大学物理知识点

合集下载

大学物理知识点总结

大学物理知识点总结

大学物理知识点总结大学物理涵盖了广泛的知识领域,包括经典力学、电磁学、热力学、光学、量子力学等。

以下是一些常见的大学物理知识点总结:1.经典力学:经典力学是物理学的基础,研究物体的运动规律。

主要包括牛顿三定律、动量定理、动能定理、万有引力定律等。

其中牛顿三定律指出物体在无外力作用下保持静止或匀速直线运动;动量定理描述了力对物体运动状态的改变;动能定理解释了物体的动能和力的关系;万有引力定律用于解释天体运动等。

2.电磁学:电磁学研究电荷和电磁场的相互作用,涉及电场、磁场、电磁感应等内容。

其中库仑定律描述了电荷之间的相互作用力;高斯定律解释了电场的分布规律;安培定律和法拉第电磁感应定律描述了电流和磁场之间的相互作用;麦克斯韦方程组总结了电磁场的基本规律。

3.热力学:热力学是研究热量转化和能量守恒的学科。

主要包括温度、热量、功、熵等概念。

热力学第一定律描述了能量守恒的原理;热力学第二定律描述了熵增原理和热传导的不可逆性;卡诺循环是理想热机的最高效率循环。

4.光学:光学研究光的传播和相互作用现象。

主要包括光的波动理论和光的几何理论。

干涉和衍射是光的波动性质的重要现象;折射和反射是光的几何性质的基本原理。

5.量子力学:量子力学是描述微观粒子行为的物理学理论。

主要包括波粒二象性、不确定性原理、波函数和薛定谔方程等。

波粒二象性描述了微观粒子既具有波动性又具有粒子性;不确定性原理阐述了无法同时准确测量粒子的位置和动量;波函数和薛定谔方程描述了粒子在量子力学中的运动和演化。

6.相对论:相对论是描述高速物体运动的理论。

狭义相对论主要包括以光速为上界的物体运动规律,如时间膨胀、长度收缩、质能等效等;广义相对论涉及引力和时空弯曲等现象。

7.统计物理学:统计物理学基于统计学原理,研究了宏观系统的微观基础。

热力学统计学描述了大量微观粒子构成的系统的性质和行为,如分子速度分布、热平衡等;量子统计学描述了费米子和玻色子的统计行为。

大学物理知识点汇总

大学物理知识点汇总

大学物理知识点汇总一、质点运动学1、描述质点运动的物理量位置、速度、加速度、动量、动能、角速度、角动量2、直线运动与曲线运动的分类直线运动:加速度与速度在同一直线上;曲线运动:加速度与速度不在同一直线上。

3、速度与加速度的关系速度与加速度方向相同,物体做加速运动;速度与加速度方向相反,物体做减速运动。

二、牛顿运动定律1、牛顿第一定律:力是改变物体运动状态的原因。

2、牛顿第二定律:物体的加速度与所受合外力成正比,与物体的质量成反比。

3、牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在同一条直线上。

三、动量1、动量的定义:物体的质量和速度的乘积。

2、动量的计算公式:p = mv。

3、动量守恒定律:在不受外力作用的系统中,动量守恒。

四、能量1、动能:物体由于运动而具有的能量。

表达式:1/2mv²。

2、重力势能:物体由于被举高而具有的能量。

表达式:mgh。

3、动能定理:合外力对物体做的功等于物体动能的改变量。

表达式:W = 1/2mv² - 1/2mv0²。

4、机械能守恒定律:在只有重力或弹力对物体做功的系统中,物体的动能和势能相互转化,机械能总量保持不变。

表达式:mgh + 1/2mv ² = EK0 + EKt。

五、刚体与流体1、刚体的定义:不发生形变的物体。

2、刚体的转动惯量:转动惯量是表示刚体转动时惯性大小的物理量,它与刚体的质量、形状和转动轴的位置有关。

大学物理电磁学知识点汇总一、电荷和静电场1、电荷:电荷是带电的基本粒子,有正电荷和负电荷两种,电荷守恒。

2、静电场:由静止电荷在其周围空间产生的电场,称为静电场。

3、电场强度:描述静电场中某点电场强弱的物理量,称为电场强度。

4、高斯定理:在真空中,通过任意闭合曲面的电场强度通量等于该闭合曲面内电荷的代数和除以真空介电常数。

5、静电场中的导体和电介质:导体是指电阻率为无穷大的物质,在静电场中会感应出电荷;电介质是指电阻率不为零的物质,在静电场中会发生极化现象。

大学物理知识点总结

大学物理知识点总结

第一章 质点运动学本章提要1、 参照系:描述物体运动时作参考的其他物体。

2、 运动函数:表示质点位置随时间变化的函数。

位置矢量:k t z j t y i t x t r r)()()()(++==位置矢量:)()(t r t t r r-∆+=∆ 一般情况下:r r∆≠∆3、速度和加速度: dt r d v= ; 22dt rd dt v d a ==4、匀加速运动: =a 常矢量 ; t a v v +=0 2210t a t v r+= 5、一维匀加速运动:at v v +=0 ; 2210at t v x += ax v v 2202=-6、抛体运动: 0=x a ; g a y -=θcos 0v v x = ; gt v v y -=θsin 0t v x θcos 0= ; 2210sin gtt v y -=θ 7、圆周运动:t n a a a+=法向加速度:22ωR R v a n == 切向加速度:dtdv a t = 8、伽利略速度变换式:u v v+'=第二章 质点力学(牛顿运动定律)本章提要1、牛顿运动定律牛顿第一定律 o F =时 =v常矢量牛顿第二定律 k ma i ma i ma a m F z y x++==牛顿第三定律 'F F -=2、技术中常见的几种力:重力 g m P= 弹簧的弹力 kx f -= 压力和张力滑动摩擦力 N f k k μ= 静摩擦力 N f s s μ≤3、基本自然力:万有引力、弱力、电磁力、强力。

4、用牛顿运动定律解题的基本思路:认物体→看运动→查受力(画示力图)→列方程 5、国际单位制(SI )量纲:表示导出量是如何由基本量组成的幂次式。

6、功:r d F dW⋅=⎰⎰⎰⎰++==⋅==BAB ABAz y x dz f dy f dx F dr F r d F dW W )(cos θ7、动能定理:21212221mvmv W -= 8、保守力与非保守力: ⎰=⋅=Lr d F W 0 保 ⎰≠⋅=Lr d F W 0非9、势能:对保守内力可以引入势能概念 万有引力势能:rm m GE p 21-=以两质点无穷远分离为势能零点。

大学物理的知识点

大学物理的知识点

大学物理的知识点关键信息项:1、力学知识点牛顿运动定律动量守恒定律能量守恒定律2、热学知识点热力学第一定律热力学第二定律理想气体状态方程3、电磁学知识点库仑定律高斯定理安培环路定理4、光学知识点光的干涉光的衍射光的偏振5、近代物理知识点狭义相对论量子力学基础11 力学知识点111 牛顿运动定律牛顿第一定律:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。

牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。

牛顿第三定律:两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。

112 动量守恒定律一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变。

113 能量守恒定律能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到其它物体,而能量的总量保持不变。

12 热学知识点121 热力学第一定律系统在过程中能量的变化等于系统从外界吸收的热量与外界对系统做功的和。

122 热力学第二定律克劳修斯表述:热量不能自发地从低温物体传到高温物体。

开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。

123 理想气体状态方程pV = nRT ,其中 p 为压强,V 为体积,n 为物质的量,R 为普适气体常量,T 为热力学温度。

13 电磁学知识点131 库仑定律真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线。

132 高斯定理通过一个闭合曲面的电通量等于这个闭合曲面所包围的电荷量除以真空中的介电常数。

133 安培环路定理在稳恒磁场中,磁感应强度沿任何闭合路径的线积分,等于这闭合路径所包围的各个电流的代数和乘以磁导率。

14 光学知识点141 光的干涉两列或多列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象。

大学物理上知识点总结

大学物理上知识点总结

大学物理上知识点总结大学物理是一门重要的基础学科,它在诸多领域中都有着广泛应用。

在学习大学物理的过程中,我们会接触到许多重要的知识点。

以下是大学物理上的一些核心知识点总结。

1. 牛顿运动定律物理学的基础是牛顿运动定律。

第一定律表明只有受到外力作用时物体才会运动或改变运动状态;第二定律则描述了物体的加速度与受力之间的关系;第三定律阐述了作用力和反作用力相等反向的规律。

牛顿运动定律是物理学的核心基础,其在物理学和工程学的许多领域中都有着广泛的应用。

2. 大小电流、电场和电势电学是大学物理的重要组成部分,其基本概念包括电流、电场、电势等。

电场是空间中带电物体周围的区域,它会影响到被带电粒子的运动。

电势是指一个点在电场中受到的电力运动所带来的能量。

大小电流则涉及了电荷的移动和电流的流动。

电学的应用包括电路、电子设备和通信技术等领域。

3. 热力学和热力学定律热力学是一门关于热和温度的科学,它描述了在温度不变的条件下物体之间热量和功的交换。

热力学定律包括热力学第一定律(能量守恒定律)、热力学第二定律(熵增定律)和热力学第三定律(绝对零度定律)。

热力学包括温度的测量、热力学过程的方程式以及热力学系统的运动等。

4. 玻尔原子模型玻尔原子模型是20世纪早期的一项重要科学研究成果,它为原子和分子的研究提供了框架和原则。

这个模型将原子看作是一个带正电的核心和带负电子的轨道构成的系统。

该模型在描述原子的稳定态和电子状态改变方面发挥了重要作用,也为后来量子力学的发展奠定了基础。

5. 光和光学光学是研究光的性质和行为的科学领域。

光是电磁波形式的能量,在物理学中有着重要的地位。

光学的重要性在于应用方面,包括激光、光纤通信和光电子学等。

光学通过发现和解释像干涉、衍射、极化等光学现象,帮助人们更好地理解光学行为,并且在制造各种各样的光学器件时有着广泛的应用意义。

总而言之,大学物理是一门重要的基础学科,在诸多领域中都有着广泛的应用。

大学物理学百科知识点总结

大学物理学百科知识点总结

大学物理学百科知识点总结第一章:力学力学是物理学的一个重要分支,研究物体的运动、力的作用和运动的规律。

在大学物理学中,力学是一个重要的基础课程,涵盖了许多重要的知识点。

1. 运动的描述在力学中,对物体的运动进行描述是一个基本的问题。

首先,我们需要引入一些基本的概念,如位移、速度和加速度。

位移描述了物体从一个位置到另一个位置的变化,速度描述了物体在单位时间内的位移量,而加速度描述了速度的变化率。

这些概念是描述物体运动的基础,通过它们,我们可以对物体的运动进行准确地描述。

2. 牛顿运动定律牛顿运动定律是力学中的一个基本定律,它描述了物体受力时的运动规律。

根据牛顿运动定律,物体的运动状态会受到外力的影响,这个影响可以用运动定律来描述。

其中,第一定律描述了在没有外力作用下物体的运动状态不会发生改变,第二定律描述了物体的加速度与受到的力的大小和方向成正比,第三定律描述了相互作用的两个物体之间的力是大小相等、方向相反的。

3. 力的合成与分解在力学中,我们经常需要处理多个力同时作用在一个物体上的情况,这时就需要进行力的合成与分解。

力的合成是指将多个力合成为一个合力的操作,而力的分解是指将一个合力分解为多个分力的操作。

这两个操作对于分析物体受力情况是非常有用的,通过它们我们可以更好地理解物体的受力情况。

第二章:动力学动力学是力学的一个重要分支,研究物体受力时的运动规律。

在大学物理学中,动力学包括了许多重要的知识点,涵盖了速度、加速度、力和能量等方面的内容。

1. 动量动量是描述物体运动状态的一个重要物理量,它与物体的质量和速度有关。

动量在物理学中有着重要的应用,它可以帮助我们理解物体的运动规律。

根据动量定理,一个物体的动量变化率等于作用在物体上的合外力的大小,这一定理对于分析物体的运动状态是非常有用的。

2. 动能动能是描述物体运动状态的一个重要物理量,它与物体的质量和速度平方成正比。

动能定理描述了物体的动能的变化率等于作用在物体上的合外力的功率,通过动能定理我们可以推导出能量守恒定律,这对于分析物体的运动状态和能量变化非常有用。

大学生必备物理知识点

大学生必备物理知识点

大学生必备物理知识点在大学学习阶段,物理是一门必修课程,它涉及到我们日常生活中许多现象和原理的解释。

掌握一些物理知识点不仅可以帮助我们更好地理解世界,还可以应用于我们的学习和职业生涯。

在本文中,我们将介绍一些大学生必备的物理知识点。

1.运动学:运动学是物理学的基础,它研究物体运动的规律。

了解运动学可以帮助我们理解速度、加速度、位移等概念,以及运动的图像和图表表示方法。

在日常生活中,我们经常会遇到物体的运动,比如自行车骑行、汽车行驶等,因此掌握运动学知识对我们理解和分析这些现象非常重要。

2.力学:力学是物理学中最基本的分支之一,它研究物体的运动与受力之间的关系。

在学习力学时,我们需要了解牛顿三定律、动量和能量守恒等基本概念。

这些概念在解释物体的运动和相互作用过程中起着重要的作用。

掌握力学知识可以帮助我们理解为什么物体会受力运动、如何预测物体的运动轨迹等问题。

3.电磁学:电磁学是研究电荷和电磁场相互作用的学科。

在学习电磁学时,我们需要了解电荷、电场、磁场等基本概念,以及电磁感应、电磁波等电磁现象。

电磁学是现代科技的基础,了解电磁学知识可以帮助我们理解电子设备的工作原理,如手机、电视等。

4.热学:热学是研究热量和温度变化的学科。

在学习热学时,我们需要了解温度、热量、传热等基本概念,以及热力学定律和热力学过程。

热学知识可以帮助我们理解热能的转化和传递过程,以及如何应对热能的损失和保温等问题。

5.光学:光学是研究光的传播和光与物质相互作用的学科。

在学习光学时,我们需要了解光的特性、光的传播方式和光的干涉、衍射等现象。

光学知识对于我们理解眼睛的工作原理、光学仪器的使用和光纤通信等都非常重要。

6.原子物理学:原子物理学是研究原子结构和原子核性质的学科。

在学习原子物理学时,我们需要了解原子的组成、电子的能级和原子核的结构等基本概念,以及放射性衰变、核反应等原子核现象。

原子物理学知识对于我们理解原子和分子的行为以及核能的应用都非常重要。

大学物理必备知识点大全

大学物理必备知识点大全

大学物理必备知识点大全10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。

11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。

选修部分:(选修3-1、3-2、3-3、3-4、3-5)二、电磁学:(选修3-1、3-2)13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k 的值。

14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

19、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。

20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、真 空 中 的 稳 恒 磁 场知识点:1. 毕奥-萨伐定律电流元l Id 产生的磁场20ˆ4r r l Id B d ⨯⋅=πμ 式中, l Id表示稳恒电流的一个电流元(线元),r 表示从电流元到场点的距离, rˆ表示从电流元指向场点的单位矢量..2. 磁场叠加原理在若干个电流(或电流元)产生的磁场中,某点的磁感应强度等于每个电流(或电流元)单独存在时在该点所产生的磁感强度的矢量和. 即 ∑=i B B3. 要记住的几种典型电流的磁场分布(1)有限长细直线电流 )cos (cos 4210θθπμ-=a IB式中,a 为场点到载流直线的垂直距离, 1θ、2θ为电流入、出端电流元矢量与它们到场点的矢径间的夹角.(1) (2) 无限长细直线电流r I B πμ20=(2) (3) 通电流的圆环2/32220)(2R x I R B +⋅=μ 圆环中心R IB 20μ=(4) 通电流的无限长均匀密绕螺线管内 nI B 0μ=4. 安培环路定律真空中 ∑⎰=⋅内I l d B L 0μ磁介质中 ∑⎰=⋅内0I l d H LH H B rμμμ0==当电流I 的方向与回路l 的方向符合右手螺旋关系时, I 为正,否则为负. 5. 磁力(1) 洛仑兹力 B v q F⨯=质量为m 、带电为q 的粒子以速度v沿垂直于均匀磁场B 方向进入磁场,粒子作圆周运动,其半径为qB mv R =周期为qB m T π2=(2) 安培力Bl Id F⨯=⎰(3) 载流线圈的磁矩 n N I S p m ˆ=载流线圈受到的磁力矩 B p M m⨯=(4) 霍尔效应 霍尔电压b IB ne V ⋅=1重点:1. 掌握应用毕奥-萨法定律和磁场叠加原理求解磁场的方法..2. 理解稳恒磁场的高斯定理和安培环路定律。

熟练掌握应用安培环路定律求具有一定对称分布的磁场问题.3. 磁力(1) 理解洛仑兹力公式,并能熟练应用它计算运动电荷在磁场中受的力. (2) 掌握电流元受力的安培定律,并能计算载流导线受磁场的作用力. (3) 理解载流线圈磁矩的定义,并能计算它在磁场中受的磁力矩.难点:1. 用微积分计算磁场强度。

2. 计算载流导线在磁场中的受力及载流线圈在磁场中受的磁力矩。

二、磁介质知识点:1. 理解顺磁性和抗磁性2. 磁化强度和磁化电流3. 磁介质H的定义 MB H -=0μB 与H的关系 H H B r μμμ0==重点:1. 理解磁介质的磁化现行极其微观解释。

2. 理解铁磁质的性质。

3. 理解磁介质中的安培环路定律。

难点:1. 磁介质中的安培环路定律。

三、电 磁 感 应 电 磁 场知识点:1. 楞次定律:感应电流产生的通过回路的磁通量总是反抗引起感应电流的磁通量的改变.2. 法拉第电磁感应定律 dtd i ψ-=ε Φ=ψN 3. 动生电动势: 导体在稳恒磁场中运动时产生的感应电动势.ld B v baab⋅⨯=⎰)(ε 或 ⎰⋅⨯=l d B v)(ε4. 感应电场与感生电动势: 由于磁场随时间变化而引起的电场成为感应电场. 它产生电动势为感生电动势.⎰Φ-=⋅=dtd l d E i 感ε局限在无限长圆柱形空间内, 沿轴线方向的均运磁场随时间均匀变化时, 圆柱内外的感应电场分别为)(2R r dt dBr E ≤-=感)(22R r dtdBr R E ≥-=感5. 自感和互感 自感系数 IL ψ=自感电动势 dtdI L L -=ε 自感磁能 221LI W m = 互感系数 212121I I M ψ=ψ=互感电动势 dtdI M121-=ε 6. 磁场的能量密度BH B w m 2122==μ 7. 位移电流 此假说的中心思想是: 变化着的电场也能激发磁场.通过某曲面的位移电流强度d I 等于该曲面电位移通量的时间变化率. 即⎰⋅∂∂=Φ=SDd S d tDdtd I位移电流密度tD j D∂∂=8. 麦克斯韦方程组的积分形式⎰∑⎰==⋅VSdVq S d D ρS d tBdt d l d E S m L⋅∂∂-=Φ-=⋅⎰⎰ 0=⋅⎰SS d BS d tDS d j l d H SSL⋅∂∂+⋅=⋅⎰⎰⎰0v0v0v 0v四、机械振动一. 简谐运动振动:描述物质运动状态的物理量在某一数值附近作周期性变化。

机械振动:物体在某一位置附近作周期性的往复运动。

简谐运动动力学特征:F kx =- 简谐运动运动学特征:2a x ω=- 简谐运动方程: cos()x A t w j =+ 简谐振动物体的速度:()sin dxv A t dtw w j ==-+ 加速度()222cos d xa A t dtw w j ==-+ 速度的最大值m v A w =, 加速度的最大值2m a A w = 二. 描述谐振动的三个特征物理量 1. 振幅A:A =取决于振动系统的能量。

2. 角(圆)频率w :22Tpw pn ==,取决于振动系统的性质对于弹簧振子w =、对于单摆ω=3. 相位——t w j +,它决定了振动系统的运动状态(,x v )0t =的相位—初相0arc v tgx j w -= j 所在象限由00x v 和的正负确定:00x >,00v <,ϕ在第一象限,即ϕ取(02π)00x <,00v <,ϕ在第二象限,即ϕ取(2ππ)00x <,00v >,ϕ在第三象限,即ϕ取(322ππ) 00x >,00v >,ϕ在第四象限,即ϕ取(322ππ)三. 旋转矢量法简谐运动可以用一旋转矢量(长度等于振幅)的矢端在Ox 轴上的投影点运动来描述。

1.A r的模A r =振幅A ,2. 角速度大小=谐振动角频率ω3.0t =的角位置ϕ是初相4.t 时刻旋转矢量与x 轴角度是t 时刻 振动相位t ωϕ+5.矢端的速度和加速度在Ox 轴上的投影点 速度和加速度是谐振动的速度和加速度。

四.简谐振动的能量 以弹簧振子为例:2222211112222k p E E E mv kx m A kA ω=+=+== 五.同方向同频率的谐振动的合成 设()111cos x A t ωϕ=+()222cos x A t ωϕ=+ 12cos()x x x A t ωϕ=+=+合成振动振幅与两分振动振幅关系为:12A A A =+A =11221122sin sin cos cos A A tg A A ϕϕϕϕϕ+=+合振动的振幅与两个分振动的振幅以及它们之间的相位差有关。

()2012k k ϕπ∆==±±12A A A ==+()(21)012k k ϕπ∆=+=±±12A A A ==-一般情况,相位差21ϕϕ-可以取任意值1212A A A A A -<<+五、机械波一.波动的基本概念1.机械波:机械振动在弹性介质中的传播。

2. 波线——沿波传播方向的有向线段。

2cos[()]v xa A t t uωωϕ∂==--+∂])(sin[ϕωω+--=∂∂=uxt A t y v 波面——振动相位相同的点所构成的曲面 3.波的周期T :与质点的振动周期相同。

4. 波长λ:振动的相位在一个周期内传播的距离。

5. 振动相位传播的速度。

波速与介质的性质有关 二. 简谐波沿ox 轴正方向传播的平面简谐波的波动方程cos[()]cos[2()]x t xy A t A u T ωϕπϕλ=-+=-+质点的振动速度 质点的振动加速度这是沿ox 轴负方向传播的平面简谐波的波动方程。

cos 2()t xy A T πϕλ⎡⎤=++⎢⎥⎣⎦三.波的干涉两列波频率相同,振动方向相同,相位相同或相位差恒定,相遇区域内出现有的地方振动始终加强,有的地方振动始终减弱叫做波的干涉现象。

两列相干波加强和减弱的条件: (1)()πλπϕϕϕk r r 221212±=---=∆ ),2,1,0(⋅⋅⋅=k 时,21A A A +=(振幅最大,即振动加强)()()πλπϕϕϕ1221212+±=---=∆k r r ),2,1,0(⋅⋅⋅=k 时,21A A A -=(振幅最小,即振动减弱)(2)若12ϕϕ=(波源初相相同)时,取21r r δ=-称为波程差。

212r r k δλ=-=± ),2,1,0(⋅⋅⋅=k 时,21A A A +=(振动加强)()21212λδ+±=-=k r r ),2,1,0(⋅⋅⋅=k 时,21A A A -=(振动减弱);其他情况合振幅的数值在最大值12A A +和最小值12A A -之间。

六、波动光学(一)光的偏振知识点:1. 光波是横波,光的偏振状态可分为自然光、线偏振光、部分偏振光、椭圆和圆偏振光等。

2. 偏振片的起偏和检偏3. 马吕斯定律4. 反射和折射时光的偏振5. 双折射现象重点:1. 从光的偏振说明光是横波,理解用偏振片起偏和检偏的方法.2. 掌握马吕斯定律,能熟练应用它计算偏振光通过检偏器后光强的变化.3. 掌握用反射和折射现象获得偏振光的方法.4. 理解光轴、主平面概念,理解寻常光与非常光的区别。

难点:1. 光轴、主平面的概念,寻常光与非常光。

(二)光的干涉和衍射 知识点:1. 获得相干光的基本原理:把一个光源的一点发出的光束分为两束。

具体方法有分波阵面法和分振幅法。

2. 杨氏双峰干涉:是分波阵面法,其干涉条纹是等间距的直条纹。

条纹中心位置:明纹:,...,2,1,02=±=k aD kx λ暗纹:,...,2,1,022)12(=+±=k a D k x λ条纹间距:λa D x 2=∆3. 光程δ4. 位相差δλπφ2=∆有半波损失时,相当于光程增或减2λ,相位发生π的突变。

5. 薄膜干涉(1)等厚干涉:光线垂直入射,薄膜等厚处为同一条纹。

劈尖干涉:干涉条纹是等间距直条纹. 对空气劈尖:明纹:,...2,122==+k k ne λλ暗纹:,...,2,1,02)12(22=+=+k k ne λλ牛顿环干涉:干涉条纹是以接触点为中心的同心圆环.明环半径:,...2,1)21-(==k nR k r λ明暗环半径:,...,2,1,0==k n kRr λ暗(2)等倾干涉:薄膜厚度均匀,采用面广元,以相同倾角入射的光,其干涉情况一样,干涉条纹是环状条纹。

明环:,...2,12sin 222122==+-k k i n n e λλ暗环:,...,2,1,02)12(2sin 222122=+=+-k k i n n e λλ6. 迈克尔逊干涉仪7. 单缝夫朗和费衍射用半波带法处理衍射问题,可以避免复杂的计算.单色光垂直入射时,衍射暗纹中心位置:,...2,122sin =±=k ka λφ亮纹中心位置: ,...,2,1,2)12(sin =+±=k k a λφ8. 光栅衍射9. 光学仪器分辨率重点:1. 掌握用半波带法分析夫朗和费衍射单缝衍射条纹的产生及其亮暗纹位置的计算.2. 理解光栅衍射形成明纹的条件,掌握用光栅方程计算谱线位置。

相关文档
最新文档