高考数学选修三知识点

合集下载

高考数学必背知识点及公式归纳总结大全

高考数学必背知识点及公式归纳总结大全

高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。

高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分。

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。

3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分。

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2。

选修1--1:重点:高考占30分。

1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。

选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。

理科:选修2—1、2—2、2—3。

选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。

高考数学考点解析及分值分布

高考数学考点解析及分值分布

高考数学考点解析1.集合与简易逻辑:10-18分主要章节:必修1第一章《集合》、第三章《函数的应用》选修1-1(文)2-1(理)《常用逻辑用语》考查的重点是抽象思维实力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。

简易逻辑多为考查“充分与必要条件”及命题真伪的判别。

2.函数与导数:30分+主要章节:必修1其次章《基本初等函数》、第三章《函数的应用》必修4第一章《三角函数》必修2第三章《直线与方程》、第四章《园与方程》选修1-1(文)2-1(理)《圆锥曲线与方程》、《导数》选修4-4《极坐标方程》《参数方程》函数是中学数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。

以指数函数、对数函数、复合函数为载体,结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数生成考题,作为选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。

函数与导数的结合的解答题,以切线、极值、最值问题、单调性问题、恒成立问题为设置条件,结合不等式、数列综合成题,也是解答题拉分关键。

3.不等式:5-12分主要章节:必修5第三章《不等式》选修4-5全书一般不会单独命题,会在其他题型中“隐藏”出现,不等式作为一种工具广泛地应用在涉及函数、数列、解几等学问的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。

选择题和填空题主要考查不等式性质、解法及均值不等式。

解答题会与其它学问的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。

4.数列:20-28分主要章节:必修5其次章《数列》数列是中学数学的重要内容,是初等数学与高等数学的重要连接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,另外一个与其它学问的综合题。

高三数学选修2-3(B版)_专题提升:概率与统计

高三数学选修2-3(B版)_专题提升:概率与统计

概率与统计高考对本内容的考查主要有:(1)抽样方法的选择、与样本容量相关的计算,尤其是分层抽样中的相关计算,A 级要求.(2)图表中的直方图、茎叶图都可以作为考查点,尤其是直方图更是考查的热点,A级要求.(3)特征数中的方差、标准差计算都是考查的热点,B级要求.(4)随机事件的概率计算,通常以古典概型、几何概型的形式出现,B级要求.重难点:1.概率问题(1)求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A的对立事件A 的概率,然后利用P(A)=1-P(A)可得解;(2)用列举法把古典概型试验的基本事件一一列出来,然后再求出事件A中的基本事件,利用公式P(A)=mn求出事件A的概率,这是一个形象、直观的好办法,但列举时必须按照某一顺序做到不重复,不遗漏;(3)求几何概型的概率,最关键的一步是求事件A所包含的基本事件所占据区域的测度,这里需要解析几何的知识,而最困难的地方是找出基本事件的约束条件.2.统计问题(1)统计主要是对数据的处理,为了保证统计的客观和公正,抽样是统计的必要和重要环节,抽样的方法有三:简单随机抽样、系统抽样和分层抽样;(2)用样本频率分布来估计总体分布一节的重点是:频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,难点是:频率分布表和频率分布直方图的理解及应用;(3)用茎叶图优点是原有信息不会抹掉,能够展开数据发布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了;(4)两个变量的相关关系中,主要能作出散点图,了解最小二乘法的思想,能根据给出的线性或归方程系数或公式建立线性回归方程.考点1、抽样方法【例1】某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本. 已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取________名学生.【方法技巧】分层抽样适用于总体由差异明显的几部分组成的情况,按各部分在总体中所占的比实施抽样,据“每层样本数量与每层个体数量的比与所有样本数量与总体容量的比相等”列式计算;在实际中这种有差异的抽样比其他两类抽样要多的多,所以分层抽样有较大的应用空间,应引起我们的高度重视.【变式探究】某校高三年级学生年龄分布在17岁、18岁、19岁的人数分别为500、400、200,现通过分层抽样从上述学生中抽取一个样本容量为m的样本,已知每位学生被抽到的概率都为0.2,则m=________.【解析】(500+400+200)×0.2=220.【答案】220考点2、用样本估计总体【例2】(2013·重庆卷改编)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为________.【解析】由茎叶图及已知得x=5,又因9+15+10+y+18+245=16.8,所以y=8.【答案】5,8【方法技巧】由于数据过大,直接计算会引起计算错误,故要学会像解析中介绍的两种方法那样尽量简化计算;同时要理解茎叶图的特点,能够从茎叶图获取原始数据.【变式探究】某校共有400名学生参加了一次数学竞赛,竞赛成绩的频率分布直方图如图所示(成绩分组为[0,10),[10,20),…,[80,90),[90,100]).则在本次竞赛中,得分不低于80分以上的人数为______ .【例3】袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率.解(1)记“3只全是红球”为事件A.从袋中有放回地抽取3次,每次取1只,共会出现3×3×3=27种等可能的结果,其中3只全是红球的结果只有一种,故事件A的概率为P(A)=1 27.(2)“3只颜色全相同”只可能是这样三种情况:“3只全是红球”(事件A);“3只全是黄球”(设为事件B);“3只全是白球”(设为事件C).故“3只颜色全相同”这个事件为A+B+C,由于事件A、B、C不可能同时发生,因此它们是互斥事件.再由红、黄、白球个数一样,故不难得P(B)=P(C)=P(A)=127,所以P(A+B+C)=P(A)+P(B)+P(C)=1 9.(3) 3只颜色不全相同的情况较多,如是两只球同色而另一只球不同色,可以两只同红色或同黄色或同白色等等;或三只球颜色全不相同等.考虑起来比较麻烦,现在记“3只颜色不全相同”为事件D,则事件D为“3只颜色全相同”,显然事件D与D是对立事件.∴P(D)=1-P(D)=1-19=89.【方法技巧】在求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥事件的概率的和;二是先去求此事件的对立事件的概率.一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解;对于“至少”,“至多”等问题往往用这种方法求解.【训练3】(2013·陕西卷改编)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是________.考点预测:1.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为________.2.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为________.3.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________.【解析】分层抽样应按各层所占的比例从总体中抽取.4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为________.5.一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为________.6.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.7.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.【解析】平均数x =14+17+18+18+20+216=18,故方差s 2=16[(-4)2+(-1)2+02+02+22+32)]=5.【答案】58.袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是________.【解析】总的取法是4组,能构成等差数列的有{2,3,4},{2,4,6} 2组;故所求概率为P =24=12.【答案】129.设f (x )=x 2-2x -3(x ∈R ),则在区间[-π,π]上随机取一个数x ,使f (x )<0的概率为________.10.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.11.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.12.从一副没有大小王的52张扑克牌中随机抽取1张,事件A 为“抽得红桃8”,事件B 为“抽得为黑桃”,则事件“A +B ”的概率值是________(结果用最简分数表示).13.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.【解析】由题意得到的P (m ,n )有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共计6个;在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=13.【答案】13 14.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则x y 为整数的概率是________.。

人教A版高中数学选修2-3讲义及题型归纳:分类加法计数原理和分步乘法原理

人教A版高中数学选修2-3讲义及题型归纳:分类加法计数原理和分步乘法原理

目录考点一:基本计数原理 (2)题型一、分布加法原理 (2)题型二、分布乘法原理 (4)题型三、基本计数原理的综合运用 (5)课后综合巩固练习 (6)考点一:基本计数原理加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12nN m m m =+++种不同的方法.又称加法原理. 乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.题型一、分布加法原理1.用10元、5元和1元来支付20元钱的书款,不同的支付方法有( ) A .3B .5C .9D .12【分析】用列举法求解.【解答】解:用10元、5元和1元来支付20元钱的书款,有以下几类办法: ①用2张10元钱支付;②用1张10元钱和2张5元钱支付;③用1张10元钱、1张5元钱5张1元钱支付; ④用1张10元钱和10张1元钱支付; ⑤用1张5元钱和15张1元钱支付; ⑥用2张5元钱和10张1元钱支付;⑦用3张5元钱和5张1元钱支付; ⑧用4张5元钱支付; ⑨用20张1元钱支付. 故共有9种方法. 故选:C .【点评】本题考查不同的付款方式共有多少种的求法,是基础题,解题时要认真审题,注意列举法的合理运用.2.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出一本,则不同的取法共有( ) A .3种B .1848种C .37种D .6种【分析】分情况讨论:选择拿语文书:有12种不同的拿法,数学书有14种不同的拿法,英语书有11种不同的拿法,然后把这三种情况的数量加在一起即可.【解答】解:由题意可知选择拿语文书:有12种不同的拿法,数学书有14种不同的拿法,英语书有11种不同的拿法, 共有:12141137++=. 故选:C .【点评】本题先确定拿哪种类型的书,考查分类计数原理的应用,考查两种原理的区别. 3.已知集合{1M=,2-,3},{4N =-,5,6,7}-,从两个集合中各选一个数作为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内多少个不同点( ) A .18个B .10个C .16个D .14个【分析】根据第三、四象限内点的坐标的性质,分2种情况讨论,①取M 中的数作横坐标,取N 中的数作纵坐标坐标,②取N 中的数作横坐标,取M 中的数作纵坐标坐标,易得每种情况下的数目,进而由加法原理可得答案.【解答】解:第三、四象限内点的纵坐标为负值,横坐标无限制;分2种情况讨论,①取M 中的数作横坐标,取N 中的数作纵坐标坐标,有326⨯=种情况, ②取N 中的数作横坐标,取M 中的数作纵坐标坐标,有414⨯=种情况; 共有6410+=种情况, 故选:B .【点评】本题考查分类计数原理的运用,解题的切入点为四个象限的点的坐标的性质.题型二、分布乘法原理1.设函数:f N N ++→满足:对于任意大于3的正整数n ,()3f n n =-,且当3n 时,2()3f n ,则不同的函数()f x 的个数为()A .1B .3C .6D .8【分析】通过()3f n n =-,结合映射的定义,根据2()3f n ,确定函数的个数.【解答】解:3n ,2()3f n ,f∴(1)2=或3,且f(2)2=或3 且f(3)2=或3.根据分步计数原理,可得共2228⨯⨯=个不同的函数. 故选:D .【点评】本题主要考查映射的定义,以及分步计数原理的应用,比较基础. 2.将一枚骰子向桌面先后抛掷2次,一共有( )种不同结果. A .6B .12C .36D .216【分析】由分步计数原理知有66⨯种结果,问题得以解决 【解答】解:由分步计数原理知有6636⨯=种结果 故选:C .【点评】本题考查了分步计数原理,属于基础题3.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有多少种(结果用数字表示).( ) A .5B .10C .20D .120【分析】由题意,可看作五个位置排列五种事物,由分步原理求解即可,本题需要考虑的因素:相克的两种物质不相邻,注意满足此规则,计算符合条件的排列方法种数【解答】解:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水, 第三步只能排上木,第四步只能排上火,第五步只能排上土, 故总的排列方法种数有5211110⨯⨯⨯⨯= 故选:B .【点评】本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详,本题以实际问题为背景,有着实际背景的题在现在的高考试卷上有逐步增多的趋势题型三、基本计数原理的综合运用1.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是( )A .420B .180C .64D .25【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A 有5种涂法,B 有4种涂法,讨论A ,D 同色和异色,根据乘法原理可得结论.【解答】解:由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行, 区域A 有5种涂法,B 有4种涂法,A ,D 不同色,D 有3种,C 有2种涂法,有5432120⨯⨯⨯=种, A ,D 同色,D 有4种涂法,C 有3种涂法,有54360⨯⨯=种,∴共有180种不同的涂色方案.故选:B .【点评】本题考查排列组合的应用,涉及分步计数原理的应用,注意分析图形中区域相邻的情况. 2.5名同学排成一列,某个同学不排排头的排法种数为 (用数字作答).【分析】先排不在排头的这个学生,方法有4种,其他学生任意排,有44A 种,根据分步计数原理,求得结果.【解答】解:先排不在排头的这个学生,方法有4种,其他学生任意排,有44A 种,根据分步计数原理,所有的排列方法共有44496A =种,故答案为:96.【点评】本题主要考查分步计数原理的应用,注意特殊元素优先排列,属于基础题.3.已知集合{1M ∈,2-,3},{4N ∈-,5,6,7}-,从两个集合中各取一个元素作为点的坐标,求这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数.【分析】本题首先分类在每一类中又分步,M中的元素作点的横坐标,N中的元素作点的纵坐标,N中的元素作点的横坐标,M中的元素作点的纵坐标,分别可以得到在第一和第二象限中点的个数,根据分类加法原理得到结果.【解答】解:由题意知本题是一个分类和分步的综合问题,⨯个,M中的元素作点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有22在第二象限的点共有12⨯个.⨯个,N中的元素作点的横坐标,M中的元素作点的纵坐标,在第一象限的点共有22在第二象限的点共有22⨯个.∴所求不同的点的个数是2212222214⨯+⨯+⨯+⨯=(个).【点评】本题考查分步计数原理和分类计数原理,是一个综合题目,首先分类,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.课后综合巩固练习1.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8B.15C.18D.30【分析】本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有358+=种结果.【解答】解:由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有358+=种结果,故选:A.【点评】本题看出分类计数问题,本题解题的关键是看清楚完成这个过程包含两种方法,看出每一种方法所包含的基本事件数,相加得到结果.2.将一张面值1元的人民币全部换成面值1角,2角和5角的硬币,则换法总数为.【分析】设1角硬币有x枚,2角硬币有y枚,5角硬币有z枚,构造三元一次方程,然后利用列举法得到所有可能的情况,可得答案.【解答】解:设1角硬币有x 枚,2角硬币有y 枚,5角硬币有z 枚 则2510x y z ++= 满足方程的解有:10x =,0y =,0z = 8x =,1y =,0z = 6x =,2y =,0z = 4x =,3y =,0z = 2x =,4y =,0z = 0x =,5y =,0z =5x =,0y =,1z = 0x =,0y =,2z = 3x =,1y =,1z = 1x =,2y =,1z =共十种不同情况 故答案为:10【点评】解决此类问题要用列举法,把所有的情况都一一排查,找出问题的答案. 3.乘积123123412345()()()a a a b b b b c c c c c +++++++++展开后共有 项.【分析】根据多项式的乘法法则,分析易得在123()a a a ++中取一项有3种取法,在1234()b b b b +++中取一项有4种取法,在12345()c c c c c ++++中取一项有5种取法,进而由分步计数原理计算可得答案.【解答】解:根据多项式的乘法法则,123123412345()()()a a a b b b b c c c c c +++++++++的结果中每一项都必须是在123()a a a ++、1234()b b b b +++、12345()c c c c c ++++三个式子中任取一项后相乘,得到的式子,而在123()a a a ++中有3种取法,在1234()b b b b +++中有4种取法,在12345()c c c c c ++++中有5种取法,由乘法原理,可得共有34560⨯⨯=种情况,则123123412345()()()a a a b b b b c c c c c +++++++++的展开式中有60项; 故答案为60.【点评】本题考查分步计数原理的运用,是常见的题目;平时要多加训练.4.在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行、每一列都只有一辆车,每辆车占一格,共有 种停放方法.(用数字作答)【分析】利用分步计数原理,第一步先选车,第二种再排列,问题得以解决【解答】解:第一步先选车有36C 种,第二步因为每一行、每一列都只有一辆车,每辆车占一格,从中选取一辆车后,把这辆车所在的行列全划掉,依次进行,则有11111166543216C C C C C C A =种,根据分步计数原理得;366614400C A =种.故答案为:14400.【点评】本题考查了分步计数原理的应用,关键是如何求出每辆车所在行列的可能性5.对于各数互不相等的正数数组1(i ,2i ,⋯,)(n i n 是不小于2的正整数),如果在p q <时有p q i i <,则称“p i 与q i ”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组(2,4,3,1)中有顺序“2,4”、“2,3”,其“顺序数”等于2.若各数互不相等的正数数组1(a ,2a ,3a ,4a ,5)a 的“顺序数”是4,则5(a ,4a ,3a ,2a ,1)a 的“顺序数”是 . 【分析】根据题意,假设出一种情况,倒序后输出顺序数即可.【解答】解:根据题意,各数互不相等的正数数组1(a ,2a ,3a ,4a ,5)a 的“顺序数”是4,假设12a a <,13a a <,14a a <,15a a <,且后一项都比前一项小,因此可以判断出23a a >,34a a >,45a a >, 则5(a ,4a ,3a ,2a ,1)a 的“顺序数”是6, 故填:6.【点评】本题考查了新定义,理解好定义是解题的先决条件,另外,要大胆假设.本题属基础题.。

人教版高中数学选修三电子版

人教版高中数学选修三电子版

人教版高中数学选修三电子版人教版高中数学选修三电子版一、复数与数域扩张1. 复数及其表示方法2. 复数的四则运算3. 复数的共轭与模4. 复数的除法及其解析式5. 复根的概念及其性质6. 复系数方程的解法二、矩阵与行列式1. 矩阵的定义和基本运算2. 矩阵的转置和对称矩阵3. 矩阵的逆及其性质4. 矩阵的秩和线性方程组5. 行列式的定义和性质6. 行列式的计算及其应用三、向量代数与空间解析几何1. 向量的定义和基本运算2. 向量的数量积与夹角3. 向量的叉积及其性质4. 平面上向量及其应用5. 空间向量及其应用6. 空间几何中的距离与角度四、数学归纳法与递推数列1. 数学归纳法及其应用2. 数列的概念、性质3. 递推数列及其通项公式4. 常系数线性递推数列及其通项公式5. 递推数列的求和公式及其应用6. 递推数列在实际问题中的应用五、函数的极限与连续1. 数列极限及其性质2. 函数极限及其性质3. 无穷小量、无穷大量及其比较4. 极限运算法则及其应用5. 连续函数及其性质6. Intermediate Value Theorem和最值定理六、一元函数微积分初步1. 函数的导数定义、性质及应用2. 高阶导数及Leibniz公式3. 函数的微分及其应用4. 函数的反函数及其求导5. 常用初等函数的导数公式6. 微分中值定理和Taylor公式七、多元函数微积分初步1. 二元函数的极限与连续2. 二元函数的偏导数与全微分3. 二元函数的最值及其求解4. 二元函数的隐函数及其求导5. 多元函数的极限、连续与偏导数6. 多元函数的Taylor公式及其应用以上就是人教版高中数学选修三电子版的内容,其中涉及到复数与数域扩张、矩阵与行列式、向量代数与空间解析几何、数学归纳法与递推数列、函数的极限与连续、一元函数微积分初步以及多元函数微积分初步等七个部分,内容包含了数学中的许多重要概念和工具,是一门高中数学的重要课程。

高中数学选修1-1、1-2、4-4知识点高考复习总结

高中数学选修1-1、1-2、4-4知识点高考复习总结

选修1-1、1-2数学知识点 选修1-1数学知识点第一章 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p q p q ∧ p q ∨ p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二章 圆锥曲线与方程1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>>范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

数学高考选修三知识点总结

数学高考选修三知识点总结

数学高考选修三知识点总结数学是一门引人入胜的学科,它不仅有着广泛的应用领域,还具有丰富的数学原理和方法。

在高考中,数学作为一门重要的科目,经常成为考生们关注的焦点。

其中,选修三是高中数学课程中的一部分,涵盖了许多重要的知识点。

在本文中,我将对数学高考选修三的知识点进行总结,帮助考生掌握重点概念和解题技巧。

一、三角函数三角函数是选修三中最基础也最重要的知识点之一。

在高考中,对于三角函数的理解和应用将成为考生取得高分的关键。

首先,我们需要掌握正弦、余弦和正切的定义及其在单位圆上的几何意义。

其次,我们要学会解三角函数的基本方程,包括解直角三角形,解三角方程和解三角恒等式等。

此外,熟练掌握三角函数的性质和常用公式也是必要的,例如,正弦函数的周期性、奇偶性和单调性等。

二、指数与对数函数指数与对数函数是选修三中的另一个重要知识点,也是高考数学中常见的考点。

指数函数和对数函数是互为逆函数关系的,它们之间存在着许多重要的性质和公式。

在学习指数函数时,我们需要了解指数函数的定义和变化规律,掌握指数函数的运算性质和常见公式。

而在学习对数函数时,我们要理解对数函数的定义、性质和求解方法。

此外,掌握指数方程和对数方程的解法也是必不可少的。

三、数理统计数理统计是选修三中的一门应用性较强的课程,也是高考中的一个重要知识点。

数理统计主要涉及概率论和统计学两部分内容。

在概率论中,我们需要熟悉概率的定义、性质和计算方法,掌握事件的概率与样本空间、事件的运算等。

在统计学中,我们需要了解统计的基本概念和方法,包括统计的分类、数据的整理和描述、统计的推断和检验等。

此外,掌握一些常用的统计方法和概念,例如样本调查、总体参数和抽样分布等,也是必要的。

四、解析几何解析几何是选修三中的一门几何学科,与平面几何和立体几何相对应。

在解析几何中,我们主要学习了平面直角坐标系、向量和直线方程等内容。

首先,熟练掌握平面直角坐标系的建立方法和坐标变换的几何意义。

高考数学一轮复习备课手册选修第3课空间向量的共线与共面

高考数学一轮复习备课手册选修第3课空间向量的共线与共面

选修第讲空间向量的共线与共面一、考纲要求.理解共线向量、共面向量等概念;理解空间向量共线、共面的充要条件及坐标表示。

.了解空间向量的基本定理及其意义;熟练使用空间向量垂直的充要条件及坐标表示。

二、知识梳理回顾要求.阅读教材第页,了解共线向量定理的内容,并与平面向量共线的充要条件作比较,看是否一致?.阅读教材第页~页,了解什么样的向量是共面向量?了解空间任意一个向量与两个不共线向量共面时,他们之间存在怎样的关系?.比较空间向量中的共面向量定理与平面向量基本定理的内容,数学表达形式,并思考它们的本质是否一致?.对于教材第页的例,如何判断四点共面呢?请学生先思考:对于空间任意一点,试问满足向量关系,(其中)的三点是否共线?要点解析.共线向量定理的学习过程中,请思考以下两个问题:()当实数时,表示什么意思?()充要条件中为什么规定?.共面向量还理解为“平行于同一平面的向量”,那么如何利用共面向量定理证明线面平行呢?可阅读教材第页例.. 空间向量中的共面向量定理与平面向量基本定理不仅在形式上是相同的,而且在本质上也是一致的,因为任意两个空间向量都可以平移到同一个平面,当不共线时,可以作为基向量,向量与它们共面,也就是向量可以平移到这个平面,所以就能用线形表示。

.空间四点共面对空间任意一点,,且.做教材页练习第题,在上述的基础上,思考如何证明面面平行?三、诊断练习.下列说明正确的是.().在平面内共线的向量在空间不一定共线;().在空间共线的向量在平面内不一定共线;().在平面内共线的向量在空间一定不共线;().在空间共线的向量在平面内一定共线.【教学建议】本题主要是帮助学生复习、理解向量共线与直线共线的区别,在平面内共线的向量在空间一定共线,根据向量的平移性,在空间共线的向量在平面上一定共线.教学时,教师要向学生讲清共线向量不一定在一条线上,平行向量不一定就是真平行,也可以是在一条线上。

因此若证明两条直线平行时先有:时还需要说明直线与还不在一条直线上..下列说法正确的是.().平面内的任意两个向量都共线;().空间的任意三个向量都不共面;().空间的任意两个向量都共面;().空间的任意三个向量都共面【教学建议】本题主要是帮助学生复习、理解向量共面与直线共面的区别,空间任两个向量可以通过平移的方式使它们共面,但任意三个向量不一定共面..对于空间任意一点,下列命题正确的是.().若,则、、共线;().若,则是的中点;().若,则、、不共线;().若,则、、共线.【教学建议】对于三点共线的处理,要求能够根据条件找出.、已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?分析:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.证明四点共面(注:要有公共点)形式为:存在实数,使得:(公共点);或者存在实数,对空间任一点,有;或存在实数,对空间任一点,变式:在下列条件中,使与,,一定共面的是(填序号)①;②③;④三、诊断练习、教学处理:诊断练习由学生课前完成,教师根据学生完成情况进行诊断分析,帮助学生进行知识点梳理,然后进行方法归纳,总结出空间向量平行和线面平行的向量法证明的有关理论知识和基本的证明步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学选修三知识点
高考数学选修三是高中数学课程的最后一个模块,也是许多理科生
所选择的一门重要课程。

它侧重于拓展学生的数学思维和解决问题的
能力,为他们将来进一步学习数学和理工科相关专业打下坚实的基础。

在这篇文章中,我们将深入探讨高考数学选修三中的三个重要知识点。

1.复数与复数函数
复数是高中数学中一个重要的概念,也是选修三的基础。

复数的定
义为 a+bi,其中 a 和 b 分别为实数部分和虚数部分,i 为虚数单位。


生需要掌握复数的加减乘除以及模、辐角等运算法则。

除此之外,复
数函数也是选修三的一大重点内容。

学生需要了解复数函数的定义域、值域以及极限等概念,并能够熟练应用复数函数解决实际问题。

2.矩阵与变换
矩阵是一种重要的数学工具,被广泛应用于代数、几何和物理等领域。

选修三要求学生了解矩阵的基本概念和运算法则,掌握矩阵的转置、相等和乘法等操作。

此外,学生还需要学会利用矩阵描述线性变换,包括平移、旋转、镜像等几何变换。

通过学习矩阵与变换,学生
可以更好地理解几何问题,培养空间想象力和逻辑推理能力。

3.概率统计
概率统计是选修三中的另一个重要内容,也是数理统计学的基础。

学生需要了解概率的基本概念和计算方法,包括排列组合、事件概率
等内容。

在统计学方面,学生需要学习如何利用样本数据进行推断统
计,并了解常见的统计分布,如正态分布、二项分布等。

掌握概率统计可以帮助学生分析和解答与实际问题相关的统计学和概率学题目,提高综合应用能力。

综上所述,高考数学选修三是高中数学课程中的重要部分,涵盖了复数与复数函数、矩阵与变换以及概率统计等多个知识点。

通过深入学习和理解这些知识点,学生可以提高数学思维和解决问题的能力,为将来的学习和职业发展打下坚实的基础。

无论是进一步学习数学相关专业,还是从事与数学有关的工作,都离不开对这些知识点的深入理解和应用。

因此,学生在备考高考数学选修三时,务必重视这些知识点的学习,并注重掌握解题技巧和方法。

高考数学选修三的学习需要耐心和毅力,并且需要注重基础知识的打牢。

希望同学们能够在学习过程中保持积极的态度,善于思考和解决问题。

通过努力学习,相信同学们能够取得优异的成绩,并在将来的学习和工作中展现出自己的才华和能力。

最后,祝愿所有参加高考数学选修三的同学能够取得理想的成绩,实现自己的梦想!。

相关文档
最新文档