线性代数-第三章向量代数与几何应用

合集下载

第三章 向量代数及其几何应用

第三章 向量代数及其几何应用


cz
ax a y az bx b y bz cx c y cz
2015-4-25 南京邮电大学 邱中华 25
3. 性质
(1) 三个非零向量 a , b , c 共面的充要条件是
a b c 0
(2) 轮换对称性 :
[ a b c ] [ b c a ] [ c a b]
(3) 分配律
c
a Pr j b Pr jc c (a b) Pr jc
事实上, 当 c 0 时, 显然成立 ; 当c 0时
a Pr j b a b c c Pr jc a b c Pr jc c
b ac bc a c Pr jc c Pr jc
C
1
2
4
2015-4-25
1 2 4 (6) 2 2 2 14 2 南京邮电大学 邱中华
23
*向量的混合积
1. 定义 已知三向量 a , b , c , 称数量
( a b )c 为 a , b , c 的混合积 .
几何意义
记作
a b c
ab
c
a
b
以 a , b , c 为棱作平行六面体, 则其
2015-4-25 南京邮电大学 邱中华
k
i
j
21
向量积的行列式计算法
(a y bz a z by ) i (a z bx a x bz ) j (a x by a y bx ) k
i j ax a y k az
a ax i a y j az k b bx i by j bz k
C M r k j B o y i A N x

线性代数第3章向量空间

线性代数第3章向量空间
1 1 22 2 31 42 则 1 , 2 , 3 必相关 3 51 62 如果 B : 1, 2 ,, m 可由 A : 1,2 ,,n
表示, 又 m>n, 由表示不等式
r(Blm ) r( Aln ) n m 从而 B 必相关.
-26-
(6) “短的无关, 则长的也无关.等价地… ” P101推论3
无穷多种表示, 并求所有表示方法.
解 记 A [1,2 ,3 ] 只需讨论 Ax 解的情况.
具体解方程组过程略。
0 时,方程组无解, 不能由 A 表示. 0 且 3时, 方程组有唯一解, 可由 A 唯一表示.
-12-
3 时, 方程组有无穷多解, 可由 A 无穷多种表示.
1
1 2
,
2
3 4
是无关的.
1
3
n r( Amn ) r(Bln ) n
1 , 2 也是无关的.
2
4
r(Bln ) n
1
再如:1
2 0 0
,
0
2
101,
0
3
9 0 1
.
-27-
(7)含有n个向量的n元向量组线性相关(无关)
由它构成的n阶矩阵的行列式 | A | 0 (| A | 0) 例4 t 取何值时,下列向量组线性相关 ? P101推论2
(用矩阵的秩) r( A) n
把向量组排成矩阵,如果矩阵的秩等于向量的个数就线性 无关,否则如果矩还阵是的转秩换小!于转向换量线的性个无数关就…线性相关。
-18-
例1
1
0
2
1 1,2 2,3 4,
1
5
7
问向量组 {1,2 ,3 } 和 {1,2 }的线性相关性?

向量代数在几何中的应用

向量代数在几何中的应用

向量代数在几何中的应用向量代数是数学中的一个重要分支,它不仅在纯数学领域中起着重要作用,而且在几何学中也具有广泛的应用。

本文将探讨向量代数在几何中的应用,从平面几何到立体几何,展示向量代数在解决几何问题中的重要性。

一、平面几何中的向量代数应用在平面几何中,向量代数被广泛应用于解决线段长度、角度以及平行与垂直关系等问题。

通过引入向量来描述平面中的点、线和面等几何对象,可以更加直观地理解和推导几何性质。

例如,在平面上有两个点A(x₁, y₁)和B(x₂, y₂),我们可以用向量AB(x₂-x₁, y₂-y₁)来表示从点A到点B的位移向量。

利用向量代数的加法运算,我们可以简洁地计算出线段AB的长度。

假设线段的长度为L,那么根据勾股定理:L = √((x₂-x₁)² + (y₂-y₁)²)通过向量的内积运算,我们还可以求得线段AB与x轴的夹角。

假设夹角为θ,那么根据向量内积的定义:cosθ = AB·(1,0)/(L⋅|1,0|) = (x₂-x₁)/L可见,向量代数为平面几何问题的解决提供了一种简洁而有效的方法。

二、立体几何中的向量代数应用在立体几何中,向量代数同样扮演着重要的角色。

通过引入空间向量,我们可以更加直观地描述和解决立体几何问题。

例如,考虑一个平面内的三角形ABC,我们可以用空间向量来描述每个顶点的位置,得到三个向量OA,OB和OC。

假设三角形的面积为S,那么根据向量叉积的定义:2S = |OA×OB|通过向量叉积的计算,我们可以简洁地求得三角形的面积,而无需使用三角函数。

这不仅提高了计算的效率,而且有助于深入理解三角形的几何性质。

除了解决面积问题,向量代数还可以用于判断直线和平面的位置关系。

例如,考虑一个平面内的直线L和一个平面P,我们可以用空间向量来表示直线上的任意一点和平面上的任意一点。

假设直线上的某个点为A,平面上的某个点为B,那么根据向量点乘的定义:AB·n = 0其中,n为平面的法向量。

向量空间的基本性质及其在几何力学等领域的应用

向量空间的基本性质及其在几何力学等领域的应用

向量空间的基本性质及其在几何力学等领域的应用向量空间是线性代数中的重要概念,具有广泛的应用。

本文将介绍向量空间的基本性质,并探讨其在几何力学等领域的应用。

一、向量空间的定义与基本性质向量空间是指由向量组成的集合,满足一定的运算规则和代数性质。

具体来说,向量空间需满足以下条件:1. 封闭性:对于任意两个向量u和v,它们的和u+v仍然属于向量空间。

2. 数乘性:对于任意向量u和标量c,它们的乘积cu仍然属于向量空间。

3. 零向量:向量空间中存在一个零向量,满足对任意向量u,u+0=u。

4. 加法逆元:对于任意向量u,向量空间中存在一个加法逆元-v,使得u+(-v)=0。

5. 结合律、分配律和交换律:向量的加法和数乘运算满足结合律、分配律和交换律。

在向量空间中,还有一些基本的性质:1. 唯一性:零向量是唯一的,而任意向量的加法逆元也是唯一的。

2. 零向量的性质:对于任意向量u,u+0=u和0+u=u成立。

3. 数乘的性质:对于任意标量c,c乘以零向量得到的结果仍然是零向量。

二、向量空间在几何力学中的应用几何力学是力学的一个重要分支,研究物体的形状、运动和相互作用。

向量空间在几何力学中有着广泛的应用,以下将介绍其中几个典型的应用案例。

1. 力的合成在几何力学中,经常需要求解多个力的合成,即将多个力合并成一个力的过程。

向量空间提供了一个方便的工具,可以将力表示为向量,并利用向量的加法运算求解合成力。

2. 力矩的计算力矩是力围绕某个点或轴产生的旋转效应,它在刚体力学和机械工程中有着重要的应用。

通过将力矩表示为向量,并运用向量空间的数乘运算和叉乘运算,可以方便地进行力矩的计算和分析。

3. 坐标系变换在几何力学中,常常需要进行坐标系的变换,以便研究不同参考系下的物体运动和物理量变化。

向量空间的基本性质可以帮助我们理解坐标系变换中的向量变换规律,从而更好地描述和分析物体的运动和相互作用。

4. 线性方程组的求解线性方程组是几何力学中常见的数学模型,通过解线性方程组可以求解物体的平衡状态、运动轨迹等重要信息。

线性代数 第三章 向量代数与几何应用

线性代数  第三章 向量代数与几何应用


z
yoz面

zox 面

xoy面
Ⅶ Ⅷ
o
y
Ⅵ Ⅴ
ⅠxΒιβλιοθήκη 空间直角坐标系共有八个卦限
坐标面. 由三条坐标轴的任意两条确定的平面, 称为 坐标面, 分别叫xoy面. yoz面、zox面, 它们将空间 分成八个卦限. z
III IV 0
VII x VIII V II
I
y
VI
向量的坐标

外积的应用意义: 1.判断共线. 2求平行四边形 3. 求垂直于向量a和b的向量
混合积的应用意义: 1.判断共面. 2 求平行六面体的体积
可以看作
如果e为轴u的正方向同向的单位向量则有ab?????ab?????xexab??????称为ab????在轴u的投影记为
既有大小又有方向的量称为向量(或矢量),常用小写英文字母 a,b,c… 或希腊字母α,β,γ表示,向量的大小也称向量的长度,向量a长度记为 |a|
若2个向量a,b 大小相等方向相同,则称a和b是相等的向量,记为: a=b
性质2. 两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. Pr ju (a1 a2 ) Pr ju a1 Pr ju a2
A
C
a1
B
a2
C
A
u
B
推论: Pr ju (a1 a2 an ) Pr ju a1 Pr ju a2 Pr ju an
' ' 此时,也称 A B
x 称为 AB 在轴u 的投影, 记为:
在向量e上的投影向量.
u AB

AB
u AB 称为在向量e上的投影

线性代数与空间解析几何 3-12.

线性代数与空间解析几何 3-12.

4
一、几何向量的基本概念
向量: 既有大小又有方向的量. 向量表示: a 或 M1 M 2 以M1为起点, M2为终点的有向线段。 向量的模: 向量的大小. a 或 M 1 M 2
M2
M
1
0 单位向量: 模长为1的向量. a 或
零向量: 模长为0的向量. 0
M1 M 20
a 相等向量:大小相等且方向相同的向量. b 负向量:大小相等但方向相反的向量. a a a
0 量与数的乘积的规定, a || a || a
9
【例3.1 】
全为零的实数k、l、m使得 k l m 0

证明向量 、、 共面的充分必要条件是存在不
证明: 充分性
如何证明三个 向量共面呢? 若有不全为0的实数k、l、m ,使得
k l m 0
k l m m
不妨设, m0 则
k l 是以 , 若 0, 0, 由向量加法的定义知, m m 为边的平行四边形的对角线, 因此、、共面。 若、、有一个为零, ,这三个向量共面是显然的。
2
本章主要研究以下几个问题:
1. 几何向量及其线性运算与分解; 2. n维向量及n维向量空间; 3. 向量组的线性相关与线性无关; 4. 向量的内积; 5. 几何向量的向量积与混合积; 6. 直线与平面.
3
第三章 向量与向量空间
第一节 几何向量 及其线性运算
几何向量的基本概念 几何向量的线性运算
第三章
向量与向量空间
1
在自然界中,常会遇到这样一类量,它们既有大小 又有方向。 例如:力、力矩、速度等,这类量称 为向量。

线性代数第三章

线性代数第三章1.【线性无关与线性相关】要点重点记住线性相关与线性无关的定义式,其他种种皆可由此推导引申出来。

这节希望大家能理解向量从二三维扩展到n维的思路过程,当对于空间的理解不能再用几何意义来描述时,代数的表示就扩展了向量的深度与广度,从而可以满足工程和经济模型分析的需要。

从几何到代数,就是从低维到高维抽象的线性代数方法论。

本节需要大家掌握的要点是:2.【向量组的秩】要点我们说过,如果一个向量组中向量的个数非常多时,要去研究这个庞大的向量组是很困难的。

此时,如果有一个向量个数较少的向量组同样能反映这个大向量组的性质,那么我们在实际工程计算中就可以大大简化计算量和工作量了。

极大无关组就是属于向量组中与其等价的无关向量组中向量最少的一个,我们可以通过研究该向量组的极大无关组来研究这个大向量组。

而我们在这节课学的一系列定理和证明,其实就是证明以上的思路是可行的,且还推导得出一个求极大无关组和秩比较简便的算法。

看了基的定义,是不是非常眼熟啊??对了,就是跟极大无关组相同哦,不过一个是以空间阐述,一个是代数上的阐述。

此处,注意把单个向量分量的维度与空间的维度区分开。

比如,u=(2,1),v=(4,2)都是2维向量,可是因为他俩线性相关,张成的空间降维了,构成的却是一维空间。

以上基与维数的定义就解答了以下几个问题:空间的维度是几维?空间又是由什么生成的呢?可以生成空间的基不唯一,而每一组基一旦确定,其余向量在这组基中的坐标也就唯一确定了。

那么,既然基不唯一,如果我换一组基,某向量原来在这组基的坐标是不是也就转换了呢?基与坐标的含义呢,其实就可以理解为,如果我们在一个空间中找的参照物不同,那么对应该参照物角度的坐标就会不同的意思。

线性代数_第三章

lts ks 0
这与1,2, . . .,s与线性无关矛盾.

推论1 两个等价的且线性无关的向量组,含有相 同个数的向量。

推论2 等价的向量组有相同的秩。

推论3 向量组(I)的秩为r1,向量组(II)的秩为r2,且
组(I)可由组(II)线性表出,则r1≤r2。
lts ks 0
于是
1 , 2 ,
k1 k2 b1 , b 2 , , s ks
l11 l12 l21 l22 , bt lt1 lt 2
l1s k1 0 l2 s k 2 0
第三章 向量组与线性方程组
§3.1 向量组的线性相关性
2 x1 3 x2 3 x3 5 x1 2 x2 x3 2 7 x2 x3 1
2 3 3 5 1 2 1 2 0 7 1 1

显然第三行是前两行的代数和; 也就是说,第三个方程能由前两 个方程“表示”;
4, (III) 1, 2, 3, 5, 且向量组的秩分别
为R(I)=R(II)=3, R(III)=4. 证明:向量组1, 2, 3, 5-4的秩为4.

证明: 由R(I)=R(II)=3得知向量组(I)线性无关,向
量组(II)线性相关,且4可由1, 2, 3,线性表出,
lm m 0
定理3 设m≤n,则m个n维向量1 ,2 ,
,m 线性无关的充
分必要条件是,其组成的矩阵的秩R(A)=m.即A为列满秩。
证:必要性. 因为Q可逆,必有l1,l2,…,lm不全为零, 这与1,2,…,m线性无关矛盾。 因此,R(A)=m。

线性代数与空间解析几何(哈工大

成立); (4)分配律:(a b) c a c ;b c c (a b) c ;a c b (5)结合律 (ka) b a (kb) k(;a b)
20
例5:证明 (a b)2 (a b)2 a2b2 证:由内积定义知 (a b)2 | a |2 | b |2 c,os2
21
3.2.4 三个向量的混合积
1.定义(混合积)[abc] (a b)是c 个数值.
2.几何意义:[abc] V, 设 a,b不,c 共
面,| a b || a || b | sin(a, b) , S oADB [abc] (a b) c,|当a b为|| c | cos
锐角 时, 右手a,b系,c
1
3.1 几何向量及其线性运算
3.1.1 几何向量的概念
现实生活中有这样的两种量:数量(标量), 即仅有大小的量,如时间、长度、质量、温 度等. 向量(矢量)即不仅有大小而且还有方 向的量,如:力、速度、加速度、电场强度 等,仅知道力的大小,不了解它的方向是不 行的. 向量是研究物理学及几何学不可缺少的 工具.
( a) (mb) m(a b)
3.注:((2)1)称a 为b 并数0 不量见积得是因中结ab必果有是个向数0量. , 也a 可b.
( (34) )数量a 积b无c不意满义足. 消去律即 事实上,所以.
a b a c, a 0 b c
15
例2:用向量的数量积,证明恒等式
| a b |2 | a b |2 2 | a |2 2 | b |2
6
二、数乘向量:
为了描述向量的“伸缩”,定义实数与向 量的乘法.
1.定义:k Z, a ,0 则 是ka一个向量,与 共线a ,模 | ka || k || a与|, k 同0 向,a 时与 反向,k 0 . a 0a 0

线性代数 第三章

第三章 向量组与矩阵的秩§1 n 维向量在平面几何中,坐标平面上每个点的位置可以用它的坐标来描述,点的坐标是一个有序数对(,)x y .一个n 元方程1122n n a x a x a x b +++=可以用一个1n -元有序数组12(,,,,)n a a a b来表示.1n ⨯矩阵和1n ⨯矩阵也可以看作有序数组.一个企业一年中从1月到12月每月的产值也可用一个有序数组1212(,,,)a a a 来表示.有序数组的应用非常广泛,有必要对它们进行深入的讨论.定义 1 n 个数组成的有序数组12(,,,)n a a a (3.1)或12n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(3.2)称为一个n 维向量,简称向量.一般,我们用小写的粗黑体字母,如,α,β,γ等来表示向量,(3.1)式称为一个行向量,(3.2)式称为一个列向量.数12,,,n a a a 称为这个向量的分量.i a 称为这个向量的第i 个分量或坐标.分量都是实数的向量称为实向量;分量是复数的向量称为复向量.实际上,n 维行向量可以看成1n ⨯矩阵,n 维列向量也常看成1n ⨯矩阵.下面我们只讨论实向量.设k 和l 为两个任意的常数.α,β和γ为三个任意的n 维向量,其中12(,,,)n a a a =α, 12(,,,)n b b b =β.定义 2 如果α和β对应的分量都相等,即,1,2,,i i a b i n ==就称这两个向量相等,记为α=β.定义 3 向量(a 1+b 1,a 2+b 2,…,a n +b n )称为α与β的和,记为α+β.称向量(ka 1,ka 2,…,ka n )为α与k 的数量乘积,简称数乘,记为k α.定义 4 分量全为零的向量(0, 0, …, 0)称为零向量,记为0.α与-1的数乘(-1)α=(-a 1,-a 2,…,-a n )称为α的负向量,记为-α.向量的减法定义为α-β=α+(-β).向量的加法与数乘具有下列性质: (1) α+β=β+α;(交换律) (2) (α+β)+γ=α+(β+γ);(结合律) (3) α+0=α;(4) α+(-α)=0; (5) k (α+β)=k α+k β; (6) (k +l )α=k α+l α; (7) k (l α)=(kl )α; (8) 1α=α; (9) 0α=0; (10) k 0=0.在数学中,满足(1)-(8)的运算称为线性运算.我们还可以证明:(11) 如果k ≠0且α≠0, 那么k α≠0.显然n 维行向量的相等和加法、减法及数乘运算的定义,与把它们看作1×n 矩阵时的相等和加法、减法及数乘运算的定义是一致的.对应地,我们也可以定义列向量的加法、减法和数乘运算,这些运算与把它们看成矩阵时的加法、减法和数乘运算也是一致的,并且同样具有性质(1)-(11).§2线性相关与线性无关通常把维数相同的一组向量简称为一个向量组,n 维行量组α1,α2,…,αs 可以排列 成一个s ×n 分块矩阵12s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦a a A a ,其中αi 为由A 的第i 行形成的子块,α1,α2,…,αs 称为A的行向量组.n 维列向量组β1,β2,…,βs 可以排成一个n ×s 矩阵B=(β1,β2,…,βs ),其中βj 为B的第j 列形成的子块,β1,β2,…,βs 称为B 的列向量组.很多情况下,对矩阵的讨论都归结于对它们的行向量组或列向量组的讨论.定义 5 向量组α1,α2,…,αs 称为线性相关的,如果有不全为零的数k 1,k 2,…,k s , 使1si ii k =∑a=k 1α1+k 2α2+…+k s αs =0. (3.3)反之,如果只有在k 1= k 2 = … =k s =0时(3.3)才成立,就称α1,α2,…,αs 线性无关. 换言之,当α1,α2,…,αs 是行向量组时,它们线性相关就是指有非零的1×s 矩阵 (k 1,k 2,…,k s )使1212(,,,)s s k k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦0a a a .当α1,α2,…,αs 为列向量组时,它们线性相关就是指有非零的s ×1矩阵(k 1,k 2,…,k s )′使1212(,,,)s s k k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦0a a a .显然单个零向量构成的向量组是成性的相关的. 例1 判断向量组12(1,0,,0),(0,1,,0),(0,0,,1)n =⎧⎪=⎪⎨⎪⎪=⎩εεε 的线性相关性.解 对任意的常数k 1,k 2,…,k n 都有k 1ε1+k 2ε2+…+k n εn =(k 1,k 2,…,k n ).所以k 1ε1+k 2ε2+…+k n εn =0当且仅当k 1=k 2=…=k n =0.因此ε1,ε2,…,εn 线性无关.ε1,ε2,…,εn 称为基本单位向量. 例2 判断向量组α1=(1,1,1), α2=(0,2,5), α3=(1,3,6)的线性相关性.解 对任意的常数k 1,k 2, k 3都有k 1α1+k 2α2+ k 3α3=(k 1+k 3,k 1+2k 2+3k 3,k 1+5k 2+6k 3).所以k 1α1+k 2α2+ k 3α3=0当且仅当131231230,230,560.k k k k k k k k +=⎧⎪++=⎨⎪++=⎩ 由于k 1=1,k 2=1,k 3=-1满足上述的方程组,因此1α1+1α2+(-1)α3=α1+α2-α3=0.所以α1,α2,α3线性相关.例3 设向量组α1,α2,α3线性无关,β1=α1+α2,β2=α2+α3,β3=α3+α1, 试证向量组β1,β2,β3也线性无关.证 对任意的常数都有k 1β1+k 2β2+k 3β3=(k 1+k 3)α1+(k 1+k 2)α2+(k 2+k 3)α3 .设有k 1,k 2,k 3使k 1β1+k 2β2+k 3β3=0.由α1,α2,α3线性无关, 故有1312230,0,0.k k k k k k +=⎧⎪+=⎨⎪+=⎩ 由于满足此方程组的k 1,k 2,k 3的取值只有k 1=k 2=k 3=0,所以β1,β2,β3线性无关.定义 6 向量α称为向量组β1,β2,…,βt 的一个线性组合,或者说α可由向量组β1,β2,…,βt 线性表出(示),如果有常数k 1,k 2,…,k t 使α=k 1β1+k 2β2+…+k t βt . 此时,也记1ti ii k ==∑a β.例4 设α1=(1,1,1,1),α2=(1,1,-1,-1),α3=(1,-1,1,-1),α4=(1,-1,-1,1), β=(1,2,1,1).试问β能否由α1,α2,α3,α4线性表出?若能,写出具体表达式.解 令β=k 1α1+k 2α2+k 3α3+k 4α4于是得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=⎧⎪+--=⎪⎨-+-=⎪⎪--+=⎩ 因为1111111116011111111D ⎡⎤⎢⎥--⎢⎥==-≠⎢⎥--⎢⎥--⎣⎦, 由克莱姆法则求出1234511,,444k k k k ====-所以12345111,4444=+--βαααα即β能由α1,α2,α3,α4线性表出.例5 设α=(2,-3,0),β=(0,-1,2),γ=(0,-7,-4),试问γ能否由α,β线性表出? 解 设 γ=k 1α+k 2β 于是得方程组1122203724k k k k =⎧⎪--=-⎨⎪=-⎩由第一个方程得k 1=0,代入第二个方程得k 2=7,但k 2不满足第三个方程,故方程组无解.所以γ不能由α,β线性表出.定理 1 向量组α1,α2,…,αs (s ≥2) 线性相关的充要条件是其中至少有一个向量能由其他向量线性表出.证 设α1,α2,…,αs 中有一个向量能由其他向量线性表出,不妨设α1=k 2α2+k 3α3+…+k s αs ,那么-α1+k 2α2+…+k s αs =0,所以α1,α2,…,αs 线性相关.反过来,如果α1,α2,…,αs 线性相关,就有不全为零的数k 1,k 2,…,k s , 使k 1α1+k 2α2+…+k s αs =0.不妨设k 1≠0, 那么32123111.ss k k k k k k =----αααα 即α1能由α2,α3,…,αs 线性表出.例如,向量组α1=(2,-1,3,1),α2=(4,-2,5,4),α3=(2,-1,4,-1) 是线性相关的,因为α3=3α1-α2.显然,向量组α1,α2线性相关就表示α1=k α2或者α2=k α1(这两个式子不一定能同时成立).此时,两向量的分量成正比例.在三维的情形,这就表示向量α1与α2共线.三个向量α1,α2,α3线性相关的几何意义就是它们共面.定理 2 设向量组β1,β2,…,βt 线性无关,而向量组β1,β2,…,βt ,α线性相关,则α能由向量组β1,β2,…,βt 线性表出,且表示式是惟一的.证 由于β1,β2,…,βt ,α线性相关,就有不全为零的数k 1,k 2,…,k t ,k 使k 1β1+k 2β2+…+k t βt +k α=0.由β1,β2,…,βt 线性无关可以知道k ≠0. 因此1212tt k k kk kk=----αβββ, 即α可由β1,β2,…,βt 线性表出.设α=l 1β1+l 2β2+…+l t βt =h 1β1+h 2β2+…+h t βt为两个表示式.由α-α=(l 1β1+β2+…+l t βt )-(h 1β1+h 2β2+…+h t βt )=(l 1-h 1)β1+(l 2-h 2)β2+…+(l t -h t )βt =0和β1,β2,…,βt 线性无关可以得到l 1=h 1, l 2=h 2, …, l t =h t .因此表示式是惟一的.定义 7 如果向量组α1,α2,…,αs 中每个向量都可由β1,β2,…,βt 线性表出,就称向量组α1,α2,…,αs 可由β1,β2,…,βt 线性表出,如果两个向量组互相可以线性表出,就称它们等价.显然,每一个向量组都可以经它自身线性表出.同时,如果向量组α1,α2,…,αt 可以经向量组β1,β2,…,βs 线性表出,向量组β1,β2,…,βs 可以经向量组12,,,p γγγ线性表出,那么向量组α1,α2,…,αt 可以经向量组12,,,p γγγ线性表出.事实上,如果1,1,2,,,si ij j j k i t ===∑αβ1,1,2,,,pj jmm m lj s ===∑βγ那么111111pppsss i ij jm m ij jm m ij jm m j m j m m j k l k l k l ======⎡⎤===⎢⎥⎣⎦∑∑∑∑∑∑αγγγ.这就是说,向量组α1,α2,…,αt 中每一个向量都可以经向量组12,,,p γγγ线性表出.因而,向量组α1,α2,…,αs 可以经向量组12,,,p γγγ线性表出.由上述结论,得到向量组的等价具有下述性质:(1) 反身性:向量组α1,α2,…,αs 与它自己等价.(2) 对称性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,那么β1,β2,…,βt 也与α1,α2,…,αs 等价.(3) 传递性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,而向量组β1,β2,…,βt 又与12,,,p γγγ等价,那么α1,α2,…,αs 与12,,,p γγγ等价.§ 3线性相关性的判别定理利用定义判断向量组的线性相关性往往比较复杂,我们有时可以直接利用向量组的特点来判断它的线性相关性,通常称一个向量组中的一部分向量组为原向量组的部分组.定理 3 有一个部分组线性相关的向量组线性相关. 证 设向量组α1,α2,…,αs 有一个部分组线性相关.不妨设这个部分组为α1,α2,…,αr .则有不全为零的数k 1,k 2,…,k r 使1110,s r si ii iji i j r k k ===+=+=∑∑∑0ααα因此α1,α2,…,αs 也线性相关.推论 含有零向量的向量组必线性相关. 定理 4 设p 1,p 2,…,p n 为1, 2, …,n 的一个排列,α1,α2,…,αs 和β1,β2,…,βs 为两向量组,其中1212n ip i ip i i i in ip ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ααααα=,βαα, 即β1,β2,…,βs 是对α1,α2,…,αs 各分量的顺序进行重排后得到的向量组,则这两个向量组有相同的线性相关性.证 对任意的常数k 1,k 2,…,k s 注意到列向量111221*********1122s s ss s i i i n n s sn k k k k k k k k k k =+++⎡⎤⎢⎥+++⎢⎥=⎢⎥⎢⎥+++⎣⎦∑αααααααααα和1112221122112211122n n n p p s sp sp p s sp i i i p p s sp k k k k k k k k k k =+++⎡⎤⎢⎥+++⎢⎥=⎢⎥⎢⎥+++⎢⎥⎣⎦∑ααααααβααα 只是各分量的排列顺序不同,因此k 1β1+k 2β2+…+k s βs =0当且仅当k 1α1+k 2α2+…+k s αs =0.所以α1,α2,…,αs 和β1,β2,…,βs 有相同的线性相关性.定理4 是对列向量叙述的.对行向量也有相同的结论.类似这样的情形,今后不再说明.定理 5 在r 维向量组α1,α2,…,αs 的各向量添上n -r 个分量变成n 维向量组β1,β2,…,βt .(1)如果β1,β2,…,βs t 线性相关,那么α1,α2,…,αs 也线性相关. (2) 如果α1,α2,…,αs 线性无关,那么β1,β2,…,βs 也线性无关. 证 我们对列向量来证明定理,设(α1,α2,…,αs )=A1,(β1,β2,…,βs )=12⎡⎤⎢⎥⎣⎦A A ,如果β1,β2,…,βs 线性相关,就有一个非零的s ×1矩阵X使(β1,β2,…,βs )X=12⎡⎤⎢⎥⎣⎦A A X=12⎡⎤⎢⎥⎣⎦X X A A =0. 从而(α1,α2,…,αs )X =A1X=0.因此α1,α2,…,αs 也线性相关,即(1)成立.利用(1),用反证法容易证明(2)也成立.引理 1 如果n 阶方阵A 的行列式等于零,那么A 的行(列)向量组线性相关.证 因|A |=0,由上章内容,用初等行变换把A 化成上三角矩阵D ,主对角线上至少有一个元素为零,即11121222000n n nn d d d dd d ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦D中至少有一个d ij =0.如果d nn =0,那么D 最后一行元素全为零,可见A 中有一行可由其余行线性表出,因此,A 的行向量组线性相关.如果d nn ≠0,设D 的主对角线上元素d 11,d 22,…,d nn 中从后起第一个等于零的数为d jj .易见,对D 再施行几次初等行变换后,可得到第j 行全为零的矩阵.同样得出A 中有一行可由其余行线性表出.因此,A 的行向量组线性相关.当|A|=0时,|A′|=0,A 的列向量组可看成A ′的行向量组,得A 的列向量组也线性相关.定理 6 n 维向量组α1,α2,…,αn 线性无关的充要条件是矩阵11112122122212n n n n n nn a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A ααα 的行列式不为零(A 可逆).此时,矩阵A 的n 个列向量也线性无关.证 如果|A|≠0,(k 1,k 2,…,k n )A =0,两边同时右乘A-1得(k 1,k 2,…,k n )=0,所以α1,α2,…,αn 线性无关.反过来,如果α1,α2,…,αn 线性无关.反设|A|=0,由引理1,A 的行向量组α1,α2,…,αn 线性相关,矛盾.由上面证明可以看出,当|A|≠0时,|A′|≠0,可见A 的n 个列向量也线性无关.例6 试证明n 维列向量组α1,α2,…,αn 线性无关的充分必要条件是行列式1112121222120n n nn nn '''⎡⎤⎢⎥'''⎢⎥=≠⎢⎥⎢⎥'''⎣⎦D αααααααααααααααααα证 令矩阵A ={α1,α2,…,αn }则向量组α1,α2,…,αn 线性无关⇔行列式|A |≠0.由于[]1111212212221212n n n nnn nn ''''⎡⎤⎡⎤⎢⎥⎢⎥''''⎢⎥⎢⎥'==⎢⎥⎢⎥⎢⎥⎢⎥''''⎣⎦⎣⎦A ααααααααααααααA αααααααααα在上式两端取行列式,得|A |2=|A ′||A |=D故|A |≠0⇔D ≠0,所以α1,α2,…,αn 线性无关⇔D ≠0.定理 7 n +1个n 维向量α1,α2,…,αn +1必线性相关.证 对每个αs 添加等于零的第n +1个分量,得到n +1维向量β1,β2,…,βn +1.易见,由β1,β2,…,βn +1构成的方阵的行列式等于零,因而β1,β2,…,βn +1线性相关,由αi 与βi 的关系,易知α1,α2,…,αn +1也线性相关.推论 当m >n 时,m 个n 维向量线性相关. 讨论下列矩阵的行向量组的线性相关性:123132221;021.343201-⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B C由于|B|=2≠0,因此B的行(列)向量组线性无关; 由于|C|=0,所以C 的行(列)向量组线性相关.定理 8 如果向量组α1,α2,…,αs 可由β1,β2,…,βt 线性表出且s >t ,那么α1,α2,…,αs 线性相关.证 我们不妨假定讨论的是列向量,如果α1,α2,…,αs 可由β1,β2,…,βt 线 性表出,那么()()121212i i i n n i it p p p ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦αββββββγ.令A=(γ1,γ2,…,γs ),有(α1,α2,…,αs )=(β1,β2,…,βt )A,这里γ1,γ2,…,γs 为由s 个向量组成的t 维向量组.注意到s >t ,根据推论,它们必线性相关.因此有非零s ×1矩阵(k 1,k 2,…,k s )′使112212(,,,)s s s k k k k k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦0A γγγ.从而()11221212(,,,)s s s s k k k k k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦0αααβββA .即有α1,α2,…,αs 线性相关.推论 1 如果向量组α1,α2,…,αs ,可由向量组β1,β2,…,βt 线性表出,且α1,α2,…,αs 线性无关,那么s ≤t .推论 2 两个线性无关的等价的向量组必含有相同个数的向量.§ 4向量组的秩与矩阵的秩定义 8 一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且从这向量组中向这部分组任意添一个向量(如果还有的话),所得的部分组都线性相关.例7 在向量组α1=(2,-1,3,1),α2=(4,-2,5,4),α3=(2,-1,4,-1)中,α1,α2为它的一个极大线性无关组.首先,由α1与α2的分量不成比例,所以α1,α2线性无关,再添入α3以后,由α3=3α1-α2可知所得部分组线性相关,不难验证α2,α3也为一个极大线性无关组.我们容易证明定义8与下列定义8′等价.定义 8′ 一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且这向量组中任意向量都可由这部分组线性表出.向量组的极大线性无关组具有以下性质:性质 1 一向量组的极大线性无关组与向量组本身等价. 性质 2 一向量组的任意两个极大线性无关组都等价.性质 3 一向量组的极大线性无关组都含有相同个数的向量.性质3表明向量组的极大线性无关组所含向量的个数与极大线性无关组的选择无关,它反映了向量组本身的特征.定义 9 向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 例如,例7中向量组α1,α2,α3的秩为2. 线性无关向量组本身就是它的极大线性无关组,所以我们有:一向量组线性无关的充要条件为它的秩与它所含向量的个数相同.我们知道每个向量组都与它的极大线性无关组等价,由等价的传递性可知任意两个等价的向量组的极大线性无关组也等价,根据定理8的推论1就有等价的向量组必有相同的秩.如果向量组α1,α2,…,αs 能由向量组β1,β2,…,βt 线性表出,那么α1,α2,…,αs的极大线性无关组可由β1,β2,…,βt 的极大线性无关组线性表出.因此α1,α2,…,αs 的秩不超过β1,β2,…,βt 的秩.定理 9 向量组的任意线性无关的部分组都可扩充为一个极大线性无关组.证 设,i i i 12καα,,α是向量组α1,α2,…,αs 中的一个线性无关的部分组,如果α1,α2,…,αs 中每个向量都可由这个部分组线性表出,那么这个部分组就是一个极大线性无关组,如果还有某向量αik +1不能被这个部分组线性表出,那么由121121i i k i l l l κ+++++ααα=0就有l k +1=0.再由原部分组线性无关就可得l 1=l 2=…=l k =l k +1=0.这样,我们就得到了一个含k +1个向量的线性无关的部分组121,i i i κ+αα,,α.重复这个过程,最后必可得到α1,α2,…,αs 的一个线性无关的部分组使向量组中每个向量都可由这个部分组线性表出,这个部分组就是一个极大线性无关组.推论 秩为r 的向量组中任意含r 个向量的线性无关的部分组都是极大线性无关组. 例8 求向量组α1=(1,-1,0,3),α2=(0,1,-1,2),α3=(1,0,-1,5),α4=(0,0,0,2)的一个极大线性无关组及秩.解 α1是α1,α2,α3,α4的一个线性无关的部分组,显然α2不能由α1线性表示,所以α1可以扩充为一个线性无关的部分组α1,α2,容易证明α3=α1+α2,但α4不能由α1,α2线性表出,所以α1,α2又可扩充为一个线性无关的部分组α1,α2,α4,从而α1,α2,α3,α4的秩为3,α1,α2,α4是它的一个极大线性无关组. 定义 10 矩阵的行秩是指它的行向量组的秩,矩阵的列秩是指它的列向量组的秩.为了证明一个矩阵的行秩等于列秩,我们引入矩阵的子式的概念.定义 11 在一个s ×n 矩阵A 中任意选定k 行和k 列,位于这些选定的行和列的交点上的k 2个元素按原来的次序所组成的k ×k 级矩阵的行列式,称为A 的一个k 级子式.在定义中,当然有k ≤m in (s ,n )(s ,n 中较小的一个). 例9 在矩阵11361012400005301102⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦A 中,选第1,第3行和第3,第4列,它们交点上的元素所组成的二级行列式361505⎡⎤=⎢⎥⎣⎦就是一个2级子式,易见,A 共有2级子式的个数为2245C C 60=.引理 2 设r ≤n .n 维向量组α1,α2,…,αr 线性无关的充要条件是:矩阵111212122212n n r r rn r a a a a a a a a a 12⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ααA α 中存在一个不为零的r 级子式.证 充分性 当A 中存在一个不为零的r 级子式时,由定理6,定理5易知,A 的r 个行向量α1,α2,…,αr 线性无关.必要性 对向量的个数r 用数学归纳法证明.当r =1时,因α1线性无关,故α1≠0,A 中有一个不为零的1级子式. 假设当r =k 时,结论成立.当r =k +1≤n 时,因α1,α2,…,αk +1线性无关,其部分组也线性无关.由归纳假设,矩阵111212122212n n k k k kn a a a a a a a a a 12⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ααB α 中存在不为零的k 级子式,不妨设1112121222120k k k k kk a a a aa a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦, 令γi =(a i 1,a i 2,…,a ik ),k 12⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦γγγC 是一个k 阶可逆矩阵,i =1,2,…,k+1.显然,γi 是由αi 的前k 个分量构成,设()11,,,k κc c c -2+1=γC ,易见()1,,,k c c c 2是一组确定的数,且()()111,,,,,,κk k k c c c c c c 2+122⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦γγγγC ,即()11,,,κk k c c c +122-=0γγγγ.(3.4) 令()()111,,,κk k n c c c b b b +1222=-+++=βαααα,即有b j =a k +1,j -(c 1a 1j +c 2a 2j +…+c k a kj ), j =1,2,…,n .由于γ1,γ2,…,γk ,γk +1分别由α1,α2,…,αk ,αk +1的前k 个分量构成,根据(3.4)式,β的前k 个分量应为零,即b 1=b 2=…=b k =0.又因为α1,α2,…,αk ,αk +1线性无关,所以β≠0. 因此,必有某b j ≠0(k <j ≤n ).于是有k +1级子式11121111121121222221222212121,11,21,1,0000k j kj k j k j j k k kk kj k k kk kj k k k kk j j a a a a a a a a a a a a a a a a b a a a a a a a a a a a a b ++++⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==≠⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦C . 由定理6及引理2,可以看出,如果A 有一个k 级子式不为零,那么这个k 级子式所在的行向量组线性无关,所在的列向量组也线性无关.定理 10 矩阵的行秩等于列秩.证 设矩阵A 的行秩为r 1,A 的列秩为r 2,那么,A 中有r 1个行向量线性无关,由引理2,A 中有一个r 1级子式D 不为零,那么A 中子式D 所在的r 1个列向量也线性无关;因而,r 1≤r 2.这说明,任意矩阵的列秩大于或等于行秩,由此,A ′的列秩(A 的行秩r 1)≥A ′的行秩(A 的列秩r 2),即有r 1≥r 2.因此r 1=r 2.下面统称矩阵的行秩和列秩为矩阵的秩.矩阵A 的秩一般记为R (A).规定零矩阵的秩为0,由引理2,可得定理 11 矩阵A 的秩为r 的充要条件是它有一个不为零的r 阶子式,而所有r +1阶子式全为零,这时,这个非零的r 级子式所在的行和列就分别为A 的行向量组和列向量组的极大线性无关组.例10 已知矩阵111111111111αa a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 的秩为3,求a 的值. 解 R (A )=3,即A 中非零子式的最高阶数为3,故有1111111111111(3)111111111111αa a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A 11110100(3)00100001a a a a ⎡⎤⎢⎥-⎢⎥=+⎢⎥-⎢⎥-⎣⎦=(a +3)(a -1)2=0 由此得a =-3或a =1.当a =1时,显然有R (A )=1;而当a =-3时,A 的左上角的3阶子式为311131160113-⎡⎤⎢⎥-=-≠⎢⎥⎢⎥-⎣⎦即A 中存在非零的3阶子式,且不存在更高阶的非零子式,故当且仅当a =-3时,R (A )=3.§5 矩阵的初等变换由上节介绍的方法求阶数较高的矩阵的秩的计算量很大,本节来介绍一种简单有效的求矩阵的秩的方法,即利用矩阵的初等变换求出矩阵的等价标准型,矩阵的秩就等于它的等价标准型的秩.下面我们回顾一下矩阵的初等行变换.定义 12 下面的三种变换称为矩阵的初等行变换:(1) 对换矩阵两行的位置(对换第i 行和第j 行的位置记为r (i ,j )).(2)矩阵的某行所有元素同乘以一个非零常数(第i 行乘以k 记为r (i (k ))).(3) 把矩阵一行所有元素的k 倍加到另一行对应的元素上去[第i 行的k 倍加到第j 行上去记为r (j +i (k ))].显然,矩阵的初等行变换都是可逆的,且其逆变换也是同类的初等行变换.r (i ,j )的逆变换仍为r (i ,j );r (i (k ))的逆变换为r (i (1/k ));r (j +i (k ))的逆变换为r (j +i (-k )).定理 12 如果矩阵A经过有限次初等行变换变为B ,则A 的行向量组与B 的行向量组等价,而A 的任意k 个列向量与B中对应的k 个列向量有相同的线性关系.证 当A 经过一次初等行变换变为B 时,B 的行向量组显然可由A 的行向量组线性表出,对A 的任意k 个列向量α1,α2,…,αk ,设它们所对应的B 的列向量依次为12k'''a ,a ,,a ,如果α1,α2,…,αk 线性相关,就有不全为零的常数12,,,k l l l 使1122k k l l l +++a a a =0.由12k'''a ,a ,,a 各分量与α1,α2,…,αk 各分量的关系容易得出 1122k kl l l '''+++a a a =0, 因此12k'''a ,a ,,a 也线性相关.由初等行变换的逆变换也是初等行变换可以知道A的行向量组也可由B的行向量组线性表出,并且由12k'''a ,a ,,a 线性相关也可以导出α1,α2,…,αk 线性相关,此时命题成立.当A要经若干个初等变换变为B时,用数学归纳法容易证明命题也成立.例11 求下列向量组α1=(1,-2,2,3), α2=(-2,4,-1,3), α3=(-1,2,0,3), α4=(0,6,2,3),α5=(2,-6,3,4) 的一个极大线性无关组与秩.解 作12102242662102333334--⎡⎤⎢⎥--⎢⎥=⎢⎥-⎢⎥⎣⎦A , 对A作初等行变换得(21(2))(31(2))(2,3)(41(3))(3,4)121212102000620322103021096320933200062r r r r r ++-+-----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦A (32(3))12102032210003100062r +---⎡⎤⎢⎥-⎢⎥−−−−→⎢⎥-⎢⎥-⎣⎦(43(2))12102032210003100000r +--⎡⎤⎢⎥-⎢⎥−−−−→⎢⎥-⎢⎥⎣⎦. (3.5) 上面最后一个矩阵(3.5)满足:从每一行的第一个元素到第一个非零元素下面全为零,这些零的排列像一个阶梯,每个阶梯都只有一行,它称为一个行阶梯矩阵.易见,行阶梯矩阵(3.5)中有一个3级子式不为零,而所有4级子式全为零,故矩阵(3.5)的秩为3,它的第1、2、4列线性无关,所以R (A)=3,且R (α1,α2,α3,α4,α5)=3,α1,α2,α4为该向量组的一个极大线性无关组.对(3.5)继续进行初等行变换还可化为更简单的形式:1(2())31(3())312102221013331000130000r r ---⎡⎤⎢⎥⎢⎥-⎢⎥−−−−→⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦矩阵(3.5) (12(2))2(23())311610039210103910001300000r r ++-⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥−−−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦.(3.6) (3.6)仍是一个行阶梯形矩阵,但它的每一非零行的第一个非零元素为1,且这些元素所在的列的其他元素都为0,这个矩阵称为矩阵A的行最简形.例12 求向量组α1=(1,4,1,0,2),α2=(2,5,-1,-3,2),α3=(0,2,2,-1,0), α4=(-1,2,5,6,2)的一个极大无关组,并把不属于极大无关组的向量用该极大无关组线性表出.解 把向量组按列排成矩阵A ,利用初等行变换把A 化为行最简形矩阵B .1201120145220326112503260316031622020204⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A1201100301020102001000100000000000000000-⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦B 易见B 的第1,2,3列线性无关,由于A 的列向量组与B 的对应的列向量组有相同的线性组合关系,故与其对应的矩阵A 的第1,2,3列线性无关,即α1,α2,α3是该向量组成的一个极大无关组.由矩阵B 易得α4=3α1-2α2.求向量组的极大无关组时,不管所给的是行向量组还是列向量组,都要按列排成矩阵再进行初等行变换.对应于矩阵的初等行变换,我们还可以定义矩阵的初等列变换.对矩阵的初等列变换c (i ,j ),c (i (k ))和c (j +i (k ))也有类似于矩阵的初等行变换的结论.所以,我们同样可以通过求矩阵的列阶梯形矩阵和列最简形来求矩阵的秩以及行向量组的极大线性无关组.矩阵的初等行变换和初等列变换统称为初等变换.事实上,我们在求矩阵的秩时,经常对矩阵既进行初等行变换也进行初等列变换,使计算过程得到简化.定义 13 如果矩阵A 经有限次初等变换化成B ,就称矩阵A 与B 等价. 我们容易证明,矩阵的等价关系具有下列性质: (1) 反身性: A 与A 等价.(2) 对称性: 如果A 与B 等价,那么B 与A 等价.(3) 传递性: 如果A 与B 等价,B 与C 等价,那么A 与C 等价. 定理 13 如果矩阵A 与B 等价,那么R (A )=R (B). 对矩阵(3.6)再进行初等列变换可得1(31())316(51())92(32())31(52())(3,4)91(54())31000010000010000100000010001000000000000r r r r c r +-+-+-++⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦矩阵(3.6). (3.7)矩阵(3.7)的左上角为一个单位矩阵E 3,它的阶数就是A 的秩,其他各分块矩阵都是零矩阵, 矩阵(3.7)就称为A 的等价标准型.事实上,我们有如下定理定理 14 每个矩阵都有等价标准型,矩阵A 与B 等价,当且仅当它们有相同的等价标准型.推论 两个同型矩阵等价的充分必要条件是它们的秩相等.当A 为n 阶可逆方阵时,R (A)=n ,所以A 的等价标准型为n 阶单位矩阵.由于可逆方阵的秩等于阶数,所以可逆方阵又称为满秩方阵,而奇异方阵就称为降秩方阵.§ 6初等矩阵与求矩阵的逆这一节我们来建立矩阵的初等变换与矩阵乘法的联系,并在此基础上给出用初等变换求逆矩阵的方法.定义 14由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵.显然,初等矩阵都是方阵.互换E 的第i 行与第j 行(或者互换E的第i 列和第j 列)的位置,得11011(,)11011i i j j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第行第行E ; 用常数k 乘E 的第i 行(或第i 列)得11(())11i k i k ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第行E ; 把E的第j 行的k 倍加到第i 行(或把第i 列的k 倍加到第j 列)得11(())11i k i j k j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第行第行E . 这三类矩阵就是全部的初等矩阵,显然111()(),(())(())i j i j i k i k--==,,E E E E ,1(())(())i j k i j k -+=+-E E .定理15 对一个s ×n 矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s ×s 初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n ×n 初等矩阵.证 我们只看行变换的情形,列变换的情形可同样证明.令B=(b ij )s ×s 为任意一个s ×s 矩阵,A1,A2,…,As 为A 的行向量组,由矩阵的分块乘法,得111122121122221122s s s s s s ss s b b b b b b b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A +A ++A A +A ++A BA A +A ++A ,令B=E (i ,j ),得1()j i s i j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,A A E A A A ,这相当于把A 的i 行与j 行互换;令B=E (i (k )),得1(())i s i k k ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦A E A A A ,这相当于用k 乘A 的第i 行;令B=E (i +j (k )),得1(())i j j s k i j k ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A A +A E A A A ,这相当于把A 的第j 行的k 倍加到第i 行.推论1 矩阵A 与B 等价的充分必要条件是:有初等方阵P1,P2,…,Ps ,Q1,…,Qt使A=P1P2…Ps BQ1Q2…Qt.推论2 n×n矩阵A 可逆的充分必要条件是:它能表成一些初等矩阵的乘积. 推论3 两个s×n矩阵A 、B 等价的充分必要条件是:存在可逆的s×s矩阵P 与可逆的n ×n 矩阵Q 使A=PBQ.推论4 可逆矩阵总可以经过一系列初等行变换化成单位矩阵.证 如果A 是可逆方阵,由推论2知道它可以写成一些初等矩阵的乘积:A=Q1Q2…Qm.因此11121m---=Q Q Q A E .由于初等矩阵的逆矩阵仍为初等矩阵,而A 左乘初等矩阵就相当于对A 施行初等行变换,所以A 可以经初等行变换化为单位矩阵.值得注意的是,如果有初等矩阵P1,…,Pm使Pm…P1A=E,那么A-1=Pm…P1=Pm…P1E,这说明,如果用一系列初等行变换可把可逆矩阵A 化为单位矩阵,那么同样地用这一系列初等行变换去化单位矩阵,就得到A -1.如果我们把A ,E 这两个矩阵凑在一起作成一个n ×2n 矩阵.(A┊E),按矩阵的分块乘法可得Pm…P1(A┊E)=(Pm…P1A┊Pm…P1E )=(E ┊A-1).这就给我们提供了一个具体的求可逆矩阵A 的逆矩阵的方法:作n×2n 矩阵(A ┊E ),用初等行变换把它的左边一半化成E ,这时,右边的一半就是A -1.例13 设012114210⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A ,求A-1.解 对(A┊E)作初等行变换012100()114010210001⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A E(1,2)114010012100210001r ⎡⎤⎢⎥−−−→⎢⎥⎢⎥-⎣⎦ (31(2))114010012100038021r +-⎡⎤⎢⎥−−−−→⎢⎥⎢⎥---⎣⎦ (32(3))114010012100002321r +⎡⎤⎢⎥−−−−→⎢⎥⎢⎥--⎣⎦(23(1))(13(2))(12(1))100211010421002321r r r +++--⎡⎤⎢⎥−−−−→-⎢⎥⎢⎥--⎣⎦1(3())210021101042131001122r -⎡⎤⎢⎥-⎢⎥−−−−→-⎢⎥⎢⎥--⎢⎥⎣⎦.于是121142131122-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎣⎦A .当然,同样可以证明,可逆矩阵也能用初等列变换化成单位矩阵,这就给出了用初等列变换求逆矩阵的方法.§7 向量空间定义15 设V 为n 维向量组成的集合.如果V 非空,且对于向量加法及数乘运算封闭,即对任意的α,β∈V 和常数k 都有α+β∈V,kα∈V,就称集合V 为一个向量空间.例14 n 维向量的全体R n构成一个向量空间.特别地,三维向量可以用有向线段来表示,所以R 3也可以看作以坐标原点为起点的有向线段的全体.例15 n 维零向量所形成的集合{0}构成一个向量空间.例16 集合V ={(0,x2,x3,…,xn)}|x2,x3,…,xn∈R }构成一个向量空间.例17 集合V ={(x1,x2,…,xn)|x1+x2+…+xn=1}不构成向量空间. 例18 设α1,α2,…,αm为一个n 维向量组,它们的线性组合V={k1α1+k2α2+…+k m αm |k 1,k 2,…,k m ∈R }构成一个向量空间.这个向量空间称为由α1,α2,…,αm所生成的向量空间,记为L (α1,α2,…,αm).例19 证明由等价的向量组生成的向量空间必相等.证 设α1,α2,…,αm和β1,β2,…,βs 是两个等价的向量组.任意的α∈L(α1,α2,…,αm)都可经α1,α2,…,αm线性表出.由向量组α1,α2,…,αm又可经β1,β2,…,βs 线性表出可以知道α也能经β1,β2,…,βs 线性表出,即有α∈L(β1,β2,…,βs ).由α的任意性得L (α1,α2,…,αm)⊆L (β1,β2,…,βs ).同理可证L (β1,β2,…,βs )⊆L ().于是L (α1,α2,…,αm)=L (β1,β2,…,βs ).定义16 如果V 1和V2都是向量空间且V 1⊆V2,就称V1是V2的子空间.任何由n 维向量所组成的向量空间都是R n的子空间.R n和{0}称为R n的平凡子空间,其他子空间称为R n的非平凡子空间.定义17 设V 为一个向量空间.如果V 中的向量组α1,α2,…,αr 满足(1)α1,α2,…,αr 线性无关;(2) V 中任意向量都可经α1,α2,…,αr 线性表出,那么,向量组α1,α2,…,αr 就称为V 的一个基,r 称为V 的维数,并称V 为一个r 维向量空间.如果向量空间V 没有基,就说V 的维数为0,0维向量空间只含一个零向量.如果把向量空间V 看作向量组,那么V 的基就是它的极大线性无关组,V 的维数就是它的秩.当V 由n 维向量组成时,它的维数不会超过n .例20 设 ()123221212122-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A a ,a ,a , ()12140342⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦B ,ββ, 验证α1,α2,α3是R 3的一个基并将β1,β2用这个基线性表出.解 由|A|≠0可以知道α1,α2,α3线性无关,因此α1,α2,α3是R 3的一个基.设β1=x11α1+x21α2+x31α3,β2=x12α1+x22α2+x32α3,即(β1,β2)=(α1,α2,α3)111221223132x x x x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 那么 ()1112112122123132x x x x x x --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,=AB ββ.如果P 1,P2,…,Pl为初等矩阵,使P1P2…PlA=E,则 A-1=P1P2…Pl且11122122123132l x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P P P B .因此只需对矩阵(A┊B)作初等行变换,当把A 变为E 时,B 就变成了A-1B.(A┊B)=221142*********-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦(1,3)122422*********r --⎡⎤⎢⎥−−−→-⎢⎥⎢⎥-⎣⎦(21(2))(31(2))122420368706378r r ++--⎡⎤⎢⎥−−−−→-⎢⎥⎢⎥-⎣⎦(1(1))(32(2))122420368700996r r -+----⎡⎤⎢⎥−−−−→-⎢⎥⎢⎥--⎣⎦1(3())9(23(6))(13(2))21202303023200113r r r -+-+⎡⎤--⎢⎥⎢⎥−−−−→-⎢⎥⎢⎥-⎢⎥⎣⎦1(2())3(12(2))2410033201013200113r r +⎡⎤⎢⎥⎢⎥⎢⎥−−−−→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦所以 112321232242,3333--++=a a a =a a a ββ. 习 题 三1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3.2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α.3. 判断下列命题是否正确:(1) 若向量组α1,α2,…,αm线性相关,那么其中每个向量可经其他向量线性表示.(2) 如果向量β1,β2,…,βs 可经向量组α1,α2,…,αm线性表示且α1,α2,…,αm 线性相关,那么β1,β2,…,βs 也线性相关.(3) 如果向量β可经向量组α1,α2,…,αm线性表示且表示式是惟一的,那么α1,α2,…,αm线性无关.(4) 如果当且仅当λ1=λ2=…=λm=0时才有λ1α1+λ2α2+…+λm αm +λ1β1+λ2β2+…+λmβm=0,那么α1,α2,…,αm线性无关且β1,β2,…,βm 也线性无关.(5) α1,α2,…,αm线性相关,β1,β2,…,βm 也线性相关,就有不全为0的数λ1, λ2,…,λm使λ1α1+λ2α2+…+λm αm =λ1β1+λ2β2+…+λmβm.(6) 如果R (A )=r,则A 的r-1阶子式全为0.(7) 如果R (A )=r,则A 的r阶子式不为0.(8) 如果由矩阵A 划去一行得到B ,则R (A )>R (B ).(9) 如果P 为一个可逆s×s方阵,Q 为一个可逆n×n方阵,A 为一个s×n阵,那么R (A )=R (PAQ).4. 判别下列向量组的线性相关性.(1)α1=(2,5), α2=(-1,3);(2) α1=(1,2), α2=(2,3), α3=(4,3);(3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);(4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1).5. β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α1,证明向量组β1,β2,β3,β4线性相关.6. 设向量组α1,α2,…,αr 线性无关,证明向量组β1,β2,…,βr 也线性无关,这里βi=α1+α2+…+αi.7. 作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵.8. αi=(αi1,αi2,…,αin),i =1,2,…,n.证明:如果|aij|≠0,那么α1,α2,…,αn 线性无关.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p px i py j pz k p | p| | p| | p|
p cosi cos j cosk
p
【例】 在平行四边形 ABCD 中, AB a, AD b .
试用 a , b 表示向量 MA, MB, MC, MD, 这里 M 为平行四边形 ABCD 的对角线的交点.
【解】 MB MD
13
向量的标准分解
【坐标向量】 空间坐标系中, 单位向量 i (1,0,0), j (0,1,0), k (0,0,1)
称为坐标向量.
【向量的标准分解】
z
p pxi py j pzk
k
向量 p 在三个坐标轴上的投影
j
px , py , pz 称为 p 的坐标,
i
x
O
y
向量 p经常表示为 p( px , p y , pz )
(a1c1 b1c1 ) (a2c2 b2c2 ) (a3c3 b3c3 )
(a1c1 a2c2 a3c3 ) (b1c1 b2c2 b3c3 )
ac bc 29
【例1】 已 知 空 间 三 点 M(1,1,1), A(2, 2,1), B(2,1, 2) , 求AMB.
【解】 a MA (1,1,0),
a b a (b) (a1 b1, a2 b2 , a3 b3 ).
z a
C(c1,c2 ,c3 )
(b1 ,b2 ,b3 )B b
b (b1,b2 ,b3 )
a
b
A(a1,a2 ,a3 )
a
y
x O(0,0,0)
17
若向量 a (a1, a2 , a3 ), 则 a 的模
| a | a12 a22 a32 .
8
3. 空间直角坐标系
(1) 在空间中取一定点 O ;
(2) 过点 O 作三条两两互 相垂直, 且成右手系的
拇指方向 z
数轴:
•1
Ox Oy Oz
••
•1 O 1
y
x
9
【坐标平面】 xOy, yOz, zOx 面
(,,) Ⅲ
(,,) yOz面 Ⅳ
xOy面
z
zOx 面 (,,) Ⅱ
O
y
Ⅰ (,,)
(3) 当 0 时, a 0.
(4) a (1)a;
(5)
a0
1 |a
|
a
为与
a
同向的单位向量.
2a
参照 a 画出 a,
2a ,
1 2
a
.
a
a
1 2
a
6
【向量线性运算的性质】
(1)
a
b
b
a;
(2)
(a
b)
c
a
(b
c);
(3) (a b) a b ;
(4)
(
)a
a
a
z
a
A(a1,a2 ,a3 )
O
y
x
18
【例】如图, 用坐标表示向量 OE, GB, DC .
【解】 B (1, 1, 0), C (0, 1, 0), D (1, 0, 1), E (1, 1, 1),
z
1G
F
D
E
G (0, 0, 1);
OE (1,1,1), GB (1 0,1 0,0 1)
O 1 xA
Cy 1
B
(1,1,1) DC (0 1,1 0,0 1)
(1,1,1)
【公式】 (a1 , a2 , a3 ) (a1 , a2 , a3 )
当 0 时, A, B 在原点O的同一侧, 即 a 与 b同向; 当 0 时, A, B 在原点O的两侧, 即 a 与 b 反向;

Pr jba
| OP |
;
若 90 180 ,

Pr jba | OP | .
(2) a b a b 0 .
(3)
aa
|
a
|2
;
|a|
aa
,
且a
a
(0 a
0).
27
【定理1】在空间直角坐标系中, 若 a (a1, a2 , a3 ),
b (b1,b2,b3 ), 则 a, b 的数量积
b MB (1,0,1), AMB arccos a b
|a | |b |
arccos 1 2 2
arccos
1 2
60
a, b arccos a b
|a| |b|
B
b
M a
A
30
2. 两个向量的向量积(由两个向量造一个新向量)
称为向量的坐标表示或代数表示
z a
C(c1,c2 ,c3 )
B(b1,b2 ,b3 )
a
A(a1,a2 ,a3 )
y
x O(0,0,0)
【向量的坐标】 设 a BC 为空间直角坐标系中的一个 向量. 将 a自由平移使其起点与原点O 重合, 终点为
A(a1 , a2 , a3 ) ; 有序数组 a1 , a2 , a3 称为向量 a 的坐标, 记为
(,,)
VII x

Ⅷ (,,)
Ⅴ (,,) (,,)
【卦限】空间直角坐标系共有八个卦限.
10
空间点的坐标
P点的坐标为( x, 0, 0) ; Q点的坐标为(0, y, 0) ; A点的坐标为( x, y, 0) ; R点的坐标为(0, 0, z) ; M点的坐标为( x, y, z) .
z
R •z
BC (a1, a2 , a3 ).
15
z a
C(c1,c2 ,c3 )
B(b1,b2 ,b3 )
a
A(a1,a2 ,a3 )
y
x O(0,0,0)
【公式】 在前面的条件下
BC (c1 b1, c2 b2 , c3 b3 ).
由于线段 BC 平行平移与OA重合, 因而点C 的坐标
从而
(c1 , c2 , c3 ) (a1 b1 , a2 b2 , a3 b3 );
1 2
{(a12
a22
a32 )
(b12
b22
b32 )
[(b1 a1 )2 (b2 a2 )2 (b3 a3 )2 ]}
a1b1 a2b2 a3b3 .
28
由上述定理, 通过直接、简单的代数验算, 很轻松地 得到下列有关数量积的性质.
【向量内积的性质】
(1) a b b a (交换律); (2) (a b) c a c b c (数量积对加法的分配律);
第三章 向量代数与几何应用
本章主要内容: 空间直角坐标系 向量及其坐标 向量的数量积与向量积 平面方程 空间直线方程及其方程
1
3.1 空间直角坐标系
本节主要内容: 空间直角坐标系 空间点的坐标 空间两点间的距离
2
1. 空间向量
【数学中的向量】 空间中的一个箭头(有方向的线段).
【向量的表示】 若向量的起点为 A, 终点为 B , 我们用 AB 表示此向量.
;
(5) ()a ( a). (6) a 0 a ;
(7) (8)
a 1a
(a) a
0;

(1)a
a
7
向量的夹角 a,b
向量 a 在向量 b上的投影
b a a cos
a, b 投影性质 (c 0)
(1) c (a) c a (2) c (a b) c a c b
当 0时,上式显然成立.
向量的方向角与方向余弦
【两个向量的夹角】 对于两个向量 a, b , 它们之间
由 0 到 的夹角称 a 与 b 的夹角, 记为 a, b .
b
a
z
【向量的方向角】 向量 a 与坐
标向量 i , j , k 的夹角
, ,
称为向量 a 的方向角; 称
cos, cos , cos
z
1
O 1
1
x
y
24
3.2 向量的内积、外积与混合积
向量的内积 向量的外积 向量的混合积
25
1. 两个向量的数量积
【常力作功】 如图, F 为一个常力(大小和方向不变的 力), 一物体在 F 的作用下沿直线由 M1移动到 M 2, 则 在此过程中F 所作的功
W | F1 | | M1M2 | ( | F | cos ) | M1M2 |
定义 a 与 b 的和为 a b OC ; 定义 a 与 b 的差为 a b a (b ) BA.
C
B b
ab
a
b
A
平行四边形 法则或三角 形法则
O
a
数乘向量(用一个数和一个向量造新的向量)
【定义】设 a 为一个向量, 为一个实数, 则 a 按下
列规定表示一个向量: (1) 当 0 时, a与 a 同向, |a | | | |a |; (2) 当 0 时, a与 a 反向, |a | | | |a |;
|
F
|
|
M 1 M2
F2
|
cos
F
F1
M1
M2
26
【定义1】 设 a, b 为两个向量, 它们的夹角为
(0
为向量a 与
),a则 b称 实| a数| |
b 的数量积.
b
|
cos
【评注】
Prjb a
(1)
a
实 数 b0
|
a
|
cos
称向量a 在向量b 上的投影.
O
A
a
ba
bP
B
若 0 90 ,
a
B
相关文档
最新文档