中央空调技术方案

合集下载

中央空调清洗技术方案

中央空调清洗技术方案

中央空调施工技术方案一一、软轴机器人风管清洗、消毒(一)、风管清洗、消毒示意图风管主管清洗示意图风管支管清洗示意图(二)、风管的清洗消毒方法及操作步骤风管清洗、消毒施工工艺流程图开始与业主协调工作结合空调施工图,了解风管系统布局将整个风管系统分成若干操作段器材搬入室内物品保护开始开口设备安装、施工就绪清洗机器人整体清洗风管清扫清洗前检测毛刷机局部清洗清洗球系统清洗清洗完进行自检清洗后检测清洗录像风管消毒封口恢复风管保温层开机试运行保护撤去,室内清扫室内确认空调机停止运行(三)、风管清洗、消毒原理利用空气负压机的大排气量使密闭管道内形成高流速、低真空的负压状态,通过机械方式、流体力学方式的刷、吹、震动等动作 ,使管道壁上的灰尘脱落,脱落的灰尘被高速气流运输到空气负压机,在通过空气负压机的初、中、高效三级过滤器时被阻截、收集,过滤后的空气被排放出去。

清洗后的管道用长效消毒剂对管道进行雾化消毒,使管道内长期保持干净、卫生。

(四)、风管清洗、消毒具体操作步骤1、清洗前的准备对室内物品进行保护性覆盖空调系统调查a 用录像监测设备侦察管道内的污染情况,并保存图片供监测及验收;b用取样框、无纺布、天平等仪器设备检测风管内壁粉尘量。

根据对空调系统检测调查,出具空调系统污染检测意见书。

在施工前必须通知被清洗的建筑物业主或其授权的代表。

通知内容包括清洗过程导致或者可能导致的不便。

选定作业区,封闭作业区及作业区外的送风口。

将整个工程分散为几个作业区,逐一施工。

制定工程计划书。

对带入施工现场的设备、仪器、机械都应认真检验,看是否完好,并对其进行湿式擦拭。

施工人员做好必需的防护,并用装有高效高气过滤器的吸尘器对施工设备进行清洗。

家用中央空调方案书

家用中央空调方案书

家用中央空调方案书1. 引言中央空调系统是一种集制冷、供暖、通风和空气净化于一体的全屋空调解决方案,特别适用于家庭环境。

本文档旨在提供一份全面的家用中央空调方案,以帮助客户了解系统的工作原理、优势和实施计划。

2. 方案概述家用中央空调方案旨在为客户提供一个舒适、高效和节能的室内环境。

方案将采用以下关键组件和设计原则:2.1 中央空调主机中央空调主机是整个系统的核心,负责制冷、供暖和通风任务。

我们将为客户选择一款高性能、低能耗的中央空调主机,并确保其与家庭的用电负载匹配。

2.2 空气分配系统为了确保每个房间都能得到适宜的温度,我们将安装空气分配系统,包括风管和风口。

通过合理设计和规划,系统将能够将冷、热空气均匀分配到各个房间,提供整体舒适的空调效果。

2.3 温控系统为了提供个性化的温度控制,我们将为每个房间安装独立的温度控制器。

这将使客户能够根据需要调整每个房间的温度,以满足不同成员的需求。

温控系统还将帮助节约能源,提高整体效率。

2.4 空气净化系统为了提供健康舒适的室内环境,我们将在中央空调系统中集成空气净化设备。

这些设备将过滤、杀灭室内空气中的细菌、病毒和有害物质,提供干净、新鲜的空气供应。

3. 实施计划3.1 设计阶段在设计阶段,我们将与客户进行充分的沟通,了解他们的需求和偏好。

根据家庭的结构和面积,我们将制定一个定制的中央空调系统设计,确保覆盖每个房间,并考虑到供冷、供暖、通风和空气净化的需求。

3.2 安装阶段一旦设计确定,我们将开始安装中央空调系统的各个组件。

这将包括安装中央空调主机、空气分配系统和温控系统。

我们将确保安装过程遵循相关的安全标准,并对系统进行全面测试,确保其正常运行。

3.3 运行与维护一旦中央空调系统安装完毕,我们将指导客户如何正确操作和维护系统。

我们将提供详细的用户手册和维护指导,以确保系统的长期可靠运行。

此外,我们还将为客户提供定期的系统维护和服务,以保持系统的性能和效率。

中央空调节能改造方案(变频)

中央空调节能改造方案(变频)

中央空调节能改造方案(变频)1.中央空调工作原理中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和散热水塔组成,其系统结构如:(图1所示)制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻水泵将冷冻水送到各风机风中的冷却盘管中,由风机吹送冷风达到降温的目的。

经蒸发后制冷剂在冷凝器中释放出热量,与冷却循环水进行热交换,由冷却水泵将带来热量的冷却水泵到散热水塔上由水塔风扇对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。

2.中央空调应用背景中央空调系统是一个庞大的设备群体,大量的统计结果表明,空调系统所消耗的电能,约占楼宇电耗的40~60%。

就任何建筑物来说,选用空调系统都是按当地最热天气时所需的最大制冷量来选取择机型的,且留有10%~15%的余量,各配套系统按最大负载量配置,这种选择不是最合理的。

在组成空调系统的各种设备中,水泵所消耗的电能约占整个空调系统的四分之一左右。

早期空调的水泵普遍采用定流量工作,能源浪费非常严重。

而实际运行时,中央空调的冷负荷总是在不断变化的,冷负荷变化时所需的冷媒水、冷却水的流量也不同,冷负荷大时所需的冷媒水、冷却水的流量也大,反之亦然。

我们根据中央空调机组运行状态的数据分析,中央空调机组90%的运行时间处于非满负荷运行状态。

而冷冻水泵、冷却水泵以及风机在此90%的时间内仍处于100%的满负荷运行状态。

这样就导致了“大流量小温差”的现象,使大量的电能白白浪费。

3. 中央空调节能原理我们知道中央空调的水循环系统主要由冷却水泵和冷冻水泵组成。

从水泵的工作原理可知:水泵流量与水泵(电机)转速的一次方成正比,水泵扬程与水泵(电机)转速的两次方成正比,水泵轴功率与水泵转速的三次方成正比(既水泵的轴功率与供电频率的三次方成正比)。

根据上述原理可知只要改变水泵的转速就可改变水泵的功率。

例如:将供电频率由50Hz降为45Hz,功率只有原来的72.9%。

办公室中央空调方案

办公室中央空调方案

办公室中央空调方案随着经济的发展和人们生活水平的提高,空调已经成为了办公室中不可或缺的设备之一。

然而,随着对能源消耗和环境污染认识的不断提高,如何选择一套高效、节能的中央空调方案成为了办公室装修中的一项重要课题。

一、办公室中央空调系统的选型在选择办公室中央空调系统的时候,我们需要考虑以下几个因素:1. 办公室的布局和结构:办公室的布局和结构直接影响了中央空调系统的布置和管线的敷设。

我们需要根据实际情况,选择适合的中央空调系统。

2. 办公室的面积和人数:面积和人数是决定中央空调负荷的重要参数。

通过准确测算办公室的面积和人数,我们可以选择适合的中央空调型号和数量。

3. 办公室的使用情况:办公室的使用情况也是选择中央空调系统的一个重要参考因素。

例如,如果办公室里有大量的电脑和电子设备,我们需要选择一套具有良好散热性能的中央空调系统,以确保设备的正常运行。

二、中央空调系统的节能技术1. 变频技术:变频技术是一种可以根据实际负荷情况调整空调机的制冷和制热能力的技术。

通过使用变频技术,我们可以在保证舒适性的前提下降低能耗,从而达到节能的目的。

2. 换热技术:换热技术是中央空调系统中的一项关键技术。

目前,常见的换热技术有热泵、冷凝器和蒸发器等。

这些技术可以在不同季节和温度条件下,有效地实现能量的转换和利用,从而实现能耗的降低和节能效果的提升。

3. 智能控制技术:智能控制技术是中央空调系统中的一项重要技术。

通过使用智能控制技术,我们可以根据实际需要,在不同的时间段和区域内进行精确调控,从而降低不必要的能耗。

例如,可以通过设置定时开关、温度传感器等设备,实现自动调节空调温度和风速的功能。

三、中央空调系统的维护和管理中央空调系统的维护和管理是确保系统长期稳定运行和延长使用寿命的关键。

以下是一些常见的维护和管理措施:1. 定期清洗和维护空调设备:空调设备在运行过程中会积累灰尘和污垢,影响系统的散热效果。

定期清洗和维护空调设备,可以保证系统的高效运行,并延长设备的使用寿命。

中央空调方案

中央空调方案

中央空调方案中央空调是一种通过管道将冷热空气输送到各个房间的空调系统。

具有集中供冷供暖、控制灵活、节能环保等特点,被广泛应用于办公楼、商业场所、酒店、医院等大型建筑。

本文将介绍一种中央空调的方案。

本方案采用大型冷水机组作为制冷设备,通过冷却水输送来实现供冷。

首先,外界空气通过冷却塔进行冷却和换热,然后经过水泵进入冷水机组。

冷水机组通过蒸发器对冷却水进行制冷,将冷水输送至各个房间的风机盘管中。

风机盘管通过冷却水与室内空气进行换热,实现房间的供冷。

而制热则是通过热水进行的,在供暖季节,热水泵将热水输送至各个风机盘管中,通过与室内空气进行换热,实现房间的供暖。

此外,本方案采用了变风量送风系统,能够根据室内的温度变化自动调整送风量,以保持房间的舒适度。

在夏季,通过控制冷水机组的制冷量和送风量,能够达到较高的供冷效果。

而在冬季,通过控制热水泵的供热量和送风量,能够提供舒适的供暖。

此外,中央空调方案还具有集中控制的优势。

通过中央控制系统,可以对整个中央空调系统进行集中管理和监控,提高系统的运行效率和稳定性。

可以根据实际需求,对每个房间的温度、风速等进行调节,满足不同房间的舒适需求。

同时,中央空调系统还可以实现自动调节和定时开关功能,提供更便捷的使用体验。

值得一提的是,本方案还注重节能环保。

冷水机组采用了高效能换热器,提高了制冷效率,减少了能耗。

同时,还可以通过太阳能等可再生能源进行供能,降低对传统能源的依赖,减少对环境的污染。

综上所述,本方案采用了大型冷水机组、变风量送风系统和集中控制系统,能够提供高效、舒适的供冷供暖效果。

同时,还具有节能环保的特点,能够满足大型建筑对空调系统的需求。

希望本方案能为您提供参考。

中央空调节能技术改造方案

中央空调节能技术改造方案

送风系统控制
风系统主要是有风柜、空气处理机组、风机盘管等设备构成,依据空调区域负荷变化时间序列,远程控制风柜各个风机的启停实现有级调节送风量,也可变频调节空气处理机组实现送风量的无级调节,根据室内CO2浓度控制系统新风量; 可采用EMC 007实现。
数据采集和控制
控制系统的所有监控参数,都是由数据采集模块或数据采集卡来实现,通过中间继电器或固态继电器实现计算机工作站弱电控制向空调系统强电控制的承接; 主要功能由EMC 007主控制柜实现。
在满足工业要求或舒适性的前提下,采用变冷冻水温调节方式以适应系统负荷变化;
机组启停时间顺序优化控制;
智能化管理计算机以提高机组运行管理水平,避免不必要的能量浪费;
采用环保节能新风处理系统,减少能量损耗;
03
02
01
04
05
目前技术上比较成熟的中央空调节能方案有:
中央空调的节能方案
溶入了中央空调系统运行特性物理数学模型、人工智能和实际运行经验修正等思想;
空调区域功能多样性决定了冷冻水流量的相应变化规律,根据空调系统的负荷率、空调系统各用户负荷率变化特征以及末端设备的传热除湿性能,采用变频器对冷冻水进行变频控制,一般有基于定压差控制、定温差和变温差控制技术等控制来实现节能控制; 可采用EMC 007实现。 冷冻水泵变频控制 能量=比热容r×流量Q×温差ΔT
EMC系统功能
EMC系统功能
EMC 007
EMC 007是应用先进的变频调速技术和领先的工业控制技术针对交流异步电机而开发的高效变频调速节电产品,以工业计算机、微电脑为核心,集成了闭环控制技术,PID模糊控制技术和人机整合技术等。该产品被广泛地应用在水泵、风机、抽油机、塑料机械和各种传动、输送、提升设备的节电改造中,系统采用进口原器件制造,并设计了多重安全保护功能,具有运行稳定、可靠、安全等特点。

中央空调(多联机)施工方案

中央空调(多联机)施工方案

中央空调(多联机)施工方案中央空调(多联机)施工方案方案目标与范围在当前的市场环境中,中央空调系统的使用越来越普遍,尤其是多联机系统,由于其高效、节能、灵活等特点,成为了许多商业和住宅用户的首选。

这个方案旨在为用户提供一套详细、可执行的多联机施工方案,确保其高效运行、节能环保,并在实施过程中考虑到成本效益。

需求分析在制定方案之前,必须了解用户的具体需求。

用户的建筑类型、面积、使用性质、预算等都是影响方案设计的重要因素。

对于一个标准的办公楼,假设建筑面积为5000平方米,需满足以下条件:1. 采暖和制冷需求:根据建筑的使用性质和外部环境条件计算出所需的制冷量和采暖量。

以每平方米制冷量为150W、采暖量为120W来估算,得出总制冷量和采暖量。

2. 安装环境:室内外空间的布局、结构、通风条件等都会影响安装方式,需提前评估。

3. 预算限制:用户设定的预算会直接影响到设备的选择和施工材料的选择。

施工步骤与操作指南在明确需求后,接下来是详细的施工步骤。

整个过程分为设计、材料采购、施工、调试和维护五个阶段。

设计阶段1. 制冷计算:根据5000平方米的建筑面积,计算所需的总制冷量。

5000平方米 × 150W/平方米 = 750000W,即750kW。

选择适合的多联机型号,比如一台制冷量为200kW的主机和一台制冷量为150kW的辅助机型,组合使用。

2. 系统布局:根据建筑的结构图,设计出合理的管道走向和室内机的安装位置,确保每个房间都能获得均匀的冷气。

3. 电气设计:设计电源配置,确保供电系统能够满足设备的功率需求,同时符合相关的安全标准。

材料采购根据设计阶段的要求,进行设备和材料的采购:1. 设备选择:选择品牌信誉好、能效比高的多联机设备。

市场上常见的品牌如大金、三菱重工等。

2. 管道与保温材料:采购铜管、冷媒管以及良好的保温材料,确保制冷效果和能效。

3. 电缆与配件:选择符合国标的电缆和配件,保障系统的安全与稳定。

中央空调工程施工施工技术方案

中央空调工程施工施工技术方案

中央空调工程施工施工技术方案一、通风空调风系统 ㈠施工程序(根据本工程现场场地的具体情况,由现场施工人员提供风管加工明细表,根据时间进度和质量的要求采用在施工现场集中预制的方法,即将标准风管及部件在加工预制车间加工,再运至现场进行组合安装的方法。

具体操作程序如下:㈡主要施工方法1、铁皮风管制作技术要求及措施风管加固:非保温风管边长大于或等于630mm,保温风管边长大于或等于800mm ,其管段长度在1.2mm 以上均应采取加固措施。

风管及配件制作,钢板厚度小于或等于 1.2mm 可采用咬接的形式。

风管制作咬口:所有的弯头、三通、来回弯等均采用联合角咬口(见下图a );圆形风管均采用立咬口(见下图b );一般风管可采用按扣式咬口(见下图c )或单平咬口(见下图d );风管封头采用转角咬口(见下图e )。

a 联合角咬口b 立咬口c 按扣式咬口d 单平咬口2、风管安装⑴风管支、吊、托架均采用M10膨胀螺丝固定,明装风管采用内膨胀螺丝固定,暗装风管采用外(或内)膨胀螺丝固定;⑵水平风管安装支、吊、托架布置的间距均应满足下列要求:e 转角咬口保温风管安装支、吊、托架间距不超过3m;垂直安装风管:不保温风管间距不超过4m。

保温风管间距不超过3m;但每根风管的固定件不应少于二个;⑶风管支、吊、托架的用料:其支、托架的用料均采用角钢或槽钢制作;而吊架的托铁采用角钢或槽钢,吊杆采用圆钢;包箍采用扁钢制作;所用角钢均要求比风管的法兰大一号,圆钢一般采用φ10mm 圆钢;⑷风管支、吊、托架的制作依据:风管支、吊、托架的制作应按照《采暖通风设计选用手册》及国标T607的制作规定和要求;⑸风管支、吊、托架的制作:a、支、吊、托架在其制作前必须先对所使用型钢进行矫正,矫正的方法有热矫和冷矫两种,一般小型钢材采用冷矫正,而大型钢材则须加热到900℃左右进行热矫正;b、切断钢材或钢材打孔,必须采用机械切割或钻孔.不得使用氧气—乙炔割刀切割、吹孔,包箍的圆弧应与风管圆弧一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中央空调节能技术方案目录一、项目背景1.概述中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。

由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。

通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。

由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右的设计余量。

其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。

这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。

空载占空比在,能源浪废严重。

并且冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,以及大流量小温差来掩盖。

这样,不仅浪费能量,也恶化了系统的运行环境、运行质量。

特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。

原系统的运行及存在问题:①冷冻、冷却水泵采用的均是Y—△起动方式,电机的起动电流均为其额定电流的3—4倍,在如此大的电流冲击下,接触器的使用寿命大大下降;②启动时的机械冲击和停泵时的水锤现象,容易对机械器件、轴承、阀门和管道等造成破坏,从而增加维修工作量和备件费用。

2. 初步结论:随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量;采用变频调速技术不仅能使室温维持在所期望的状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。

根据现场运行情况,结合负载参数分析有较大的节能空间。

二、中央空调系统简介1.中央空调机组系统图中央空调主要由冷水机组、冷冻水循环系统、冷却水循环系统、风机盘管系统和散热水塔组成。

其工作原理如图中央空调系统结构图系统原理(1)冷冻水循环系统:该部分由冷冻泵、室内风机及冷冻水管道等组成。

从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。

室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。

(2)冷却水循环部分:该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。

冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。

该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。

冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。

(3)主机:该部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下:首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。

在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。

随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。

冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。

最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。

2.节能改造方案目前主要的节能控制思想主要有以下几种:1、水泵变频节电,直接在水泵电机前加装变频器通过人工调整频率,去除水泵余量而节能。

2、PID变频控制利用压差或温差作为控制参量,采用PID(比例、积分、微分)算法控制变频器工作频率,使水泵流量跟随负荷变化,从而达到水泵节能的目标。

水泵变频节电方案,每次需人为进行调节来实现节点目的,较为繁琐,一般摒弃。

本文主要讨论PID变频调速方案。

PID变频控制中央空调各循环水系统的回水与出水的温差,反映了整个系统所需要进行的热交换量。

因此,根据回水与出水的温差来控制循环水的流量,从而控制热交换的速度,是节能改造的可行依据。

1、冷冻水循环系统:冷冻水的出水温度是由主机的制冷效果决定的,通常比较稳定,因此冷冻回水温度可以准确的反映室内的热负荷情况。

由此,对于冷冻水循环系统的节能改造,可以取回水温度作为控制对象,通过变频器对冷冻泵流量的自动调节来实现对室内温度的控制。

当环境温度,空调末端负荷发生变化时,各路冷冻水供回水温度、温差、压差和流量亦随之变化,流量计、压差传感器和温度传感器将检测到的这些参数送至模糊控制器,模糊控制器依据所采集的实时数据及系统的历史运行数据,实时计算出末端空调负荷所需的制冷量,以及各路冷冻水供回水温度、温差、压差和流量的最佳值,并以此调节各变频器输出频率,控制冷冻水泵的转速,改变其流量使冷冻水系统的供回水温度、温差、压差和流量运行在模糊控制器给出的最优值。

2、冷却水循环系统:冷却水循环系统同时受室外环境温度及室内热负荷两方面影响,循环水管道单侧的水温不能准确反映该系统的热交换量,因此以出水与回水之间的温差作为控制室内温度的依据比较合理。

在外界环境温度不变的情况下,温差大,说明室内热负荷较大,应提高冷却泵的转速,增大冷却水循环的速度;相应的,温差小则减小冷却泵转速。

分别在主机蒸发器回水处、冷凝器出水及回水处安装温度传感器,实时检测管网的温度,以模拟信号(0~10V或者4~20mA)反馈给变频器,通过变频器内置的PID运算,输出对应的频率指令自动调节水泵转速,从而调节各循环水的热交换速度,最终实现对室内的恒温控制。

需要特别说明的是,变频器内部在设计上集成了PID处理功能,系统无须另配专用控制模块。

当环境温度,空调末端负荷发生变化时,中央空调主机的负荷率将随之变化,主机的效率也随之变化。

由于主机效率与冷却水入口温度有关,冷却水入口温度降低,有利于提高主机效率,降低主机能耗。

但冷却水温度降低,将导致冷却水泵和冷却塔的能耗升高。

因此,只有将主机能耗、冷却水泵能耗、冷却塔风机能耗三者统一考虑,才能找到一个系统最佳效率点,是整个制冷系统能效比最高。

当中央空调系统负荷变化造成空调主机及其水系统偏离最佳工况时,模糊控制器根据数据采集得到各种运行参数值,如系统供回水温度等,经推理运算后输出优化的控制参数值,对系统运行参数进行动态调整,确保主机在任何负荷条件下,都有一个优化的运行环境,始终处于最佳运行工况,从而保持效率(cop)最高,能耗最低,实现主机节能10%——30%,水泵系统节能60%以上,事实证明只能模糊控制方式是在空调控制领域最为先进的节能控制策略,该方式可以达到很好的节能效益和社会效益。

三、项目能耗分析1.变频器节点原理变频节能原理:由流体传输设备(水泵、风机)的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)。

变频器节能的效果是十分显著的,这种节能回报是看到见的。

特别是调节范围大、启动电流大的系统及设备,通过图三可以直观的看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上的改变,就因此特点使得变频调速装置成为一种趋势,而且不断深入并应用于各行各业的调速领域。

根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。

图中阴影部分为同一台水泵的工频运行状态与变频运行状态在随着流量变化所耗功率差。

泵是一种平方转矩负载,其转速n 与流量Q, 扬程H 及泵的轴功率N 的关系如下式所示:Q1=Q2(n1/n2) H1=H2(n12/n22) N1=N2(n13/n23)上式表明,泵的流量与其转速成正比,泵的扬程与其转速的平方成正比, 泵的轴功率与其转速的立方成正比。

当电动机驱动泵时,电动机的轴功率P(kw) 可按下式计算:P=ρQH/ηcηF×10-2 式中:P:电动机的轴功率(KW)Q:流量(m3/s)ρ:液体的密度(Kg/m-2)ηc:传动装置效率ηF:泵的效率如图2所示,曲线1是阀门全部打开时,供水系统的阻力特性;曲线2是额定转速时,泵的扬程特性。

这时供水系统的工作点为A点:流量QA,扬程HA;由(1-2)式可知电动机轴功率与面积OQAAHA成正比。

今欲将流量减少为QB,主要的调节方法有两种:(1)转速不变,将阀门关小这时阻力特性如曲线3所示,工作点移至B点:流量QB,扬程HB,电动机的轴功率与面积OQBBHB成正比。

(2)阀门开度不变,降低转速,这时扬程特性曲线如曲线4所示,工作点移至C点:流量仍为QB,但扬程为HC,电动机的轴功率与面积OQBCHC成正比。

对比以上两种方法,可以十分明显地看出,采用调节转速的方法调节流量,电动机所用的功率将大为减小,是一种能够显著节约能源的方法。

根据异步电动机原理n=60f/p(1-s)式中:n:转速f:频率p:电机磁极对数s:转差率由式可见,调节转速有3种方法,改变频率、改变电机磁极对数、改变转差率。

在以上调速方法中,变频调速性能最好,调速范围大,静态稳定性好,运行效率高。

因此改变频率而改变转速的方法最方便有效。

根据以上分析,结合超市中央空调的运行特征,利用变频器、温差控制器和温度传感器等组成温差闭环自动控制,对中央空调水循环系统进行节能改造是切实可行,较完善的高效节能方案。

由于中央空调机组中冷冻水循环系统、冷却水循环系统以及冷却水塔风机均为风机水泵系统,其负载特性为流量与轴转速成正比、水压(或风压)与轴转速的平方成正比,轴功率与轴转速的立方成正比。

所以,如果我们将系统以电机为定转速运转,用阀门调节水流量和风流量的方法,改用根据所需的流量、风量调节电机转速的方法,就可获得大量的节电效果。

从理论上来讲,在环境气压、气温等参数不变的情况下,当转速减少50%时,流量减少50%,扬程减少75%,功率消耗减少87.5%,节能效果非常显著。

2、变频调节优点:由于冷冻泵、冷却泵采用了变频器软启停,消除了原来Y- Δ启动大电流对电网的冲击,用电环境得到了改善;消除了Y- Δ启停水泵产生的水锤现象对管道、阀门、压力表等的损害;消除了原来直接启停水泵造成的机械冲击,电机及水泵的轴承、轴封等机械磨擦大大减少,机械部件的使用寿命得到延长;由于水泵大多数时间运行在额定转速以下,电机的噪声、温升及震动都大大减少,电气故障也比原来降低,电机使用寿命也相应延长。

由于采用了温差闭环变频调速,提高了冷冻机组的工作效率,提高了自动化水平。

相关文档
最新文档