555 振荡器 工作原理
555振荡电路的工作原理

555振荡电路的工作原理
555振荡电路主要由比较器、RS触发器、输出级、电源等组成,其工作原理如下:
1. 稳态初始:引脚RESET为高电平,将RS触发器复位,输出Q为低电平,输出Q为高电平。
2. 充电过程:由于电容C1放电时电压较低,触发电压(VTH)较高,此时引脚THRES为低电平。
电阻R1和电阻R2的分压作用使比较器引脚TRIG为高电平。
由于RESET引脚为高电平,RS触发器复位,Q输出为低电平,Q输出为高电平。
因此,电容C1开始充电,直到电压上升到比较器引脚THRES 的触发电压。
3. 变化过程:当电容C1充电至比较器引脚THRES的触发电压时,比较器引脚THRES变为高电平,触发比较器,使RS 触发器置位。
Q输出为高电平,Q输出为低电平。
4. 放电过程:当RS触发器置位后,引脚THRES为高电平,比较器引脚TRIG变为低电平,RS触发器保持置位状态。
电容C1开始放电,直到电压下降到比较器引脚TRIG的触发电压。
5. 变化过程:当电容C1放电至比较器引脚TRIG的触发电压时,比较器引脚TRIG变为低电平,触发比较器,使RS触发器复位。
Q输出为低电平,Q输出为高电平。
通过充放电过程的反复循环,555振荡电路产生稳定的方波或
单稳态脉冲输出。
可通过调整电阻和电容的值来改变振荡频率。
555多谐振荡器工作原理

555多谐振荡器工作原理
555多谐振荡器是一种常见的电子电路,它可以产生多个频率
的方波信号。
它的工作原理如下:
1. 在555多谐振荡器中,主要使用了一种叫做NE555的集成
电路。
2. NE555集成电路内部有个双稳态多谐振荡器电路,它由电
流电压比较器、RS触发器、电子开关组成。
3. 多谐振荡器的频率取决于电阻和电容的数值。
4. 当触发电压小于电阻分压电压时,RS触发器被设置为置"1"。
5. 电路中的电子开关开始导通,开始放电,并且RS触发器从置"1"到置"0"。
同时电容开始充电。
6. 当电压达到峰值电压(2/3Vcc)时,比较器会将RS触发器重
新置"1"。
7. 电子开关关闭,电容开始放电。
8. 当电压降为1/3Vcc时,RS触发器再次置"0",电子开关导通,电容再次充电。
9. 这个过程就会不断重复,形成周期性的方波信号。
10. 方波信号的频率可以通过改变电阻和电容的数值来调节。
总结起来,555多谐振荡器通过使用内部的双稳态多谐振荡器电路,利用电阻和电容的充放电过程产生周期性的方波信号。
方波信号的频率可以通过调节电阻和电容的数值来改变。
555多谐振荡器的工作原理 电子技术创新实训 电子实训

多谐振荡器的工作原理
多谐振荡器是能产生矩形波的一种自激振荡器电路,由于矩形波中除基波外还含有丰富的高次谐波,故称为多谐振荡器。
多谐振荡器没有稳态,只有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换,故又称它为无稳态电路。
由555定时器构成的多谐振荡器如图1所示,R1,R2和C是外接定时元件,电路中将高电平触发端(6脚)和低电平触发端(2脚)并接后接到R2和C的连接处,将放电端(7脚)接到R1,R2的连接处。
由于接通电源瞬间,电容C来不及充电,电容器两端电压uc为低电平,小于(1/3)Vcc,故高电平触发端与低电平触发端均为低电平,输出uo为高电平,放电管VT截止。
这时,电源经R1,R2对电容C 充电,使电压uc按指数规律上升,当uc上升到(2/3)Vcc时,输出uo为低电平,放电管VT导通,把uc从(1/3)Vcc 上升到(2/3)Vcc这段时间内电路的状态称为第一暂稳态,其维持时间TPH的长短与电容的充电时间有关。
充电时间常数T充=(R1+R2)C。
由于放电管VT导通,电容C通过电阻R2和放电管放电,电路进人第二暂稳态.其维持时间TPL的长短与电容的放电时间有关,放电时间常数T放=R2C0随着C的放电,uc下降,当uc下降到(1/3)Vcc 时,输出uo。
为高电平,放电管VT截止,Vcc再次对电容c充电,电路又翻转到第一暂稳态。
不难理解,接通电源后,电路就在两个暂稳态之间来回翻转,则输出可得矩形波。
电路一旦起振后,uc电压总是在(1/3~2/3)Vcc 之间变化。
图1(b)所示为工作波形。
555。
555多谐振荡器电路原理

555多谐振荡器电路原理
555多谐振荡器电路原理主要是指由一个555定时器晶体管组成的电路,它可以按照其固定的频率和振幅来产生一个谐波振荡电压。
该电路也称为霍尔-罗伯逊振荡器电路,它包括一个555定时器晶体管,两个电容,一个电阻和一个振荡器电路。
从电路上看,它可以用来给电路提供一个定时脉冲电压输出,这个脉冲输出电压可以根据振荡器电路的频率和振幅来改变。
该电路主要由四部分组成,主要包括:
(1) 555定时器芯片:该芯片包括一个触发输入和一个重置输入,这两个输入可以控制电路的启动和停止。
(2) 两个电容:这两个电容可以用来累计负载的电荷,调节输出的振幅。
(3) 一个电阻:该电阻用来控制电路的触发频率。
(4) 振荡器电路:该电路可以用来控制输出的频率和振幅。
该电路的工作原理如下:
1、首先,触发输入端的电压比重置输入端的电压高,555定时器晶体管就会被触发,开始工作;
2、电路中的两个电容会累积电荷,引起电压升高,达到一定水平后,555的输出端就会被重置;
3、重置后,电容就释放到电阻中,电路就会再次从头开始工作;
4、这样一个循环,一直持续下去,可以产生出一个定时的谐波振荡电压,供给其他电路使用。
通过以上对555多谐振荡器电路原理的介绍,我们可以知道,该电路可以用来产生一个定时的谐波振荡电压,为其他电路提供电源。
555定时器构成的多谐振荡器的工作原理

555定时器构成的多谐振荡器的工作原理介绍如下:
555定时器的多谐振荡器由一个555定时器和一些电容和电阻构成。
当电路上电时,C1和C2电容器开始充电,直到它们的电压达到555定时器的两个比较器阈值电压(通常为2/3Vcc和1/3Vcc)时,555定时器的两个比较器的输出状态会发生改变。
当比较器1的输出变为高电平时,输出Q1也变成高电平,导通电容C1上的二极管D1,使C1快速放电,同时将555定时器的撤销引脚(pin4)拉低,导致555定时器的状态被重置。
当电容C1再次开始充电时,它会在达到比较器1阈值电压时触发比较器2,将555定时器的输出Q2变为低电平,导致电容C2开始放电。
当电容C2放电时,又会导致比较器2的输出变为高电平,将555定时器的输出Q2变为高电平,电容C1开始放电,电路再次回到初始状态。
这个循环将不断重复,产生一个由C1和C2共同决定的频率。
由于电容C1和C2的值可以不同,因此可以产生不同的频率。
此外,通过使用不同的电容和电阻组合,可以产生多个频率的波形,从而形成一个多谐振荡器。
555多谐振荡器电路原理

555多谐振荡器电路原理555多谐振荡器电路原理555多谐振荡器电路是一种常用的电子元件,它可以产生多种频率的信号,广泛应用于电子设备中。
其原理是基于555定时器的工作原理,通过改变电容和电阻的值来改变输出信号的频率。
555定时器是一种非常常见的集成电路,它由比较器、RS触发器和输出级组成。
当输入端有高电平信号时,比较器输出为低电平,RS触发器将Q输出为高电平。
当输入端有低电平信号时,比较器输出为高电平,RS触发器将Q输出为低电平。
通过这种方式可以实现定时功能。
在555多谐振荡器中,我们需要使用其中的两个比较器来实现正弦波形和方波形的产生。
具体实现方法如下:1. 正弦波形产生正弦波形产生需要使用RC积分环路来实现。
在此过程中,通过改变RC积分环路中的R和C值可以改变正弦波形的频率。
当555定时器输出为高电平时,C1充放一次,并且通过R2和R3使得C1充放时间相等。
当定时器输出为低电平时,C1通过R2和R3放电,此时RC积分环路中的电压下降,当电压降至1/3Vcc时,比较器2的输出变为低电平,RS触发器将Q输出为低电平。
此时C1开始充放,当电压升至2/3Vcc时,比较器1的输出变为高电平,RS触发器将Q输出为高电平。
这样就完成了一个完整的正弦波形周期。
2. 方波形产生方波形产生需要使用比较器和反相器来实现。
在此过程中,通过改变R和C值可以改变方波形的频率。
当555定时器输出为高电平时,比较器1输出为高电平,反相器输出为低电平。
当定时器输出为低电平时,比较器2输出为低电平,反相器输出为高电平。
这样就完成了一个完整的方波形周期。
总结555多谐振荡器是一种常用的信号发生器,在工业、医疗、军事等领域都有广泛应用。
其原理是基于555定时器的工作原理,并通过改变RC积分环路和反相器中的元件值来改变信号频率和波形类型。
熟练掌握555多谐振荡器原理和实现方法,对于电子工程师来说是非常重要的技能。
555多谐振荡器工作原理

555多谐振荡器工作原理555多谐振荡器是一种常用的多谐振荡器,由于其简单稳定的特点,在各种电路中得到了广泛的应用。
本文将介绍555多谐振荡器的工作原理和实现方法。
1. 555多谐振荡器的工作原理555多谐振荡器是一种基于555定时器的多谐振荡器,其工作原理可以分为以下几个步骤:1) 在555定时器的第一、第二引脚之间连接一个电阻网络,通过改变电阻值可以调节振荡器的频率。
2) 在555定时器的第二、第三引脚之间连接一个电容,通过改变电容值可以调节振荡器的频率。
3) 当电容器充电到2/3 Vcc时,555定时器的输出为低电平,电容器开始放电,直到电容器电压降到1/3 Vcc时,555定时器的输出变为高电平,电容器开始充电。
这个过程不断重复,从而产生了振荡信号。
4) 通过改变电阻值和电容值,可以调节振荡器的频率和波形。
2. 555多谐振荡器的实现方法555多谐振荡器的实现方法比较简单,只需要按照下面的步骤进行即可:1) 连接555定时器的第一、第二引脚,接入电阻网络。
2) 连接555定时器的第二、第三引脚,接入电容。
3) 连接555定时器的第六引脚,接入电源正极。
4) 连接555定时器的第一引脚,接入电源负极。
5) 连接555定时器的第五引脚,接入输出负载,如LED等。
6) 通过改变电阻值和电容值,可以调节振荡器的频率和波形。
3. 555多谐振荡器的应用555多谐振荡器在各种电路中都有广泛的应用,下面列举几个常见的应用:1) 闪光灯电路:通过连接一个放电管和一个电容,可以实现闪光灯的效果。
2) 蜂鸣器电路:通过连接一个压电陶瓷蜂鸣器,可以实现声音的输出。
3) LED闪烁电路:通过连接一个LED和一个电容,可以实现LED 的闪烁效果。
4) 电子钟电路:通过连接数个555多谐振荡器,可以实现电子钟的功能。
555多谐振荡器是一种简单稳定的多谐振荡器,具有广泛的应用前景。
希望本文能够对读者理解555多谐振荡器的工作原理和实现方法有所帮助。
555电路构成的多谐振荡器的工作原理

555电路构成的多谐振荡器的工作原理1. 介绍多谐振荡器是一种能够在多个频率下产生高质量波形的电路,它在电子工程领域中有着广泛的应用。
其中,555电路构成的多谐振荡器因为其简单稳定的特点,被广泛应用于实际工程中。
2. 555电路的基本工作原理555电路是一种集成电路,在各种振荡器电路中有着广泛的应用。
它主要由一个比较器和一个SR触发器组成。
当电路的输入达到一定的电平以后,触发器的状态就会发生改变,产生一个输出脉冲。
此时,比较器会对此脉冲进行比较,并且产生相应的电平改变。
3. 多谐振荡器的构成多谐振荡器是通过改变电路中的电容值和电阻值来调整振荡频率的。
其实现过程主要涉及到一个RC环路和一个比较器。
555电路的基本工作原理决定了其具有可调节频率的功能,因此我们只需要加入适当的RC组合即可实现多谐振荡器的构造。
4. 555电路构成的多谐振荡器的工作原理在555电路构成的多谐振荡器中,通过改变电容C和电阻R的数值,可以调整振荡的频率。
当输入信号达到一定的电平以后,触发器的状态会发生改变,此时,比较器会产生一个输出信号,这个信号的频率与C和R的数值有关。
因此,通过改变C和R的数值即可改变输出信号的频率,从而实现多谐振荡器的调节。
5. 多谐振荡器的应用多谐振荡器在实际工程中具有广泛的应用,例如在调音台、通信设备中就有着应用。
通过调整多谐振荡器的参数,可以控制电路的振荡频率。
这种特性使得多谐振荡器可以用于电子设备的数字信号处理、模拟信号产生等方面。
总结:555电路构成的多谐振荡器的工作原理是通过改变RC组合的数值来控制电路的振荡频率。
555电路本身就拥有经典的可调频功能,这使得555电路构成的多谐振荡器具有了更好的调节性和应用性,适合在通信、音频、电视、测量仪器等领域中得到广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
555多谐振荡器工作原理FROM维库
集成555定时器多谐振荡器
1.多谐振荡器
的工作原理
多谐振荡器
是能产生矩形波的一种自激振荡器电路,由于矩形波中除基波外还含有丰富的高次谐波,故称为多谐振荡器。
多谐振荡器没有稳态,只有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换,故又称它为无稳态电路。
由555定时器
构成的多谐振荡器如图1所示,R1,R2和C是外接定时元件,电路中将高电平触发端(6脚)和低电平触发端(2脚)并接后接到R2和C的连接处,将放电端(7脚)接到R1,R2的连接处。
由于接通电源
瞬间,电容C来不及充电,电容器
两端电压uc为低电平,小于(1/3)Vcc,故高电平触发端与低电平触发端均为低电平,输出uo为高电平,放电管
VT截止。
这时,电源经R1,R2对电容C充电,使电压uc按指数规律上升,当uc上升到(2/3)Vcc 时,输出uo为低电平,放电管VT导通,把uc从(1/3)Vcc 上升到(2/3)Vcc这段时间内电路的状态称为第一暂稳态,其维持时间TPH的长短与电容的充电时间有关。
充电时间常数T充=(R1+R2)C。
由于放电管VT导通,电容C通过电阻
R2和放电管放电,电路进人第二暂稳态.其维持时间TPL的长短与电容的放电时间有关,放电时间常数T 放=R2C0随着C的放电,uc下降,当uc下降到(1/3)Vcc时,输出uo。
为高电平,放电管VT截止,Vcc再次对电容c充电,电路又翻转到第一暂稳态。
不难理解,接通电源后,电路就在两个暂稳态之间来回翻转,则输出可得矩形波。
电路一旦起振后,uc电压总是在(1/3~2/3)Vcc 之间变化。
图1(b)所示为工作波形。
图1 555定时器构成的多谐振荡器电路及工作波形
2.叮咚门铃
如图2所示是一种能发出“叮、咚”声门铃的电路原理图。
它的音质优美逼真,装调简单容易、成本较低,图中的IC便是集成555定时器,它构成多谐振荡器。
按下按钮SB(装在门上),振荡器振荡,扬声器
发出“口丁”的声音。
与此同时,电源通过二极管
VD1给c1充电。
放开按钮时,c1便通过电阻R1放电,维持振荡。
但由于SB的断开,电阻R2被串入电路,使振荡频率有所改变,振荡频率变小,扬声器发出“咚”的声音。
直到C1上的电压放到不能维持555振荡为止,即4脚变为低电平,3脚输出为零。
“咚”声余音的长短可通过改变C1的数值来改变。
3.旋光彩灯控制电路
旋光彩灯控制电路如图3所示,电路中的IC1 555组成多谐振荡器,它可以产生可调的
图2 叮咚门铃的电路原理图
时钟脉冲信号,改变可调电位器
RP可改变时钟脉冲信号的频率。
IC2是由CD4017组成的计数器
,CD40l7是十进制计数器,可作为十分频使用,并具有译码输出功能。
CD4017的引脚图如图4所示,其功能表见表1。
图3 旋光彩灯控制电路
图4 CD4017引脚图表1 CD4017的功能表
当IC1输出的时钟信号加到IC2的CP端时,IC2的输出端Q0~Q9依次出现高电平,并驱动相应的VT1~VT10 。
依次导通,发光二极管
VD1~VD10.也随着依次点亮,如果将发光二极管VD1~VD2。
沿着圆周首尾相接排列,则会给人一种旋转发光的感觉,调节RP可使旋转发光的速度发生变化。