废水生物处理技术
废水处理厌氧和好氧生物处理技术

废水处理厌氧和好氧生物处理技术废水处理是当今社会中非常重要的环境保护工作之一。
废水处理的目的是将含有有害物质的废水转化为对环境无害的水体,以保护水资源和维护生态平衡。
废水处理技术主要分为物理处理、化学处理和生物处理三种。
其中,生物处理技术是一种常用且有效的废水处理方法。
废水处理中的生物处理技术主要包括厌氧生物处理和好氧生物处理。
两种技术各有特点,可以根据废水的特性和处理要求来选择合适的方法。
1. 厌氧生物处理技术厌氧生物处理是一种在缺氧条件下进行的废水处理方法。
它利用厌氧菌群将有机物质转化为沼气和沉淀物。
厌氧生物处理技术适用于高浓度有机废水的处理,如食品加工废水、酿造废水等。
其主要过程包括厌氧消化、甲烷发酵和沉淀。
厌氧消化是指将废水中的有机物质通过厌氧菌的代谢作用转化为有机酸和气体。
在这个过程中,厌氧菌分解有机物质,产生醋酸、丙酸等有机酸,同时产生沼气。
沼气可以作为能源利用,而有机酸则会进一步发酵产生甲烷。
甲烷发酵是指在厌氧条件下,通过甲烷菌的作用将有机酸转化为甲烷。
甲烷是一种无色、无味的气体,具有高热值和可燃性,可以用作燃料或发电。
沉淀是指将废水中的悬浮物和沉淀物沉淀下来,以净化废水。
在厌氧生物处理中,沉淀物主要是厌氧菌和产生的沉淀物质。
2. 好氧生物处理技术好氧生物处理是一种在充氧条件下进行的废水处理方法。
它利用好氧菌群将有机物质转化为二氧化碳、水和生物体。
好氧生物处理技术适用于低浓度有机废水的处理,如生活污水、轻工业废水等。
其主要过程包括生物降解、曝气和沉淀。
生物降解是指将废水中的有机物质通过好氧菌的代谢作用转化为二氧化碳、水和生物体。
在这个过程中,好氧菌分解有机物质,产生二氧化碳和水。
生物体则是好氧菌的生长产物,可以通过沉淀去除。
曝气是指通过给废水供氧来提供好氧菌群所需的氧气。
曝气可以通过机械曝气、曝气池或曝气塔等方式实现。
氧气的供应可以促进好氧菌的生长和代谢活动,加快废水的降解速度。
沉淀是指将废水中的悬浮物和沉淀物沉淀下来,以净化废水。
污水处理中的微生物处理技术

污水处理中的微生物处理技术污水处理是一个重要的环境保护措施,它涉及到将废水中的污染物去除或转化为无害物质的过程。
在污水处理中,微生物处理技术被广泛应用,它利用微生物的生物学特性来分解和转化有机物和无机物,从而实现废水的净化和资源化利用。
以下是污水处理中常用的微生物处理技术:1. 厌氧消化技术:厌氧消化是一种利用微生物在无氧条件下分解有机废物的过程。
在消化池中,厌氧微生物降解废水中的有机污染物,产生甲烷气体和有机肥料。
这种技术具有高效处理有机废物的优点,同时还可以获得可再生能源。
2. 好氧生物处理技术:好氧生物处理是指利用需氧微生物将有机物氧化为二氧化碳和水的过程。
这种技术常用于处理高浓度的有机废水,如工业废水。
好氧生物处理利用微生物的代谢产物将有机废物转化为无害物质,净化污水并降低对水环境的污染。
3. 活性污泥法:活性污泥法是一种采用活性污泥为主要微生物群落的处理技术。
废水进入活性污泥池后,微生物通过吸附、吸收和降解有机废物,将其转化成稳定的无机盐和生物体。
这种技术可以有效去除废水中的有机物和氮、磷等无机污染物,达到净化水质的目的。
4. 根式人工湿地技术:根式人工湿地是一种利用湿地植物和微生物降解污染物的技术。
通过在湿地中种植特定的植物,利用其根系附着的微生物降解废水中的有机物和氮、磷等无机污染物。
这种技术具有良好的净化效果,并且可以景观化利用,提高城市环境的美观性。
5. 疏浚底泥微生物技术:疏浚底泥微生物技术是一种针对河流、湖泊等水域底泥中的有机物和富营养化问题的处理技术。
通过加入具有分解能力的微生物,能够降解底泥中的有机物,减少水体的污染,改善水质。
6. 海水淡化微生物技术:海水淡化是指将海水转化为淡水的过程,微生物技术在其中发挥重要作用。
利用微生物的代谢特性,可以去除海水中的盐分和有机污染物,实现海水的净化和淡化。
这种技术对于水资源短缺的地区具有重要的意义。
在污水处理中,微生物处理技术具有许多优点。
废水生物处理技术

类型
好氧微生物 厌氧微生物 藻类 悬浮生长 附着生长 完全混合式 间隙式 流化床
方法举例
想
活性污泥法 厌氧污泥法 氧化塘
华 笨 释 犀
活性污泥法
闪
生物膜法
稍
混合式曝气池 嘎
SBR
肆
好氧流化床
嘉
2021/3/8
12
洱 12
处理 级别
一级 处理
二级 处理
三级 处理
2021/3/8
贩
废水的分级处理
垣 芥
的固体。
徘
兢
膝
猛
改
2021/3/8
28
锹 28
瑰
窿
挥发性固体(VS)与非挥发性固 拥
体(FS)
俏 哪
► 挥发性固体(VS):把废水中的固体物,经 饿
550oC灼烧1小时,固体中的有机物即被气化 伟
,这就是VS。
潜
► 非挥发性固体(FS):灼烧后剩余的固体物 遣
质即为FS。
淹
茅
途
号
2021/3/8
29
脚 吼
有机有毒有害物质 饶
放射性物质 17
虑 骸 17
蓬
攫
生化需氧量(Biological Oxygen 碟
Demand, BOD)
伙 芋
锹
► B1OLD废既水是中对有水机中污可染生物物在降好解氧有微机生成物分作的用 本 下进间行接氧指化标分,解也时是所进消行耗生的化溶反解应氧需,氧单量位的是 母
24
危 24
赣
治
废水的可生化性
雁 静
藩
伍
根据BOD5与CODcr的比值大小判断: 海
B/C>0.45 B/C>0.30 B/C<0.25 禁
常见的污水生物处理方法

常见的污水生物处理方法污水处理是指对污水中的有机物、无机物、悬浮物、微生物等进行处理,以达到排放标准或者再利用的要求。
生物处理方法是其中一种常见的污水处理方法,通过利用微生物的生长代谢作用,将有机物降解为无机物,从而净化污水。
以下是常见的污水生物处理方法:1. 活性污泥法活性污泥法是一种广泛应用的生物处理方法,主要包括接触氧化池、好氧池和厌氧池。
在接触氧化池中,污水与活性污泥接触,有机物被微生物降解。
好氧池中提供充足的氧气,进一步降解有机物。
厌氧池则用于去除氮和磷。
该方法具有处理效果好、适应性强等优点。
2. 人工湿地法人工湿地法利用湿地植物和微生物的作用,对污水进行处理。
通过植物的吸收、降解和微生物的降解作用,去除有机物、氮、磷等污染物。
人工湿地法具有处理效果稳定、造价低廉等特点,适合于小型污水处理厂和农村污水处理。
3. 曝气生物滤池法曝气生物滤池法是利用生物膜和微生物的作用,将污水中的有机物进行降解。
污水通过滤池,生物膜上的微生物利用有机物进行生长和降解。
曝气系统提供充足的氧气,促进微生物的降解作用。
该方法具有处理效果好、运行稳定等优点。
4. 厌氧消化法厌氧消化法是将污泥在无氧条件下进行降解,产生沼气。
厌氧消化池中的微生物通过厌氧呼吸将有机物降解为沼气和沉淀物。
沼气可以作为能源利用,沉淀物则可作为肥料利用。
该方法具有能源回收、减少污泥量等优点。
5. 膜生物反应器法膜生物反应器法是利用膜技术与生物处理相结合的方法。
通过膜的过滤作用,将污水中的悬浮物和微生物截留在膜上,达到净化的目的。
该方法具有处理效果好、占地面积小等优点。
6. 固定化生物法固定化生物法是将微生物固定在载体上,形成生物膜或者颗粒,利用其降解污水中的有机物。
固定化生物法具有降解效果好、抗冲击负荷能力强等特点。
以上是常见的污水生物处理方法,每种方法都有其适合的场景和优缺点。
在实际应用中,可以根据污水的性质、处理要求和经济条件选择合适的处理方法。
生物技术在废水处理中的应用

生物技术在废水处理中的应用随着现代工业的快速发展,废水污染已成为全球环境问题之一。
如何高效、节能地处理废水,成为了各国政府和科学家的重要课题。
生物技术在废水处理中的应用,成为了一种具有广泛前景的清洁技术。
本文将会探讨生物技术在废水处理中的应用,包括活性污泥法、生物滤池法、人工湿地法、生物膜反应器法等几种常见的生物技术。
一、活性污泥法活性污泥法是一种常见的污水处理技术,使用微生物来消化和分解有害物质。
该技术主要由生化反应池、氧化池和沉淀池构成。
最初,活性污泥法用于处理有机废水,但随着科技的进步和环境污染的复杂性,活性污泥法也可以用于处理各种废水。
该方法的优点在于处理效率高、对生物群落影响小、装置简单等。
但由于氧化池可能会出现耗氧,使污水的处理效率受到影响。
此外,处理过程中可能会产生废水、气体和污泥等二次污染物。
二、生物滤池法生物滤池法是一种比活性污泥法更先进的废水处理技术,该技术主要利用了微生物的附着能力、生物膜的繁殖和生物降解物质,达到其中金属离子、有机物的去除。
在处理过程中,废水经过事先灌装有微生物质的过滤器,微生物质可以在过滤器中形成生物膜,有助于生物的降解与处理。
该方法生产工艺简单,对水质较差的废水处理较为有效。
但不适合处理污水的腐蚀性较大的有机废水,且系统容易出现过度压力,需要经常进行维护。
三、人工湿地法人工湿地法对于有机物的去除和氮的去除效果较好,其主题是利用人工构造的湿地滞留水体,通过湿地中的植物、微生物等生物系统净化处理废水。
处理过程包括物理,化学和生物反应,主要通过湿地中的透明度、pH值、温度、氧化还原状态、细菌、真菌等来维持系统正常的运行。
其优点是系统稳定运行,工艺简单,设备成本低廉,维护费用低,但由于损失较大和寿命较短等因素,设施和技术要做好针对性的维护管理。
四、生物膜反应器法生物膜反应器法是一种新兴的废水处理方法,其处理水质比传统的活性污泥法和生物滤池法更加优秀,其操作也比较简单易行。
废水的生化处理方法

废水的生化处理方法一、引言废水是指在生产、生活和其他活动中产生的含有有害物质的水体。
废水的处理是保护环境、维护生态平衡的重要任务。
生化处理方法是一种常用的废水处理技术,通过利用微生物的代谢能力降解和转化有机物,达到净化废水的目的。
本文将详细介绍废水的生化处理方法及其工艺流程。
二、废水生化处理方法1. 好氧生化处理法好氧生化处理法是利用好氧微生物对废水中有机物进行降解的方法。
其工艺流程主要包括进水、预处理、好氧生化池、沉淀池和出水等几个步骤。
(1)进水:将废水引入处理系统,通过格栅、沉砂池等预处理设备去除大颗粒物质和悬浮物。
(2)预处理:将进水进行初步处理,去除废水中的油脂、悬浮物和大颗粒有机物,以减轻后续处理设备的负荷。
(3)好氧生化池:将预处理后的废水引入好氧生化池,加入适量的氧气和微生物菌种,通过微生物的代谢作用,将废水中的有机物降解为无机物。
(4)沉淀池:将经过好氧生化处理的废水引入沉淀池,通过重力沉淀的作用,使微生物污泥和悬浮物沉淀到池底,净化水体。
(5)出水:经过沉淀后的清水从沉淀池中流出,经过消毒等后续处理,达到排放标准。
2. 厌氧生化处理法厌氧生化处理法是利用厌氧微生物对废水中有机物进行降解的方法。
其工艺流程主要包括进水、预处理、厌氧生化池、沉淀池和出水等几个步骤。
(1)进水:同样将废水引入处理系统,通过预处理设备去除大颗粒物质和悬浮物。
(2)预处理:与好氧生化处理法相同,对进水进行初步处理,去除废水中的油脂、悬浮物和大颗粒有机物。
(3)厌氧生化池:将预处理后的废水引入厌氧生化池,由于池内无氧环境,有机物在厌氧微生物的作用下进行降解。
(4)沉淀池:将经过厌氧生化处理的废水引入沉淀池,通过重力沉淀的作用,使微生物污泥和悬浮物沉淀到池底。
(5)出水:经过沉淀后的清水从沉淀池中流出,经过消毒等后续处理,达到排放标准。
三、废水生化处理方法的优点1. 对有机物的降解效果好:生化处理方法能够有效降解废水中的有机物,使其转化为无害的无机物,减少对环境的污染。
废水生物处理新技术

废水生物处理新技术
废水生物处理新技术是指在传统的废水处理方法基础上,采用了一系列更先进的生物处理技术来处理废水。
以下是几种常见的废水生物处理新技术:
1. 反硝化除磷技术:采用特殊的细菌可以同步实现去除废水中的氮和磷,有效降低废水中的营养物质含量。
2. 厌氧氨氧化技术:利用厌氧细菌将废水中的氨氮转化为硝酸盐,从而实现氨氮的去除。
3. 曝气膜生物反应器技术:利用微孔曝气膜将氧气均匀地输送到生物反应器中,提高废水处理的氧气利用效率。
4. 生物高分子吸附剂技术:利用特殊的微生物聚合物吸附剂来吸附和去除废水中的污染物,如重金属离子等。
5. 纳米生物技术:利用纳米材料和生物技术相结合,提高废水处理的效率和降解能力。
这些新技术在提高废水处理效率、降低能耗、减少对环境的污染等方面具有显著的优势,有望在废水处理领域得到广泛应用。
污水处理中的生物降解技术

在农业废水处理中,还需注意废水中药 物残留、病原微生物等的去除,以保障
环境和人类健康安全。
04
生物降解技术的发展趋势 与挑战
提高生物降解效率
01
02
03
高效菌种筛选
通过基因工程技术筛选出 具有高效降解能力的菌种 ,提高生物降解速率。
优化反应条件
通过控制温度、pH值、溶 解氧等反应条件,促进微 生物的生长和代谢,提高 生物降解效率。
生物降解原理
微生物通过酶的作用,将有机物分解 为简单物质,如二氧化碳、水或甲烷 等,同时释放能量。
生物降解技术在污水处理中的应用
有机废水处理
适用于生活污水、工业废水等有机污染物的处理 。
脱氮除磷
通过生物作用去除废水中的氮、磷等营养物质。
难降解有机物处理
生物降解技术可处理一些难以通过化学或物理方 法处理的有机污染物。
于处理低浓度有机废水。
工业废水处理中,还需注意废水中重金属、盐类等物质的去除,以避免 对环境造成二次污染。
农业废水处理
农业废水主要包括畜禽养殖废水、农作 物种植产生的废水等。这些废水富含有 机物、氨氮、磷等污染物,需要进行有
效处理。
农业废水处理中,生物降解技术同样发 挥了重要作用。例如,厌氧生物处理可 以用于畜禽养殖废水的处理,好氧生物 处理可以用于农作物种植产生的废水的
酶促生物降解技术
总结词
酶促生物降解技术是一种利用酶催化有机物分解的过程。
详细描述
酶是一种具有催化作用的蛋白质,能够加速有机物的分解反应。酶促生物降解技术通常用于处理高浓度有机废水 ,如印染废水、造纸废水等。该技术具有高效、专一和条件温和等特点,但需要解决酶的回收和再利用问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 亚硝化细菌将氨氮转化为亚硝酸盐
NH4++1.382O2+1.982HCO3-→0.982NO2+1.036H2O+1.891H2CO3+0.018C5H7O2N
– 硝化菌将亚硝酸盐转化为硝酸盐
NO2-+0.488O2+0.01HCO3-+0.003NH4+→NO3+0.008H2O+0.003C5H7O2N
• 反硝化细菌包括假单胞菌属、反硝化杆菌属、螺旋菌 属和无色杆菌属等
• 反硝化过程产生的碱度:3.47 gCaCO3/gNO3-N
4/57
Founded in 1895
生物脱氮工艺
• a: 有机物的氧化和 硝化反应在两个构筑 物中完成,为单独硝 化工艺或分级硝化工 艺
• b&c: 含碳有机物去 除与硝化反应在同一 反应器中完成,为碳 氧化-硝化联合处理 工艺
EBPR系统中磷的循环与累积模式
11/57
Founded in 1895
生物除磷过程中的生物代谢
12/57
Founded in 1895
EBPR脱磷的生物学及生物化学性质
• 不动菌属不是起脱磷作用的优势菌种,系统中的生物群体是 多样的
• 形成聚羟基烷酸盐的还原能主要来自内部储存的糖原的降解, 可能部分来自于三羧酸循环
Founded in 1895
生物处理过程除磷小结
• 超量除磷是生物作用的结果,但生物超量除磷不能完 全解释某些条件下出现的除磷性能
• 生物诱导的化学除磷可能是生物除磷的补充 • 生物除磷系统中可能的磷的去除途径
– 生物超量除磷,污泥含磷量3%-7% – 正常磷的同化作用,微生物合成消耗磷 – 正常液相沉淀,pH、离子浓度、沉淀剂等作用 – 加速液相沉淀,厌氧条件下高磷浓度,加速化学沉淀 – 生物膜沉淀,细菌反硝化作用,膜内pH升高,磷从液相进
8/57
Founded in 1895
除磷技术的发展
• 20世纪50、60年代,发现生物超量吸磷现象 • 证明了除磷作用的生物学本质和生物诱导化学沉淀的
辅助作用 • 好氧区之前设置厌氧接触区,污泥进行厌氧-好氧交
替循环,开发生物除磷工艺流程,应用于工程 • 阻止缺氧或好氧性电子受体(硝态氮或溶解氧)进入
污水的主流方向上,大部分磷通过化学沉淀去除
15/57
Founded in 1895
3 几种典型的脱氮除磷工艺
• 改良Ludzack-Ettinger(MLE)工艺 • 厌氧/好氧(A/O)工艺 • Phostrip工艺 • A2/O脱氮除磷工艺 • UTC脱氮除磷工艺 • VIP脱氮除磷工艺 • Bardenpho脱氮除磷工艺
入无机相
14/57
Founded in 1895
生物除磷工艺要点
• 设置厌氧区,供聚磷菌吸收基质,产生选择性增殖 • 多数污水除磷工艺构造基于硝化和反硝化的考虑,使
系统在硝化的情况下保证良好除磷 • 主流除磷工艺:Bardenpho,A/O,SBR等,同时
具有除磷脱氮功能 • 测流除磷工艺:Phostrip工艺为代表,厌氧池不在
• 内部储存糖原是保持微生物体内的氧化还原电位平衡以利于 厌氧摄取多种有机物的关键
• 部分聚磷菌可利用硝酸盐氮作为电子受体 • 非聚磷糖原微生物代谢途径与聚磷菌类似,唯一区别是前者
厌氧代谢基质时,利用体内储存糖原为唯一能源 • 现有的形态学及生理学资料表明聚磷菌与非聚磷糖原微生物
是不同的微生物
13/57
7/57
Байду номын сангаас
Founded in 1895
2 生物除磷
• 废水中磷的存在形态常为磷酸盐、聚磷酸盐和有机磷 • 有机物的生物降解伴随着微生物菌体的合成,活性污
泥含磷量一般为干重的1.5%-2.3%,通过剩余污泥排 放可以获得10%-30%的除磷效果 • 污水生物除磷就是利用微生物吸收的磷量超过微生物 正常生长所需要的磷量的现象,使细胞含磷量高的菌 体取得优势 • 污水生物除磷工艺中,剩余污泥的含磷量可达干重的 3%-7%,出水含磷量明显下降
厌氧区,优化工艺技术和运行技术 • 加入低分子量基质,定量化模拟和优化生物除磷技术 • 建立污水生物除磷的数学模式
9/57
Founded in 1895
生物强化除磷工艺
• 生物强化除磷工艺(Enhanced biological phosphate removal process, EBPR),指微生物以聚磷酸盐的 形式超量储存磷
• 反硝化反应:异养微生物在无分子氧条件下将硝酸盐 和亚硝酸盐还原为氮气
– NO3-+1.08CH3OH+0.24H2CO3→0.47N2↑+1.68H2O +HCO3-+0.056C5H7O2N
– NO2-+0.67CH3OH+0.53H2CO3→0.48N2↑+1.23H2O + HCO3-+0.04C5H7O2N
总反应式: NH4++1.86O2+1.982HCO3- →0.982NO3-
+1.004H2O+0.021C5H7O2N
2/57
Founded in 1895
亚硝化菌和硝化菌的特征
• 亚硝化菌包括亚硝酸盐单胞菌属和亚硝酸盐球菌属 • 硝化菌包括硝酸盐杆菌属、螺旋菌属和球菌属
3/57
Founded in 1895
• 微生物在好氧区和厌氧区之间循环,废水自厌氧区进 入系统,聚磷菌在此系统中具有选择优势
• 聚磷菌(PAOs)在厌氧区从废水中摄取碳源并将其 以聚羟基烷酸盐的形式储存,同时降解体内的聚磷释 放正磷酸盐;在好氧区利用储存的聚羟基烷酸盐作为 碳源和能源,摄取正磷酸盐将其转化为聚磷酸盐
10/57
Founded in 1895
生物脱氮工艺的三种基本类型
5/57
Founded in 1895
• 单独硝化系统和联合氧化-硝化处理工艺都可以采用微生物悬 浮型生长构筑物、附着生长型构筑物或复合生长构筑物
两种硝化工艺特性的比较
6/57
Founded in 1895
多级生物脱氮工艺流程
• 反硝化单元进水含碳有机物浓度较低,需补充甲醇 • 硝化过程中pH下降,需补充碱度
Founded in 1895
概述
• 生物处理是废水处理中应用最广泛的技术 • 活性污泥法于1913年在英国成功应用
生物处理革新技术举例
1/57
Founded in 1895
1 生物脱氮
• 废水中氮的主要形式为蛋白质、氨基酸和氨氮,有机氮可以 通过氨化作用转化为氨氮
• 生物脱氮由硝化和反硝化组成
• 硝化反应:自养好氧微生物将氨氮氧化为硝酸盐