七年级数学上册 2.2 有理数与无理数教案 (新版)苏科版

合集下载

七级数学上册2.2有理数与无理数有理数和无理数有什么区别素材(新版)苏科版

七级数学上册2.2有理数与无理数有理数和无理数有什么区别素材(新版)苏科版

七级数学上册2.2有理数与无理数有理数和无理数有什么差别素材(新版)苏科版有理数和无理数有什么差别?负数的出现,致使了减法运算,无理数的出现,致使了开方运算.引入了无理数,数的范围就由有理数扩展到了实数.关于实数的研究,一定先搞清有理数和无理数有什么差别.主要差别有两点:第一,把有理数和无理数都写成小数形式时,有理数能写成有限小数或无穷循环小数,比方 4=4.0 ; 4 0.8;10.3 而无理数只好写成无穷不循环小数,比方5 32 1.4142L L ,3.1415926L L 依据这一点, 人们把无理数定义为无穷不循环小数.第二,全部的有理数都能够写成两个整数之比,而无理数却不可以写成两个整数之比. 根据这一点, 有人建议给无理数摘掉“无理”的帽子, 把有理数改叫“比数”, 把无理数改叫“非比数”.原来嘛,无理数其实不是不讲道理,不过人们最先对它太不理解罢了.利用有理数和无理数的定义,能够证明2 是无理数,使用的方法是反正法。

证明:2 是无理数。

假定2 是有理数,即 2a 2 22是偶数。

( a ,b 为自然数且互质)于是有a =2b , 故 ab2此刻来看当 a 是偶数时, a 是偶数仍是奇数.a 2=(2m+1) 2=4m 2+4m+1由于等式右侧必为奇数,而a 2 是偶数,所以等式不行能建立.故a 必为偶数.22222为偶数,所以 b 也是偶数。

既然a ,b 都是偶设 a=2m ,代入 a =2b 时获得 b =2m ,故 b 数, a就不行能是既约分数,这与假定相矛盾,故2 是无理数。

b依占有理数与无理数的这些差别,也不用担忧化分数22为小数时,它会不会是无穷不7循环小数。

由于全部能够写成n( n 是整数, m 是自然数)的数必是有理数。

m。

有理数与无理数苏教版数学初一上册教案

有理数与无理数苏教版数学初一上册教案

有理数与无理数苏教版数学初一上册教案
《数学初一上册》是苏教版的一本初中数学教材,以下是《数学初一上册》中有关有
理数与无理数的教案:
教案一:有理数的概念及表示
教学目标:
1. 理解有理数的概念和特点;
2. 掌握有理数的表示方法。

教学过程:
1. 复习:复习整数的概念和表示方法;
2. 引入:通过例题,让学生发现整数之间可以使用分数互相转换,引出有理数的概念;
3. 讲解:介绍有理数的定义,并讲解有理数的表示方法(分数、小数、整数);
4. 运用:设计一些练习题,让学生练习使用各种方法表示有理数。

教案二:无理数的定义和性质
教学目标:
1. 理解无理数的概念和特点;
2. 了解无理数的表示方法;
3. 掌握无理数的一些性质。

教学过程:
1. 复习:复习有理数的表示方法;
2. 引入:通过开平方的例子,让学生发现无理数的存在;
3. 讲解:介绍无理数的概念和定义,并讲解无理数的表示方法(根号、小数);
4. 拓展:讲解无理数的性质,如无理数与有理数的运算、无理数的比较等;
5. 运用:设计一些练习题,让学生练习使用无理数进行计算和比较。

以上是两个教案的简要介绍,具体的教学内容和教学方法可以根据《数学初一上册》教材的教学目标和教学内容进行拓展和调整。

七年级数学上册 第2章 有理数 2.2 有理数与无理数教学课件 苏科苏科级上册数学课件

七年级数学上册 第2章 有理数 2.2 有理数与无理数教学课件 苏科苏科级上册数学课件

第十页,共十一页。
内容(nèiróng)总结
教学课件。数学 七年级上册 江苏科技版。2.2 有理数与无理数。我们把能够写成分数形式(xíngshì) 且(m,n是整数,n≠0)的数叫做有理数.。, , ,。反过来,这些有限小数、无限循环小数都可
No 以化成分数,因此它们都是。有理数 0。1.2010010001000(相邻两个1之间0的个数逐次增加1。常见的
无理数的三种类型:。例 下列各数中,哪些是有理数。小结
Image
12/9/2021
第十一页,
数学(shùxué) 七年级上册 江苏科技 版
12/9/2021
第一页,共十一页。
第2章 有理数 2.2 有理数与无理数
12/9/2021
第二页,共十一页。
有理数的概念
正整数 整数 0
负整数
正分数 分数
负分数
整数可以表示成分数(fēnshù)的形式吗?
5 =0.5555……, 9
2 =0.181818……, 11
12/9/2021
第四页,共十一页。
0.8
有限小数
0.555…… -0.1777…… 0.181818……
无限(wúxiàn)循环 小数
无限(wúxiàn)循 环小数
无限循环小数
反过来,这些有限小数、无限循环小数都可以化成分数,因此
它们都是
解:有理数:3.14 , , 0.5 73; 无理数: 0.101000100 0004 1…(相邻(xiānɡ lín)两个1之间 0的个数逐次加2个).
12/9/2021
第八页,共十一页。
小结
(xiǎojié)
谈谈你这一节课有哪些(nǎxiē)收获.

七年级数学上册 2.2 有理数与无理数 怎样根据点在数轴上的位置确定数,根据数的大小在数轴上找到点

七年级数学上册 2.2 有理数与无理数 怎样根据点在数轴上的位置确定数,根据数的大小在数轴上找到点

七年级数学上册2.2 有理数与无理数怎样根据点在数轴上的位置确定数,根据数的大小在数轴上找到点的位置?素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册2.2 有理数与无理数怎样根据点在数轴上的位置确定数,根据数的大小在数轴上找到点的位置?素材(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册 2.2 有理数与无理数怎样根据点在数轴上的位置确定数,根据数的大小在数轴上找到点的位置?素材(新版)苏科版的全部内容。

怎样根据点在数轴上的位置确定数,根据数的大小在数轴上找到点的位置? 难易度:★★★★
关键词:确定数点的位置
答案:
一般地,任何一个有理数都可以用数轴上的点来表示,数轴上正数的排序是从原点向右依次是
1,2,3,;负数的排序是从原点向左依次是-1,—2,—3,。

【举一反三】
典例:数轴上的A、B、C、D、E各点分别表示怎样的数?
思路导引:判断数轴上的一个点表示怎样的数,首先看它在原点的哪一侧,在原点的右侧表示
正数,在原点的左侧表示负数;另外再看它离开远点的距离即可知道它表示哪个数。

标准答案:
图中A点表示4,B点表示1。

5,C点表示—3,D点表示-2.5,E点表示0.。

七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)

七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)

有理数与无理数第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

江苏省无锡市七年级数学《2.2 有理数与无理数》课件 苏科版

江苏省无锡市七年级数学《2.2 有理数与无理数》课件 苏科版
D.3.14不是有理数
练习7.下列说法正确的是( B)
A.一个数不是正数就是负数 B.整数和分数统称有理数
C.有理数中没有最小的非负整数
D. π是有理数
…} …}
试一试
把下列各数填入相应的集合中:
4 ,2 0, 0 3 .1 5 ,0 4 ,2,2 5 .2, 31, 9% 5
7
8
正整数集合 负分数集合
练习2:把下列各数填入相应的集合中:
1 .2, 3 2 , 1,0 5 ,3 ,2,2.0 0, 2 10 , 2 0 2, 0 .51
7
3
正整数集合 负分数集合
π =3.1493238462643383279539 93751592328253421170679 ···
它是一个无限不循环小数
无限不循环小数叫做无 理数。
请同学们拿出准备好的一个边长为1 的小正方形和剪刀,将小正方形沿着图 中对角线剪开,同桌两位同学合作,将 你们的图形拼在一起,重新拼成一个大 正方形.
练习3:把下列各数填入相应的集合中
1.2, 32,1,0 5,3,2,2.0, 222
7
3
正数集合
整数集合
练习4.
下列说法中正确的有( A)个
①- 4 是负分数;
7
②1.5不是分数; ③非负有理数不包括0; ④0是最小的数
A.1 B.2 C.3 D.4
小结:
1.通常,有理数有哪两种分类原则? 它们是怎样分类的?
2.1 有理数与无理数
议一议
1.如果要将2,3,22 ,10,2 7 1,0,5
73
7
分成两类,你会怎样分?是这怎样的两类?
2.如果再增加 0.53,0.3 两数 ,你

苏科版 七年级数学上册 2.2有理数与无理数 课件

苏科版 七年级数学上册 2.2有理数与无理数  课件
有限小数、无限循环小数都可以化成 分数,因此它们都是 有理数
总结: 整数和分数统称为有理数.
有理数
整数
正整数 零
负整数
分数
正分数 负分数
有限小数和无限循环小数属于分数.
有理数还可以分为:
正整数
正有理数
正分数 有理数 零
负整数
负有理数
负分数
试一试 1.下列说法正确的是
B
整数集合:{ 分数集合:{
,1.414 213 56,
…} …}
有理数集合:{
…}
负有理数集合:{
…}
是不是所有的数都是有理数呢?
将两个边长为1的小正方形,沿图中红线剪开,
重新拼成一个大正方形,它的面积为2.
a
a
a
a
总结:
事实上, a 不能化为分数的形式, a是一个无限不循环小数,它的值是 1.414 213 562 373... ...
无限不循环小数叫做无理数.
你能举出一些无理数的例子吗?
小学学过的圆周率π是无限不循环小数,它的值 是3.141 592 653 589…,π是无理数.
正无理数 无理数
负无理数
无限不循环小数
试一试
1.下列说法正确的是 C
A、无理数包括正无理数、0和负无理数; B、3.1415926是无理数; C、- 是无理数 D、3.333 3 … 是无理数.
负有理数集合:{ 6, 1 ,-0.33,-3.141 592 6, …}
6
课堂小结:
课堂作业
伴你学:P7-8
家庭作业
1.伴你学:P9:问题导学; 2.补充习题:P6:2.2有理数与无理数 3.明天带刻度尺!!
A、正数和负数统称为有理数; B、整数和分数统称为有理数; C、有理数是指整数、分数、正数、负数和0 D、以上均不对.

七年级数学上册 第二章 有理数 数轴(第2课时)教案 (新版)苏科版

七年级数学上册 第二章 有理数 数轴(第2课时)教案 (新版)苏科版

2.3 数轴(2)1.会正确画出数轴,知道数轴的三要素;2.知道有理数和无理数都可以用数轴上的点表示,会用数轴上的点表示有理数,能说出数轴上的点所表示的数;3.会用数轴比较两个数的大小;4.初步感受数形结合的思想.1.用数轴上的点表示有理数,能说出数轴上的点所表示的数;2.用数轴比较两个数的大小.用数轴上的点表示有理数,用数轴比较两个数的大小.教学过程(教师) 学生活动点表示的数的大小关系:、5℃、-3℃、-2℃按从低到高的顺序排列.画出表示0、5、3-、2-的点,你能比较这几?出几个数,并在数轴上画出表示这几个数的点,个数的大小吗? 点的位置与它们所表示的数的大小有什么关比较下列各组数的大小: ; (2)102-和; 3; (4)3 0 1.5-、、. 如图,画出数轴,并用数轴上的点表示0、5、3-、2-. -3 < -2 < 0 < 5归纳得出:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于0,负数都小于0,正数大于负数.解:(1)5>0; (2)102-<; (3)2>一3; (4)30 1.5-<<.两个数的大小解:如图,在数轴上分别画出表示-3.5和-0.5的点A 、B . 因为点B 在点A 的右边,所以0.53.5-->.顺序连接起来:35 1.5.-, -, ,根据各点在数轴上的位置,得 13 1.502 5.2---<<<<< 出表示下列各数的点.并用“<”号将这些数顺序连接起来:4.5, 0.5, 4, 3.--点A 、B 、C 表示的3个数中,哪个最大、哪个A 和B 分别表示12-与34-,哪一个点离原点12-与34-哪一个数较大? 独立完成,课堂交流.回顾本节课的教学内容,从知识和方法两个层面进行总结.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的分类
根据有理数的定义,有理数包括整数和分数,即,或
结合有理数的两种不同
分类,体会分类思想.
渗透分类思想,加深对有理数的认识,初步体会数系扩张的过程.
课堂练,.
正数集合:{ …};
负数集合:{ …};
正有理数集合:{ …};
负有理数集合:{…}.
独立完成,课堂交流.
我们把能写成分数形式(m、n是整数,n≠0)的数叫做有理数.
想一想:小学里学过的有限小数和无限循环小数是有理数吗?
根据有理数定义,有理数可进行如下的分类:
,或
结合体会整数可化成分母为1的分数形式.
,,,.
有限小数和无限循环小数都可以化为分数,它们都是有理数.
引入有理数的定义,并按照定义说明整数、分数是有理数.通过将有限小数和无限循环小数转化为分数,说明有限小数和无限循环小数也是有理数,为有理数的分类做好铺垫.
教学课题
2.2有理数与无理数
课型
新授
本课题教时数:1本教时为第1教时
教学目标:
1.理解有理数的意义和会对有理数进行分类;
2.了解无理数的意义.
教学重点、难点:1.有理数的意义和分类; 2.无理数的意义.
有理数的分类,区分有理数和无理数.
教学方法与手段:
教学过程:教师活动
学生活动
设计意图
有理数
我们学过整数(正整数、负整数、零)和分数(正分数、负分数).实际上,所有整数都可以写成分母为1的分数的形式.如
正数集合:{
…};负数集合:{ …};正有理数集合:{ …};
负有理数集合:{ …}.
当堂巩固所学知识.
课堂小结:
谈谈你这一节课有哪些收获.
回顾本节的教学内容,从知识和方法两个层面进行总结.
归纳知识体系,提炼思想和方法.
授后小记:
授课日期 月 日
无理数
议一议:是不是所有的数都是有理数呢?
将两个边长为1的小正方形,沿图中红线剪开,重新拼成一个大正方形,它的面积为2.
如果大正方形的边长为a,那么a2=2.a是有理数吗?
事实上,a不能写成分数形式 (m、n是整数,n≠0),a是无限不循环小数,它的值是1.414 213 562 373….
无限不循环小数叫做无理数.
小学学过的圆周率π是无限不循环小数,它的值是3.141 592 653 589…,π是无理数.
此外,像0.101 001 000 1…、-0.101 001 000 1…这样的无限不循环小数也是无理数.
通过拼图,探索,让学生感受a不能化为分数的形式,引出a这个无限不循环小数,从而得到无理数的定义.通过π进一步说明无理数的确存在.根据无理数的定义,我们还可以构造像0.101 001 000 1…、-0.101 001 000 1…这样的无理数.
相关文档
最新文档