BP神经网络的数据分类_MATLAB源代码资料

合集下载

BP神经网络的数据分类_MATLAB源代码

BP神经网络的数据分类_MATLAB源代码

%%%清除空间clcclear all ;close all ;%%%训练数据预测数据提取以及归一化%%%下载四类数据load data1 c1load data2 c2load data3 c3load data4 c4%%%%四个特征信号矩阵合成一个矩阵data ( 1:500 , : ) = data1 ( 1:500 , :) ;data ( 501:1000 , : ) = data2 ( 1:500 , : ) ;data ( 1001:1500 , : ) = data3 ( 1:500 , : ) ;data ( 1501:2000 , : ) = data4 ( 1:500 , : ) ;%%%%%%从1到2000间的随机排序k = rand ( 1 , 2000 ) ;[ m , n ] = sort ( k ) ; %%m为数值,n为标号%%%%%%%%%%%输入输出数据input = data ( : , 2:25 ) ;output1 = data ( : , 1) ;%%%%%%把输出从1维变到4维for i = 1 : 1 :2000switch output1( i )case 1output( i , :) = [ 1 0 0 0 ] ;case 2output( i , :) = [ 0 1 0 0 ] ;case 3output( i , :) = [ 0 0 1 0 ] ;case 4output( i , :) = [ 0 0 0 1 ] ;endend%%%%随机抽取1500个样本作为训练样本,500个样本作为预测样本input_train = input ( n( 1:1500 , : ) )’ ;output_train = output ( n( 1:1500 , : ) )’ ;input_test = input ( n( 1501:2000 , : ) )’ ;output_test = output ( n( 1501:2000 , : ) )’ ;%%%%输入输出数据归一化[ inputn , inputps ] = mapminmax ( input_train ) ;%%%网络结构初始化innum = 24 ; %输入层midnum = 25 ; %隐含层outnum = 4 ; %输出层%权值初始化w1 = rands ( midnum , innum ) ;b1 = rands ( midnum , 1 ) ;w2 = rands ( midnum , outnum ) ;b2 = rands ( outnum , 1) ;w2_1 = w2 ; w2_2 = w2_1 ;w1_1 = w1 ; w1_2 = w1_1 ;b1_1 = b1 ; b1_2 = b1_1 ;b2_1 = b2 ; b2_2 = b2_1 ;%%%学习速率xite = 0.1 ;alfa = 0.01 ;%%%%%网络训练for ii = 1:10E( ii ) = 0 ;for i = 1:1:1500 ;%%网络预测输出x = inputn ( : , j ) ;%%%隐含层输出for j = 1:1:midnuml (j) = inputn ( : , i )’*w1( j , :)’ + b1 (j) ;lout (j) = 1/( 1 +exp( -1(j) ) ) ;end%%%%输出层输出yn = w2’ * lout’ + b2 ;%%%权值阈值修正%计算权值变化率dw2 = e * lout ;db2 = e’ ;for j = 1:1:midnumS= 1/(1 + exp ( -l(j) ) ) ;Fl (j) = S * ( 1- S) ;endfor k = 1:1:innumfor j = 1:1:midnumdw1( k, j ) = Fl (j) * x (k) *( e(1)*w2( j,1) + e(2)*w2( j,2) + e(3)*w2( j,3) + e(4)*w2( j,4) ) ; db1( j ) = Fl (j) * *( e(1)*w2( j,1) + e(2)*w2( j,2) + e(3)*w2( j,3) + e(4)*w2( j,4) ) ;endendw1=w1_1+xite*dw1';b1=b1_1+xite*db1';w2=w2_1+xite*dw2';b2=b2_1+xite*db2';w1_2=w1_1;w1_1=w1;w2_2=w2_1;w2_1=w2;b1_2=b1_1;b1_1=b1;b2_2=b2_1;b2_1=b2;endend%%%%语音特征信号分类input_test = mapminmax ( ‘apply’ , input_test , inputps ); for ii = 1:1for i = 1:500%隐含层输出for j = 1:1:midnuml (j) = input_te st ( : , i )’ * w1( j , : )’ + b1(j) ;lout ( j ) = 1/ ( 1 + exp( -l(j) ) ) ;endfore( :,i ) = w2’ * lout’ + b2 ;endend%%%结果分析%%%%根据网络输出找出数据属于哪类for i = 1:500output_fore (i) = find ( fore (:,i) = =max (fore(:,i) ) ) ; end%%%%%BP网络预测输出error = output_fore - output1 ( n( 1501:2000) )’ ;%%画出分类图figure (1)plot ( output_fore , ‘r’ )hold onplot (output1( n (1501:2000))’ , ‘b’ ) ;legend ( ‘预测语音类别’, ‘实际语音类别’) %%%画出误差图figure (2)plot (error)title ( ‘BP网络分类误差’, ‘fontsize’, 12 ) xlabel ( ‘语音信号’, ‘fontsize’, ‘12’) ylabel ( ‘分类误差’, ‘fontsize’, 12 ) %%%%%找出属于哪种类型for i = 1:500if error (i) ~= 0[ b,c ] = max (output_test( :,i ) );switch ccase 1k(1) = k(1) + 1 ;case 2k(2) = k(2) + 1 ;case 3k(3) = k(3) + 1 ;case 4k(4) = k(4) + 1 ;endendend%%%%找出每一类的个体总和kk = zeros ( 1,4 )for i = 1:500[ b,c ] = max ( output_test( :,i) ) ; switch ccase 1kk(1) = kk(1) + 1 ;case 2kk(2) = kk(2) + 1 ;case 3kk(3) = kk(3) + 1 ;case 4kk(4) = kk(4) + 1 ;endend%%%正确率nightridio = ( kk - k )./ kk。

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。

1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。

它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。

本文将介绍BP神经网络的原理及其在MATLAB中的应用。

BP神经网络的原理基于神经元间的权值和偏置进行计算。

一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。

输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。

BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。

前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。

反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。

在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。

以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。

可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。

MATLAB程序代码 bp神经网络通用代码

MATLAB程序代码 bp神经网络通用代码

实用标准文案MATLAB程序代码--bp神经网络通用代码matlab通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下,希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享感应器神经网络、线性网络、BP神经网络、径向基函数网络%通用感应器神经网络。

P=[-0.5 -0.5 0.3 -0.1 -40;-0.5 0.5 -0.5 1 50];%输入向量T=[1 1 0 0 1];%期望输出plotpv(P,T);%描绘输入点图像net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold onlinehandle=plotpc(net.iw{1},net.b{1});net.adaptparam.passes=3;for a=1:25%训练次数[net,Y,E]=adapt(net,P,T);linehandle=plotpc(net.iw{1},net.b{1},linehandle);drawnow;end%通用newlin程序%通用线性网络进行预测time=0:0.025:5;T=sin(time*4*pi);Q=length(T);P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。

精彩文档.实用标准文案P(1,2:Q)=T(1,1:(Q-1));P(2,3:Q)=T(1,1:(Q-2));P(3,4:Q)=T(1,1:(Q-3));P(4,5:Q)=T(1,1:(Q-4));P(5,6:Q)=T(1,1:(Q-5));plot(time,T)%绘制信号T曲线xlabel('时间');ylabel('目标信号');title('待预测信号');net=newlind(P,T);%根据输入和期望输出直接生成线性网络a=sim(net,P);%网络测试figure(2)plot(time,a,time,T,'+')xlabel('时间');ylabel('输出-目标+');title('输出信号和目标信号');e=T-a;figure(3)plot(time,e)hold onplot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替hold offxlabel('时间');ylabel('误差');精彩文档.实用标准文案title('误差信号');%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingd');%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为0.9)%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为1.05;% lr_dec(学习率下降比,缺省为0.7);max_perf_inc(表现函数增加最大比,缺省为1.04)%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数:% delt_inc(权值变化增加量,缺省为1.2);delt_dec(权值变化减小量,缺省为0.5);% delta0(初始权值变化,缺省为0.07);deltamax(权值变化最大值,缺省为50.0)% 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法;%训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr %训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为5.0e-5);% lambda(Hessian阵不确定性调节参数,缺省为5.0e-7)% 缺少1个训练参数:lr精彩文档.实用标准文案%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net);net.trainparam.epochs=300; %最大训练次数(前缺省为10,自trainrp后,缺省为100)net.trainparam.lr=0.05; %学习率(缺省为0.01)net.trainparam.show=50; %限时训练迭代过程(NaN表示不显示,缺省为25)net.trainparam.goal=1e-5; %训练要求精度(缺省为0)%net.trainparam.max_fail 最大失败次数(缺省为5)%net.trainparam.min_grad 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6)%net.trainparam.time 最大训练时间(缺省为inf)[net,tr]=train(net,P,t); %网络训练a=sim(net,P) %网络仿真%通用径向基函数网络——%其在逼近能力,分类能力,学习速度方面均优于BP神经网络%在径向基网络中,径向基层的散步常数是spread的选取是关键%spread越大,需要的神经元越少,但精度会相应下降,spread的缺省值为1%可以通过net=newrbe(P,T,spread)生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread)生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNN)P=[4 5 6];T=[1.5 3.6 6.7];精彩文档.实用标准文案net=newgrnn(P,T);%仿真验证p=4.5;v=sim(net,p)%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec()转换,并设计、验证网络T=ind2vec(Tc);net=newpnn(P,T);Y=sim(net,P);Yc=vec2ind(Y)%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2);Yc=vec2ind(Y)%应用newrb()函数构建径向基网络,对一系列数据点进行函数逼近P=-1:0.1:1;T=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609...0.1336 -0.2013 -0.4344 -0.500 -0.3930 -0.1647 -0.0988...0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];%绘制训练用样本的数据点plot(P,T,'r*');title('训练样本');精彩文档.实用标准文案xlabel('输入向量P');ylabel('目标向量T');%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p);plot(p,a)title('径向基传递函数')xlabel('输入向量p')%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas(p-1.5);a3=radbas(p+2);a4=a+a2*1.5+a3*0.5;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--')title('径向基传递函数权值之和')xlabel('输入p');ylabel('输出a');%应用newrb()函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sceg=0.02;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc);%网络测试精彩文档.实用标准文案plot(P,T,'*')xlabel('输入');X=-1:.01:1;Y=sim(net,X);hold onplot(X,Y);hold offlegend('目标','输出')%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30)axis([0 9 -1 4])title('待逼近函数')xlabel('P')ylabel('T')%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=0.7;net=newgrnn(P,T,spread);%网络测试A=sim(net,P);hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]);精彩文档.实用标准文案title('检测网络')xlabel('P')ylabel('T和A')%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Tc(i)))endaxis([0 3 0 3]);title('三向量及其类别')xlabel('P(1,:)')ylabel('P(2,:)')%网络设计T=ind2vec(Tc);spread=1;net=newgrnn(P,T,speard);%网络测试A=sim(net,P);Ac=vec2ind(A);%绘制输入向量及其相应的网络输出plot(P(1,:),P(2,:),'.','markersize',30)精彩文档.实用标准文案for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Ac(i)))endaxis([0 3 0 3]);title('网络测试结果')xlabel('P(1,:)')ylabel('P(2,:)')P=[13, 0, 1.119, 1, 26.3;22, 0, 1.135, 1, 26.3;-15, 0, 0.9017, 1, 20.4;-30, 0, 0.9172, 1, 26.7;24,0,1.238,0.9704,28.2;3,24,1.119,1,26.3;0,52,1.089,1,26.3;0,-73,1.0889,1,26.3;1,28,0.8748,1,2 6.3;-1,-39,1.1168,1,26.7;-2, 0, 1.495, 1, 26.3;0, -1, 1.438, 1, 26.3;4, 1,0.4964,0.9021, 26.3;3, -1, 0.5533, 1.2357, 26.7;-5, 0, 1.7368, 1, 26.7;1, 0, 1.1045, 0.0202,26.3;-2, 0, 1.1168, 1.3764, 26.7;-3, -1, 1.1655, 1.4418,27.5;3, 2, 1.0875, 0.748, 27.5;-3, 0, 1.1068, 2.2092, 26.3;4, 1, 0.9017, 1, 13.7;3, 2, 0.9017, 1, 14.9;-3, 1, 0.9172, 1, 13.7;-2, 0, 1.0198, 1.0809, 16.1;0, 1, 0.9172, 1, 13.7]T=[1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1 ];%期望输出plotpv(P,T);%描绘输入点图像精彩文档.。

BP神经网络MATLAB编程代码

BP神经网络MATLAB编程代码

BP神经网络的设计MATLAB编程例1 采用动量梯度下降算法训练 BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为 t = [-1 -1 1 1]解:本例的 MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对 BP 神经网络进行训练% SIM——对 BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用 TRAINGDM 算法训练 BP 网络[net,tr]=train(net,P,T);pauseclc% 对 BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码附录5:BP神经网络预测的matlab代码: P=[ 00.13860.21970.27730.32190.35840.38920.41590.43940.46050.47960.49700.52780.55450.59910.60890.61820.62710.63560.64380.65160.65920.66640.67350.72220.72750.73270.73780.74270.74750.75220.75680.76130.76570.7700]T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.48930.2357 0.4866 0.22490.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.18480.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.24030.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ]threshold=[0 1]net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');net.trainParam.epochs=6000net.trainParam.goal=0.01LP.lr=0.1;net=train(net,P',T')P_test=[ 0.77420.77840.78240.78640.79020.7941 ] out=sim(net,P_test')友情提示:以上面0.7742为例0.7742=ln(47+1)/5因为网络输入有一个元素,对应的是测试时间,所以P只有一列,Pi=log(t+1)/10,这样做的目的是使得这些数据的范围处在[0 1]区间之内,但是事实上对于logsin命令而言输入参数是正负区间的任意值,而将输出值限定于0到1之间。

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

matlab训练神经网络分类器方法,用神经网络做训练和分类的matlab代码

matlab训练神经网络分类器方法,用神经网络做训练和分类的matlab代码

matlab训练神经⽹络分类器⽅法,⽤神经⽹络做训练和分类的matlab代码close allclear allclcx=xlsread('training_data.xls',['B2:G401']);y=xlsread('training_data.xls',['I2:K401']);inputs = x';targets = y';% 创建⼀个模式识别⽹络(两层BP⽹络),同时给出中间层神经元的个数,这⾥使⽤20hiddenLayerSize = 20;net = patternnet(hiddenLayerSize);% 对数据进⾏预处理,这⾥使⽤了归⼀化函数(⼀般不⽤修改)% For a list of all processing functions type: help nnprocessnet.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};% 把训练数据分成三部分,训练⽹络、验证⽹络、测试⽹络% For a list of all data division functions type: help nndividenet.divideFcn = 'dividerand'; % Divide data randomlynet.divideMode = 'sample'; % Divide up every samplenet.divideParam.trainRatio = 70/100;net.divideParam.valRatio = 15/100;net.divideParam.testRatio = 15/100;% 训练函数% For a list of all training functions type: help nntrainnet.trainFcn = 'trainlm'; % Levenberg-Marquardt% 使⽤均⽅误差来评估⽹络% For a list of all performance functions type: help nnperformancenet.performFcn = 'mse'; % Mean squared error% 画图函数% For a list of all plot functions type: help nnplotnet.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...'plotregression', 'plotfit'};% 开始训练⽹络(包含了训练和验证的过程)[net,tr] = train(net,inputs,targets);% 测试⽹络outputs = net(inputs);errors = gsubtract(targets,outputs);performance = perform(net,targets,outputs)% 获得训练、验证和测试的结果trainTargets = targets .* tr.trainMask{1};valTargets = targets .* tr.valMask{1};testTargets = targets .* tr.testMask{1};trainPerformance = perform(net,trainTargets,outputs) valPerformance = perform(net,valTargets,outputs) testPerformance = perform(net,testTargets,outputs)% 可以查看⽹络的各个参数view(net)% 根据画图的结果,决定是否满意% Uncomment these lines to enable various plots. figure, plotperform(tr)figure, plottrainstate(tr)figure, plotconfusion(targets,outputs)figure, ploterrhist(errors)%如果你对该次训练满意,可以保存训练好⽹络save('training_net.mat','net','tr');下⾯是⽤来分类的代码clear allclose allclcload 'training_net.mat'%% You can change the filename, sheet name, and range %导⼊测试数据new_input = xlsread('new_data.xls',['A2:F25']);new_output = round(net(new_input'));xlswrite('new_data.xls',new_output','result','G2');%把⼆进制转换成对应的类别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%%%清除空间
clc
clear all ;
close all ;
%%%训练数据预测数据提取以及归一化
%%%下载四类数据
load data1 c1
load data2 c2
load data3 c3
load data4 c4
%%%%四个特征信号矩阵合成一个矩阵data ( 1:500 , : ) = data1 ( 1:500 , :) ;
data ( 501:1000 , : ) = data2 ( 1:500 , : ) ; data ( 1001:1500 , : ) = data3 ( 1:500 , : ) ; data ( 1501:2000 , : ) = data4 ( 1:500 , : ) ;
%%%%%%从1到2000间的随机排序
k = rand ( 1 , 2000 ) ;
[ m , n ] = sort ( k ) ; %%m为数值,n为标号
%%%%%%%%%%%输入输出数据
input = data ( : , 2:25 ) ;
output1 = data ( : , 1) ;
%%%%%%把输出从1维变到4维
for i = 1 : 1 :2000
switch output1( i )
case 1
output( i , :) = [ 1 0 0 0 ] ;
case 2
output( i , :) = [ 0 1 0 0 ] ;
case 3
output( i , :) = [ 0 0 1 0 ] ;
case 4
output( i , :) = [ 0 0 0 1 ] ;
end
end
%%%%随机抽取1500个样本作为训练样本,500个样本作为预测样本
input_train = input ( n( 1:1500 , : ) )’ ;
output_train = output ( n( 1:1500 , : ) )’ ;
input_test = input ( n( 1501:2000 , : ) )’ ;
output_test = output ( n( 1501:2000 , : ) )’ ; %%%%输入输出数据归一化
[ inputn , inputps ] = mapminmax ( input_train ) ;
%%%网络结构初始化
innum = 24 ; %输入层
midnum = 25 ; %隐含层
outnum = 4 ; %输出层
%权值初始化
w1 = rands ( midnum , innum ) ;
b1 = rands ( midnum , 1 ) ;
w2 = rands ( midnum , outnum ) ;
b2 = rands ( outnum , 1) ;
w2_1 = w2 ; w2_2 = w2_1 ;
w1_1 = w1 ; w1_2 = w1_1 ;
b1_1 = b1 ; b1_2 = b1_1 ;
b2_1 = b2 ; b2_2 = b2_1 ;
%%%学习速率
xite = 0.1 ;
alfa = 0.01 ;
%%%%%网络训练
for ii = 1:10
E( ii ) = 0 ;
for i = 1:1:1500 ;
%%网络预测输出
x = inputn ( : , j ) ;
%%%隐含层输出
for j = 1:1:midnum
l (j) = inputn ( : , i )’*w1( j , : )’ + b1 (j) ;
lout (j) = 1/( 1 +exp( -1(j) ) ) ;
end
%%%%输出层输出
yn = w2’ * lout’ + b2 ;
%%%权值阈值修正
%计算权值变化率
dw2 = e * lout ;
db2 = e’ ;
for j = 1:1:midnum
S= 1/(1 + exp ( -l(j) ) ) ;
Fl (j) = S * ( 1- S) ;
end
for k = 1:1:innum
dw1( k, j ) = Fl (j) * x (k) *( e(1)*w2( j,1) + e(2)*w2( j,2) + e(3)*w2( j,3) + e(4)*w2( j,4) ) ;
db1( j ) = Fl (j) * *( e(1)*w2( j,1) + e(2)*w2( j,2) + e(3)*w2( j,3) + e(4)*w2( j,4) ) ;
end
end
w1=w1_1+xite*dw1';
b1=b1_1+xite*db1';
w2=w2_1+xite*dw2';
b2=b2_1+xite*db2';
w1_2=w1_1;w1_1=w1;
w2_2=w2_1;w2_1=w2;
b1_2=b1_1;b1_1=b1;
b2_2=b2_1;b2_1=b2;
end
end
%%%%语音特征信号分类
input_test = mapminmax ( ‘apply’ , input_test , inputps ); for ii = 1:1
for i = 1:500
%隐含层输出
l (j) = input_test ( : , i )’ * w1( j , : )’ + b1(j) ;
lout ( j ) = 1/ ( 1 + exp( -l(j) ) ) ;
end
fore( :,i ) = w2’ * lout’ + b2 ;
end
end
%%%结果分析
%%%%根据网络输出找出数据属于哪类
for i = 1:500
output_fore (i) = find ( fore (:,i) = =max (fore(:,i) ) ) ; end
%%%%%BP网络预测输出
error = output_fore - output1 ( n( 1501:2000) )’ ;
%%画出分类图
figure (1)
plot ( output_fore , ‘r’ )
hold on
plot (output1( n (1501:2000))’ , ‘b’ ) ;
legend ( ‘预测语音类别’ , ‘实际语音类别’ )
%%%画出误差图
figure (2)
plot (error)
title ( ‘BP网络分类误差’ , ‘fontsize’ , 12 ) xlabel ( ‘语音信号’ , ‘fontsize’ , ‘12’ ) ylabel ( ‘分类误差’ , ‘fontsize’ , 12 ) %%%%%找出属于哪种类型
for i = 1:500
if error (i) ~= 0
[ b,c ] = max (output_test( :,i ) );
switch c
case 1
k(1) = k(1) + 1 ;
case 2
k(2) = k(2) + 1 ;
case 3
k(3) = k(3) + 1 ;
case 4
k(4) = k(4) + 1 ;
end
end
end
%%%%找出每一类的个体总和
kk = zeros ( 1,4 )
for i = 1:500
[ b,c ] = max ( output_test( :,i) ) ;
switch c
case 1
kk(1) = kk(1) + 1 ;
case 2
kk(2) = kk(2) + 1 ;
case 3
kk(3) = kk(3) + 1 ;
case 4
kk(4) = kk(4) + 1 ;
end
end
%%%正确率
nightridio = ( kk - k )./ kk。

相关文档
最新文档