图像识别技术报告

合集下载

复杂背景下目标图像识别技术研究的开题报告

复杂背景下目标图像识别技术研究的开题报告

复杂背景下目标图像识别技术研究的开题报告一、研究背景目标图像识别技术是计算机视觉领域中的核心技术之一。

在如今大数据和智能化的背景下,目标图像识别技术越来越受到广泛关注和应用。

目标图像识别主要是对复杂背景下的图像进行分析和处理,以识别出感兴趣的目标,从而实现目标检测、识别、跟踪等功能。

随着计算机性能的不断提升和算法的不断优化,目标图像识别技术已经取得了较为显著的进展。

但是,由于实际应用场景的多样性和复杂性,目标图像识别技术仍然存在着一些挑战,比如物体遮挡、光照变化、噪声干扰等问题,尤其是在复杂背景下,目标图像识别的准确性和鲁棒性还不够理想。

因此,对于复杂背景下目标图像识别技术的研究具有重要的研究意义和实际应用价值。

二、研究内容本课题拟从以下几个方向对复杂背景下目标图像识别技术进行研究:1. 深度学习算法的改进:针对复杂背景下的目标识别难题,本课题将研究如何进一步提高深度学习算法的准确性和鲁棒性。

该研究将探索新的深度神经网络结构和优化算法,以提高算法在复杂背景下的识别能力。

2. 多源信息融合技术:在复杂背景下,多种可视化和非可视化信息的融合可以提高目标识别的准确性和鲁棒性。

本课题将研究如何利用多种传感器信息(如图像、雷达、红外)进行融合,以达到更高的识别精度和鲁棒性。

3. 目标检测和跟踪技术:复杂背景下,物体的复杂运动和遮挡情况往往会影响目标的检测和跟踪效果。

本课题将研究新的目标检测算法和数据关联方法,以提高目标跟踪的精度和实时性。

三、研究方法本课题将采用深度学习、机器学习、计算机视觉等方法,以及Python、C++等编程语言和常用开发框架(如TensorFlow、PyTorch、OpenCV等)进行算法实现和实验验证。

四、研究计划本课题将按照以下时间节点完成研究任务:1. 研究文献综述和问题分析,明确研究方向和目标,制定详细的研究计划和实验设计。

(1个月)2. 改进深度学习算法,实现目标识别和分类模型,并进行算法调优和性能评估。

人工智能YOLO V2 图像识别实验报告

人工智能YOLO V2 图像识别实验报告

第一章前言部分1.1课程项目背景与意义1.1.1课程项目背景视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。

由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。

计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。

机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。

一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。

作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。

计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。

这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。

因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。

科学技术的发展是推动人类社会进步的主要原因之一,未来社会进一步地朝着科技化、信息化、智能化的方向前进。

在信息大爆炸的今天,充分利用这些信息将有助于社会的现代化建设,这其中图像信息是目前人们生活中最常见的信息。

利用这些图像信息的一种重要方法就是图像目标定位识别技术。

不管是视频监控领域还是虚拟现实技术等都对图像的识别有着极大的需求。

一般的图像目标定位识别系统包括图像分割、目标关键特征提取、目标类别分类三个步骤。

深度学习的概念源于人工神经网络的研究。

人工智能YOLO V2 图像识别实验报告

人工智能YOLO V2 图像识别实验报告

第一章前言部分1.1课程项目背景与意义1.1.1课程项目背景视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。

由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。

计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。

机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。

一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。

作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。

计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。

这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。

因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。

科学技术的发展是推动人类社会进步的主要原因之一,未来社会进一步地朝着科技化、信息化、智能化的方向前进。

在信息大爆炸的今天,充分利用这些信息将有助于社会的现代化建设,这其中图像信息是目前人们生活中最常见的信息。

利用这些图像信息的一种重要方法就是图像目标定位识别技术。

不管是视频监控领域还是虚拟现实技术等都对图像的识别有着极大的需求。

一般的图像目标定位识别系统包括图像分割、目标关键特征提取、目标类别分类三个步骤。

深度学习的概念源于人工神经网络的研究。

demo实验报告

demo实验报告

demo实验报告demo实验报告背景介绍:在科学研究和技术开发中,实验是获取数据、验证理论和推动创新的重要手段。

而demo实验则是一种简化的实验形式,旨在展示和说明某项技术或产品的原理和功能。

本文将介绍一次关于人工智能图像识别的demo实验。

实验目的:通过一个简单的demo实验,展示人工智能图像识别技术在日常生活中的应用,并探讨其潜在的发展前景。

实验步骤:1. 数据收集:为了进行图像识别实验,首先需要收集一定数量的图像数据。

我们选择了包含各种日常物品的图像作为实验数据集。

2. 数据预处理:为了提高图像识别的准确性,我们对收集到的图像进行了预处理。

包括图像的调整、裁剪和去除背景噪声等处理。

3. 模型训练:在实验中,我们采用了深度学习的方法来构建图像识别模型。

通过对预处理后的图像数据进行训练,模型可以学习到不同物品的特征。

4. 模型评估:为了评估模型的准确性和鲁棒性,我们使用了一部分未参与训练的图像数据进行了测试。

通过比对模型的预测结果和实际标签,可以得出模型的性能指标。

实验结果:经过模型训练和评估,我们得到了一个具有较高准确性的图像识别模型。

在测试集上,模型的准确率达到了90%以上。

这意味着当我们输入一张图像时,模型能够正确识别出其中的物品,并给出相应的标签。

讨论与分析:本次实验的结果表明,人工智能图像识别技术在日常生活中具有广泛的应用前景。

例如,在智能手机相机中,图像识别技术可以帮助用户自动拍摄清晰的照片,并识别出照片中的人物和物体。

在无人驾驶领域,图像识别技术可以帮助车辆识别道路上的交通标志和行人,从而提高行驶的安全性。

然而,图像识别技术仍然面临一些挑战和限制。

首先,模型的训练需要大量的数据和计算资源,这对于一些小型企业和个人开发者来说可能是一个障碍。

其次,图像识别技术的准确性和鲁棒性仍有提升的空间。

在复杂的场景和光线条件下,模型可能会出现误判或漏判的情况。

未来展望:尽管存在一些挑战,但人工智能图像识别技术仍然具有广阔的发展前景。

图像识别可行性研究报告

图像识别可行性研究报告

图像识别可行性研究报告一、图像识别技术的发展历程图像识别技术的发展历程可以追溯到上世纪50年代,当时的人工智能学家在对模式识别领域展开研究,并提出了一系列算法和方法。

随着计算机技术的发展和硬件性能的提升,图像识别技术得到了迅速发展。

在此基础上,深度学习技术的兴起促进了图像识别技术的发展,如卷积神经网络(CNN)和循环神经网络(RNN)等模型在图像识别领域取得了显著的成就。

此外,大规模数据集的建立和高性能计算平台的应用也为图像识别技术的进步提供了支持。

二、图像识别技术的原理和方法图像识别技术主要通过图像的特征提取和模式匹配来实现对图像内容的识别。

其中,特征提取是指从图像中提取出具有代表性的特征信息,而模式匹配则是将提取的特征与预先存储的模式进行匹配以实现识别。

在特征提取方面,卷积神经网络是目前主流的方法,它通过多层卷积、池化和全连接等操作来提取图像中的特征。

而在模式匹配方面,通常采用支持向量机(SVM)、最近邻(KNN)等分类器来完成对图像内容的识别。

三、图像识别技术的应用领域图像识别技术在各个领域都有广泛的应用,包括但不限于以下几个方面:1. 人脸识别:通过分析图像中的人脸特征,实现对人员身份的识别,应用于人脸支付、考勤签到等场景。

2. 车牌识别:通过分析车辆图像中的车牌信息,实现对车辆的自动识别,应用于停车管理、交通监控等领域。

3. 物体检测:通过对图像中的物体进行检测和识别,实现对物体的分类和定位,应用于无人驾驶、智能监控等场景。

四、图像识别技术的发展趋势未来,图像识别技术将继续向着更高的精度、更快的速度和更广泛的应用领域发展。

在技术方面,深度学习技术仍将是主要的研究方向,同时结合自然语言处理(NLP)和强化学习等技术,实现对图像内容的更深层次理解。

在应用方面,图像识别技术将逐渐渗透到各个行业,如医疗保健、农业、零售等领域。

同时,与其他技术的结合也将加速图像识别技术的发展,如与区块链、物联网等技术的融合,将进一步扩大图像识别技术的应用范围。

人工智能像识别实验报告

人工智能像识别实验报告

人工智能像识别实验报告人工智能(Artificial Intelligence,AI)是一门研究如何使计算机能够模拟和实现人类智能的学科。

其中,人工智能在图像处理领域的应用备受关注,特别是像识别方面的研究。

本实验旨在通过人工智能技术实现对图像中的物体进行像识别,以探索该技术在实际应用中的效果与限制。

1. 实验背景像识别是指通过计算机视觉技术,使用人工智能算法训练模型,使其能够自动对图像中的物体进行分类和识别。

像识别技术的发展,为许多领域带来了巨大的潜力与机遇。

例如,在医学影像领域,人工智能像识别可以辅助医生对肿瘤、病变等进行自动检测和识别,提高早期发现的准确率;在工业领域,人工智能像识别可以应用于自动化生产线,实现对产品质量的自动监测与控制。

2. 实验步骤(1)数据采集与准备:在本实验中,我们选择了一个包含不同类别物体的图像数据集,共包含1000张图片。

根据图像数据的特征,标注了每个物体对应的像素位置与类别。

(2)数据预处理:将原始图像数据进行预处理,包括图像灰度化、尺寸调整、减去均值等操作,以便于后续模型的训练与测试。

(3)模型选择与训练:根据实验需求,我们选择了卷积神经网络(Convolutional Neural Network,CNN)作为像识别模型,并利用标注的图像数据集进行模型的训练,通过迭代优化模型参数,使其能够准确地对图像中的物体进行识别。

(4)测试与评估:使用一部分未参与模型训练的图像数据作为测试集,对训练好的模型进行测试,并统计模型在测试集上的准确率、召回率等评价指标,以评估模型的性能和效果。

3. 实验结果与分析经过对数据集的训练与测试,我们得到了模型在像识别任务上的性能指标。

在测试集上,模型的准确率达到了95%,召回率达到了92%。

这说明该模型能够较为准确地对图像中的物体进行识别。

然而,在进一步分析中,我们也发现了一些问题与限制。

首先,对于图像中存在遮挡、模糊等情况的物体,模型的识别准确率较低。

关于图像识别技术在视频通信领域的发展应用现状的报告

关于图像识别技术在视频通信领域的发展应用现状的报告

22Internet Communication互联网+通信一、引言图像识别技术是以图像为基础,利用计算机对图像进行处理后,将其中的目标对象识别出来并加以分析的技术。

随着20世纪60年代以来计算机技术与信息技术的发展,图像识别技术越来越被人类所发掘和研究,图像识别技术已经应用到人们的日常生活方方面面中。

应用范围包括医学、航空航天、农业生产、工业工程、通信、交通、军事安防等多个领域,如医疗诊断中各种医学图片的分析与识别、天气预报中卫星云图识别、遥感图像识别、指纹识别、脸谱识别、智能机器人、电子警察系统等,其中最典型的应用是在通信工程和生物医学中的应用。

随着社会的发展和通信技术的进步,人们对通信的需求发生了巨大的变化,由最初单一的文字或语音关于图像识别技术在视频通信领域的发展应用现状的报告摘要:在现代信息技术不断发展的背景下,图像识别技术在我国得到了较大的发展和广泛的应用,同时视频通信业务范围也日益扩大。

本文主要就图像识别技术的发展及其在视频通信领域的应用现状进行了探析,以期能够更好地提升图像识别技术的应用价值。

关键词:图像识别技术;视频通信;发展 应用现状通信提升为对视频和音频多方面的通信需求,通信领域的发展热点也逐步转向以传送语音、图像、数据和视频为一体的视频通信业务。

不仅如此,在视频监控、电视会议、远程医疗和远程视频教育等方面,视频通信也成了不可替代的一项技术。

随着电子技术和互联网的快速发展,视频通信中对信息准确性及图像清晰度要求的提高成为可能。

与之相对应的是,如今的图像识别技术更加先进,更加精准,能用纳秒级的时间处理和加工非常复杂的图像。

因此,图像识别技术在视频通信领域的发展与应用是非常值得关注的。

二、计算机图像识别技术的发展计算机图像识别技术模仿人类对于图像的识别过程,通过分类并提取图像的重要特征且排除多余的信图1 图像识别的主要过程救援通信保障团队和小组,保持人才优势。

五、结束语在信息技术不断发展的过程中,消防应急救援通信保障不能再局限在传统的工作方式下,而应该积极加大在信息化建设方面的投入,以通过信息技术在其中的应用,来形成新的消防应急救援通信保障体系,提高消防应急救援水平。

人脸识别研究报告

人脸识别研究报告

人脸识别研究报告人脸识别技术是一种通过分析人脸图像或视频来识别、验证或追踪个人身份的技术。

由于其高效、准确和便捷的特点,人脸识别技术在安全监控、金融支付、个人身份验证等多个领域得到广泛应用。

本报告将介绍人脸识别技术的原理与分类、应用领域以及存在的问题与挑战。

一、人脸识别技术的原理与分类1.1 人脸图像获取人脸图像的获取是人脸识别技术的前提。

目前常用的获取手段主要包括摄像头、红外线摄像头、多光谱成像摄像头等。

这些设备能够采集人脸的形态、纹理、热量等信息。

1.2 人脸检测与定位在获取到人脸图像后,需要进行人脸检测和定位操作,以确定人脸在图像中的位置。

主要的人脸检测算法包括Viola-Jones算法和卷积神经网络(CNN)等。

1.3 人脸特征提取人脸特征提取是指从人脸图像中提取出具有代表性的特征信息。

常用的特征提取算法有主成分分析(PCA)、线性判别分析(LDA)和局部二值模式(LBP)等。

这些算法能够从图像中提取出与个体身份密切相关的特征。

1.4 人脸特征匹配在提取到人脸特征后,需要将其与数据库中储存的特征进行匹配。

目前常用的人脸匹配算法有欧氏距离、余弦相似度和支持向量机(SVM)等。

1.5 人脸识别技术分类根据人脸识别系统的工作原理和特点,人脸识别技术可以分为基于2D图像的人脸识别、基于3D模型的人脸识别和基于红外热图的人脸识别等。

二、人脸识别技术的应用领域2.1 安全监控随着社会的发展,对于公共安全的需求也越来越高。

人脸识别技术在安全监控领域发挥着重要的作用,可以用于实时监控视频中的人脸,以快速发现异常情况或可疑人员。

2.2 金融支付随着移动支付的普及,人脸识别技术可以作为一种便捷的身份验证方式。

用户只需通过摄像头进行人脸扫描,即可完成支付过程,提高了支付的安全性和便利性。

2.3 个人身份验证人脸识别技术可以用于个人身份验证,代替传统的密码、卡片等验证方式。

这种方式不仅提高了验证的准确性,还避免了密码泄露和卡片丢失的风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像识别技术课程教师:桑爱军老师报告组成员:五里雾一、图像识别简介图像识别是指图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。

在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。

只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。

人的图像识别能力是很强的。

图像距离的改变或图像在感觉器官上作用位置的改变,都会造成图像在视网膜上的大小和形状的改变。

即使在这种情况下,人们仍然可以认出他们过去知觉过的图像。

甚至图像识别可以不受感觉通道的限制。

例如,人可以用眼看字,当别人在他背上写字时,他也可认出这个字来。

图像识别技术可能是以图像的主要特征为基础的。

每个图像都有它的特征,如字母A有个尖,P有个圈、而Y的中心有个锐角等。

对图像识别时眼动的研究表明,视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向突然改变的地方,这些地方的信息量最大。

而且眼睛的扫描路线也总是依次从一个特征转到另一个特征上。

由此可见,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。

同时,在大脑里必定有一个负责整合信息的机制,它能把分阶段获得的信息整理成一个完整的知觉映象。

在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。

对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。

这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。

在文字材料的识别中,人们不仅可以把一个汉字的笔划或偏旁等单元组成一个组块,而且能把经常在一起出现的字或词组成组块单位来加以识别。

图像识别技术是人工智能的一个重要领域。

为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。

例如模板匹配模型。

这种模型认为,识别某个图像,必须在过去的经验中有这个图像的记忆模式,又叫模板。

当前的刺激如果能与大脑中的模板相匹配,这个图像也就被识别了。

例如有一个字母A,如果在脑中有个A模板,字母A的大小、方位、形状都与这个A模板完全一致,字母A就被识别了。

这个模型简单明了,也容易得到实际应用。

但这种模型强调图像必须与脑中的模板完全符合才能加以识别,而事实上人不仅能识别与脑中的模板完全一致的图像,也能识别与模板不完全一致的图像。

例如,人们不仅能识别某一个具体的字母A,也能识别印刷体的、手写体的、方向不正、大小不同的各种字母A。

同时,人能识别的图像是大量的,如果所识别的每一个图像在脑中都有一个相应的模板,也是不可能的。

为了解决模板匹配模型存在的问题,格式塔心理学家又提出了一个原型匹配模型。

这种模型认为,在长时记忆中存储的并不是所要识别的无数个模板,而是图像的某些“相似性”。

从图像中抽象出来的“相似性”就可作为原型,拿它来检验所要识别的图像。

如果能找到一个相似的原型,这个图像也就被识别了。

这种模型从神经上和记忆探寻的过程上来看,都比模板匹配模型更适宜,而且还能说明对一些不规则的,但某些方面与原型相似的图像的识别。

但是,这种模型没有说明人是怎样对相似的刺激进行辨别和加工的,它也难以在计算机程序中得到实现。

因此又有人提出了一个更复杂的模型,即“泛魔”识别模型。

二、具体应用实例基于方向梯度极值的手形轮廓跟踪算法摘要针对受自然光照影响的手形图像难以准确提取手形轮廓的问题,本文基于手形边界像素在垂直于边界方向上存在灰度突变的特性,提出了一种基于方向梯度极值的手形轮廓跟踪算法。

该算法首先找到手形轮廓的起始点,然后按照一定的搜索方向和规则,在局部区域内计算候选点集中梯度极大值所在的点,并逐点跟踪极大值点,得到手形轮廓。

将该方法在实验室自采图库及香港科技大学(HKUST)的手形图像库两个数据库中进行轮廓跟踪实验,结果显示,自采图库的跟踪准确率为100%,香港科技大学手形图像库的跟踪准确率为85.8%,该库中符合本文算法限制条件的图像的跟踪准确率为99.4%。

实验结果表明,该方法能在灰度图像上直接跟踪出准确、连续、完整的手形轮廓,尤其适合于受光照不均影响的手形图像的边缘提取。

1引言在生物特征识别领域,手形识别以其采集方便、处理速度快、对设备要求不高、易与其它特征组合成多生物特征识别等优点而备受关注和重视,已成为一种极具发展潜力的生物特征识别技术。

手形识别是指对手部的外部轮廓所构成的几何图形进行识别,提取的特征为手的不同部位的尺寸或是手指边缘的轮廓点集。

因此手形轮廓提取的准确程度对整个手形识别过程至关重要,直接决定了提取特征的准确性。

采用现有的手形提取方法获取完整准确的手形轮廓图形时,对采集设备的遮光和光线要求比较严格,采集的大多是前景和背景灰度差异十分明显的不受光照影响的手形图像,通过阈值二值化和图像滤波来获得较好的分割效果。

但这些手形提取方法都局限于各自的图像条件,适用范围局限性大。

在实际应用中往往不便于在采集图像时加入过多的限制条件,一是限制条件过多会使用户觉得不友好,甚至产生抵触情绪;二是这大大减小了手形识别/认证的适用范围,制约其发展。

考虑到友好性、实用性和价格等因素,手形识别应尽量选用普通低成本设备,并尽量减少手形采集时的限制条件,但这就使得实际应用环境中采集的图像会不同程度地受到光照环境和采集设备的影响。

如偏光导致的高光和阴影以及随着照明光源的位置变化,极易在提取过程中造成手形轮廓的缺失和冗余,而设备噪声也会给手形轮廓的提取造成很大的误差。

因此,在这些图像条件下,原有的手形提取方法不再适用,需要寻找与之相适应的新的手形提取方法,以确保提取的特征受外界环境的干扰尽可能小。

针对实际环境中自然光照条件下拍摄的图像易受光照影响,而原有方法难以准确提取轮廓的问题,本文提出了一种基于方向梯度极值的手形轮廓跟踪算法,在灰度图像上直接跟踪手形轮廓。

该方法利用手形边界像素在垂直于边界方向上存在灰度突变的特性,从手形轮廓起始点开始,通过计算局部区域内的候选点中梯度极大值所在的点,并逐点跟踪极大值点得到手形轮廓。

分别应用该算法对实验室自采的手形图像库和香港科技大学提供的手形图像库进行实验,结果表明了该算法的有效性。

2 本文轮廓跟踪方法在手形灰度图像中,位于手形边界轮廓处的像素,在垂直于边界方向上存在灰度级的迅速变化,且真实边界点在垂直于边界方向上的灰度梯度应为局部区域内各像素梯度的极大值,因此可以通过判断局部区域内各点灰度梯度的大小找到手形的真实边缘点。

本文方法首先定位手形轮廓的起始点,然后依据手形轮廓的走向在局部区域内确定出候选的轮廓点集,用合适的梯度卷积模板计算出候选像素点集中垂直于边缘方向上梯度最大的点(此处的边缘方向是指:从上一轮廓点到该候选点的方向),并逐点跟踪梯度最大点,既可得到完整的手形轮廓。

通过对大量图像的观察,发现位于手形边缘处存在3~4个像素宽度的灰度过渡变化带,如图1所示。

由于该过渡带的存在,手形边界处的像素并非在单像素宽度内呈现梯度的急剧变化,因此用简单的微分算子难以找到真实边缘。

算法关键是:(1)找到合适的梯度卷积模板;(2)在手形边界的过渡带像素中确定出真实边界点的准则。

若选取的梯度卷积模板过小,则受过渡带像素的影响大,易出现梯度极大值所在的点偏离手形轮廓的情况;而模板过大不仅会导致算法计算量大,而且对于手指间缝隙较小的图像,在跟踪至指跟处时,由于轮廓像素的方向变化较快,过大的模板窗口在此处卷积后的值表征垂直于轮廓方向梯度的能力减小,影响跟踪的准确性。

因此梯度卷积模板的选取至关重要。

本文通过用不同大小、不同方向的模板对大量图像进行实验验证得出:本文选用的5X5大小的4个方向的梯度卷积模板计算手形边缘像素的灰度梯度效果最优。

本文均以手腕部位在图像右侧的右手图像为例阐述该算法,如图2。

2.1 轮廓跟踪算法描述2.1.1 确定轮廓跟踪起始点本文算法设定轮廓跟踪起始点为图像最右列的手腕上边缘点。

位于手腕边缘处的像素点,灰度级存在明显变化,且真实边缘点处应有最大的灰度变化。

微分边缘检测算子在图像灰度级迅速变化的点处得到较高的值,且灰度级变化越大,该点所得的值越大。

因此本文用一个竖直方向的边缘检测模板(模板1),逐点与图像最右列像素做卷积,卷积所得的值即为图像中与模板中心元素对应的像素点在竖直方向上的梯度,梯度值最大且为正值的点即为手形轮廓起始点。

若在定位轮廓起始点时,出现两个梯度值最大且为正值的点的情况,则增大梯度模板,将模板上下各增加一个元素,用新模板对这两个梯度值最大且为正值的点重新求取梯度值,若两点的梯度值仍相等,则继续增大模板,直至找到唯一的轮廓起始点。

若出现两个以上梯度值相同的点,可用同样方法处理。

2.1.2 确定第二、第三轮廓点及轮廓走向依据起始点位置,确定第二、第三轮廓点。

本文轮廓跟踪顺序为:从起始点开始,沿逆时针方向,按照手形轮廓的自然走向逐点跟踪,直至跟踪到达图像右侧边缘,结束跟踪。

因此第二轮廓点的候选点集为起始点(i, j)左侧的3个邻域像素点,如图3所示,3个候选点为(i-1,j-1),(i,j-1),(i+1,j-1)。

由于此时候选像素点位于图像边界,若采用本文的5X5模板进行卷积,位于图像边缘处的像素不够容纳模板窗口的大小,因此不适宜用本文5X5模板求取梯度的方法确定第二轮廓点。

故对第二轮廓点采用了如下求取方法:(1)依据公式(1)求得最大值MAX。

(2)当公式(1)取得最大值MAX时,对应的像素点坐标(i+k,j-1)为第二轮廓点。

MAX=max{abs[h(i+k,j-1)-h(i+k-1,j-1)]} k=-1,0,1(1)其中:h(p,q)为图像中第p行,第q列像素点的灰度值。

第二轮廓点确定后,依据第二轮廓点位置,用相同方法确定第三轮廓点,并将第三轮廓点作为当前点,将第二轮廓点到第三轮廓点的方向记录为当前方向。

2.1.3 轮廓跟踪规则根据前一步的走向,即当前方向,确定下一步的可能走向(3个可选方向)。

下一步走向的三个可选方向分别为当前方向以及对应于8方向码(如图4)中的当前方向的两个邻接方向。

例如:若当前方向为4,则下一步的可选方向为3、4、5;若当前方向为5,则下一步的可选方向为4、5、6;其余同理。

对3个可能走向分别以从当前点沿该方向前进一点作为候选点,得到3个候选点,将每个候选点对应于卷积模板的中心元素求卷积。

模板的选取是根据从当前点到该候选点的方向(称为候选方向)确定的,每个不同的候选方向对应于不同的卷积模板进行计算。

若候选方向为0或4,选用0度方向模板;若候选方向为1或5,用135度方向模板;若候选方向为2或6,用90度方向模板;若候选方向为3或7,用45度方向模板,四个方向的卷积模板如图5所示。

对3个候选点分别用与之相对应的方向梯度卷积模板求卷积,求得的值即为与该候选点的走向垂直方向上的梯度。

相关文档
最新文档