC.
C D A N M B
四、两个或多个中点常见的辅助线: 当图中有多个中点时,同时还要考虑中位线,
中点常见的辅助线
ቤተ መጻሕፍቲ ባይዱ
与中点有关的辅助线
1、三角形的中线:延长中线至一倍,构建全等三角形 2、直角三角形:斜边上的中线等于斜边的一半 3、等腰三角形:等腰三角形顶角的平分线、底边上的高、 底边上的中线互相重合(三线合一)。 4、三角形的中位线:平行于第三边,并且等于第 三边的一半。
1、三角形的中线:延长中线至一倍,构建全等三角形
1、在△ABC中,AD是BC边上的中线,若AB=2, AC=4,则AD的取值范围是________.
A
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中点常见的辅助线
中点经常所在的三角形:
全等三角形
等腰三角形:三线合一
直角三角形:斜边上的中线、
三角形的中位线:
一、一个中点常见的辅助线
(1)利用中点构建全等形:倍长中线至二倍,构建全等三角形
(2)有中点联想直角三角形的斜边上的中线
(3)由中点联想到等腰三角形的“三线合一”
1、在△ABC中,AD是BC边上的中线,若AB=2,AC=4,则AD的取值范围是________.
2、已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.
3、正方形ABCD中,E为CD的中点,B F⊥AE于F ,连接CF,求证;CF=CB
4.如图,四边形ABCD中,∠DAB=∠BCD=90°,M为BD中点,N为AC中点,求证:MN ⊥AC.
5.如图所示,在△ABC中,∠C=2∠B,点D是BC上一点,AD=5,且AD⊥AB,点E是BD 的中点,AC=6.5,则AB的长度为_________.
6、已知梯形ABCD 中,A D ∥BC,且AD+BC=AB,E 为CD 的中点,连接AE 、BE
求证;(1)AE 平分∠BAD
(2) BE 平分∠ABC
(3)A E ⊥BE
练习:
1、已知正方形ABCD 中,E 为CD 的中点,AE 平分∠BAF .求证:AF=BC+CF
6、在△ABC (AB ≠AC )中,在∠A 的内部任做一条射线,过B 、C 两点做此射线的垂线BE 和CF ,交此射线于E 、F ,M 为BC 的中点,求证:MD=ME .
等腰直角△ABC 和等腰直角△DCE 如图所示放置,M 为AE 的中点,连接DM 、BM ,(1)求证:BM ∥CE
(2)若AB=a ,DE=2a ,求DM 、BM 的长。
A M
E
D C
B
A
二、两个或多个中点常见的辅助线:
当图中有多个中点时,我们要细致分析图形特点,是否有直角三角形,等腰三角形,等边三角形,有时,要利用中点的性质分析,同时还要考虑中位线,
(一)直接连接中点构建中位线:
1.已知:在四边形ABCD中,E、F、G、H分别是BC、AD、BD、AC的中点.
①求证:EF与GH互相平分;
②当四边形ABCD的边满足_________条件时,EF⊥GH.
(二)取三角形一边的中点,构建中位线:
2、如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD的中点,且AC=BD.求证:OM=ON.
(三)添加三角形的第三边,构建中位线:
如图,已知E、F分别为△ABC的边AB、BC的中点,G、H为AC边上的两个三等分点,连EG、FH,且延长后交于点D,
求证:四边形ABCD是平行四边形
四、添加三角形的另一边并取中点,构建中位线:
在四边形ABCD中,E、F、M分别是AB、CD、BD的中点,AD=BC.
求证:∠EFM=∠FEM.
如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连接MN.则AB与MN的关系是()
A.AB=MN B.AB>MN C.AB<MN D.上述三种情况均可能出现
已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
五、条件中无中点时,完善图形得中位线:
如图,△ABC 边长分别为AB=14,BC=16,AC=26,P 为∠A 的平分线AD 上一点,且BP ⊥AD ,M 为BC 的中点,则PM 的值是_______.
11.如图,自△ABC 顶点A 向∠C 与∠B 的角平分线CE 、BD 作垂线AM 、AN ,垂足分别是M 、N ,已知△ABC 三边长为a 、b 、c ,则MN=_______.
在△ABC 中,∠B=2∠A ,C D ⊥AB 于D ,E 为AB 的中点,求证:DE=2
1BC
多个中点
中点经常所在的三角形:
等腰三角形:三线合一
直角三角形:斜边上的中线、
三角形的中位线:
已知如图:在△ABC 中,AB 、BC 、CA 的中点分别是E 、F 、G ,AD 是高.求证:∠EDG=∠EFG .
(2015•广东模拟)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
(1)如图1所示在等腰△ABC 中,AB=AC ,分别以AB 、AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF ⊥AB 于点F ,EG ⊥AC 于点G ,M 是BC 的中点,连结MD 和ME ,求证:
①AF=AG =2
1AB ; ②MD=ME .
(2)在任意△ABC 中,仍分别以AB 、AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图2所示,M 是BC 的中点,连结MD 和ME ,试判断△MDE 的形状.(直接写答案,不需要写证明过程).
(3)在任意△ABC 中,分别以AB 、AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图3所示,M 是BC 的中点,连结MD 和ME ,则MD 与ME 有怎样的数量关系?
6、△ABC 中, ∠CAB=120°,分别以AB 、AC 为边分别向外做正△ABD 和△ACE ,M 为AD 的中点,N 为AE 的中点,P 为BC 的中点,
(1)求证:PM=PN
(2)试求∠MPN 的度数
变式一:△ABC 中, ∠CAB=120°,分别以AB 、AC 为边分别向外做等腰直角△ABD 和等腰直角△ACE ,M 为AD 的中点,N 为AE 的中点,P 为BC 的中点, 求证:PM=PN 变式二:△ABC 中, ∠CAB=120°,分别以AB 、AC 为边分别向外做等腰△ABD 和等腰△ACE ,M 为AD 的中点,N 为AE 的中点,P 为BC 的中点, 求证:PM=PN
变式三:△ABC 中, ∠CAB=120°,分别以AB 、AC 为边分别向外做等腰△ABD 和等腰△ACE ,M 为BD 的中点,N 为CE 的中点,P 为BC 的中点, 求证:PM=PN
2.如图,点P 为△ABC 的边BC 的中点,分别以AB ,AC 为斜边作Rt △ABD 和Rt △ACE ,且∠BAD=∠CAE ,求证:PD=PE .
2.如图,点O 为△ABC 内的一点,OD ⊥AB,OE ⊥AC,∠1=∠2,F 为BC 的中点,链接FD 、FE ,求证:FD=FE .
A B C D E
M
N P A B C D
E
M N
P A F D
E O
C B 1 2。