2020年广东省东莞市东华初级中学中考数学模拟试卷及答案解析

合集下载

广东省2020年东莞市中考数学模拟试题(含答案)

广东省2020年东莞市中考数学模拟试题(含答案)

广东省2020年东莞市中考数学模拟试题含答案一、选择题(本大题10小题,每小题3分,共30分)1.﹣2的相反数是()A. 2B.-2C.12D.122.下列“慢行通过,禁止行人通行,注意危险,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A B C D3.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A. 0.67×10-5B. 67×10-6C.6.7×10-6D.6.7×10-54.下列运算正确的是()A. 2a+3b=5abB. 5a﹣2a=3aC. a2•a3=a6D. (a+b)2=a2+b2 5.一组数据6,﹣3,0,1,6的中位数是()A. 0B. 1C.2D. 66.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A. 30°B. 35°C. 40°D. 45°7.不等式组的解集在数轴上表示正确的是()A B C D8.一个几何体的三视图如图所示,则这个几何体是()A. 三棱锥B. 三棱柱C. 圆柱D. 长方体9.如图,在⊙O 中,=,∠AOB=50°,则∠ADC 的度数是( )A .50°B .40°C .30°D .25°10.已知二次函数c bx ax y ++=2的图象如下面左图所示,则一次函数c ax y +=的图象大致 是( )二、填空题(本大题6小题,每小题4分,共24分) 11.在函数y=中,自变量x 的取值范围是______________.12.分解因式:2a 2﹣4a+2= . 13.计算:18−212等于 . 14.圆心角为120°的扇形的半径为3,则这个扇形的面积为 。

15.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 . 16.如图所示,双曲线ky x=经过Rt △BOC 斜边上的点A,且满足23AO AB =,与BC 交于点D, 21BOD S ∆=,求k= 三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程组.18.先化简,再求值:÷(+ 1),其中x 满足022=--x x19.如图,BD 是矩形ABCD 的一条对角线.(1)作BD 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,垂足为点O .(要求用尺规作图,保留作图痕迹,不要求写作法); (2)求证:DE=BF .四、解答题(二)(本大题3小题,每小题7分,共21分)20.某中学在全校学生中开展了“地球—我们的家园”为主题的环保征文比赛,评选出一、二、三等奖和优秀奖。

2020年广东省东莞市名校中考模拟数学试题含答案

2020年广东省东莞市名校中考模拟数学试题含答案

2020年广东省东莞市名校中考模拟数学试题时间120分钟满分120分一、选择题:(每题3分,共30分)1.﹣2的绝对值是()A. 2 B.﹣2 C. 0 D.2.下列计算正确的是()A. a3+a2=a5 B. a3•a2=a6 C.(a2)3=a6 D.3.人体中成熟红细胞的平均直径为0.0000077m,用科学记数法表示为() A. 7.7×10﹣5m B. 77×10﹣6m C. 77×10﹣5m D. 7.7×10﹣6m4.如图是由5个大小相同的正方体组成的几何体,它的主视图是()A. B. C. D.5.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是() A. 5 B. 6 C. 11 D. 166.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这五个数据的众数和中位数分别是()A. 9,8 B. 9,7 C. 8,9 D. 9,97.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A. 15° B. 20° C. 25° D. 30°8.一元二次方程x2=2x的解是()A. x=2 B. x1=0,x2=2 C. x1=0,x2=﹣2 D.此方程无解9.如图,菱形ABCD中,AC=8,BD=6,则菱形的面积为()A. 10 B. 20 C. 48 D. 2410.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A. B. C. D.二.填空题(每题4分,共24分)11.函数:中,自变量x的取值范围是.12.化简:(a+b)(a﹣b)+(a﹣b)2= .13.五边形的内角和为.14.因式分解:x3﹣x= .15.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为.16.如图,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是(结果保留π).三、解答题:(每题6分,共18分)17.计算:(﹣1)2015+()0+÷tan45°.18.解不等式组把解集在数轴上表示出来,并写出解集中的整数解.19.已知△ABC中,∠A=25°,∠B=40°.(1)作AC的垂直平分线与AB交于点O(要求尺规作图,保留作图痕迹,不必写作法)(2)以点O为圆心,AO为半径作⊙O,判断BC与⊙O的位置关系(不用证明)四.解答题:(每题7分,共21分)20.2014年5月,我市某中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加演讲比赛的学生共有人,并把条形图补充完整;(2)扇形统计图中,n= ;C等级对应扇形的圆心角为度;(3)学校欲从获A等级的学生(用甲、乙、丙、丁表示)中随机选取2人参加演讲比赛,请用列表法或树形图法,求抽到甲参加市比赛的概率.21.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的数量多450千克.(1)该种干果的第一次进价是每千克多少元?(2)如果超市按每千克16元的价格把第二批干果卖完,请预算超市可以盈利多少元?22.如图,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79,sin22°≈0.37,cos22°≈0.93,sin37°≈0.60,cos37°≈0.80)五、解答题:(每题9分,共27分)23.如图,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣9x+18=0的两根(OA>OC),BE=5,tan∠ABO=(1)求点A,C的坐标;(2)求AB的长;(3)若反比例函数y=的图象经过点E,求k的值.24.如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形PQMN,使点Q落在线段AE上,点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN 的面积最大?并求出其最大值.25.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.参考答案一、选择题:(每题3分,共30分)1.故选:A.2.故选C.3.故选D.4.故选:D.5.故选:C.6.故选A.7.故选:C.8.故选B9.故选D.10.故选:C.二.填空题(每题4分,共24分)11.故答案为x≠﹣1.12.故答案是:2a2﹣2ab.13.故答案为:540°.14.故答案为:x(x+1)(x﹣1)15.故答案为:6.16.4﹣.三、解答题:(每题6分,共18分)17.解:原式=﹣1+1+2÷1=2.18.解:∵解不等式①得:x<1,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x<1,在数轴上表示不等式组的解集为:,不等式组的整数解为﹣1,0.19.解:(1)如图,直线l为所求;(2)⊙O为所求.BC与⊙O相切.理由如下:连结OC,如图,∵直线l垂直平分AC,∴∠A=∠OCA=25°,∴∠BOC=∠A+∠OCA=50°,∵∠B=40°,∴∠BCO=180°﹣∠BOC﹣∠B=90°,∴OC⊥BC,∴BC为⊙O的切线.四.解答题:(每题7分,共21分)20.解:(1)参加演讲比赛的学生共有:12÷30%=40(人),则B等级的人数是:40﹣4﹣16﹣12=8(人),故答案为40,如图所示:(2)C所占的百分比:×100%=40%.C等级对应扇形的圆心角是:360×40%=144°,故答案为40,144;(3)设A等级的用a表示,其他的几个学生用b、c、d表示.共有12种情况,其中小明参加的情况有6种,则P(小明参加比赛)==.21.解:(1)设第一次的进价为x元,由题意得:﹣=450,解得:x=10,经检验:x=10是原分式方程的解,答:该种干果的第一次进价是每千克10元;(2)第二批进的干果数量:9000÷[(1+20%)×10]=75(千克),[16﹣(1+20%)×10]×75=300(元),答:超市可以盈利300元.22.解:如图,延长BC交AN于点D,则BC⊥AN于D.在Rt△ACD中,∵∠ADC=90°,∠DAC=30°,∴CD=AC=10,AD=CD=10.在Rt△ABD中,∵∠ADB=90°,∠DAB=68°,∴∠B=22°,∴AB=≈≈46.81,BD=AB•cos∠B≈46.81×0.93=43.53,∴BC=BD﹣CD=43.53﹣10=33.53,∴救生船到达B处大约需要:33.53÷20≈1.7(小时).答:救生船到达B处大约需要1.7小时.五、解答题:(每题9分,共27分)23.解:(1)方程x2﹣9x+18=0,变形得:(x﹣3)(x﹣6)=0,解得:x=3或x=6,∴OA=6,OC=3,则A(6,0),C(﹣3,0);(2)∵在Rt△AOB中,tan∠ABO=,∴=,∴OB=8,根据勾股定理得:AB==10;(3)过E作EF⊥x轴,交x轴于点F,∵∠EAF=∠BAO,∠EFA=∠BOA=90°,∴△AEF∽△ABO,∵OB=8,AB=10,AE=AB﹣BE=10﹣5=5,∴=,即=,∴EF=4,即E纵坐标为4,设直线AB解析式为y=mx+n,把A(6,0),B(0,8)代入得:,解得:,∴直线AB解析式为y=﹣x+8,把y=4代入得:x=3,即E(3,4),把E坐标代入反比例解析式得:k=12,则k的值为12.24.(1)证明:∵四边形ABCD是矩形,∴AD=BC,AB=DC.由折叠可得:EC=BC,AE=AB,∴AD=EC,AE=DC.在△DEC和△EDA中,,∴△DEC≌△EDA.(2)解:∵四边形ABCD是矩形,∴∠DCA=∠BAC.由折叠可得∠EAC=∠BAC,∴∠EAC=∠DCA,∴AF=CF.设DF=x,则AF=CF=DC﹣DF=AB﹣DF=4﹣x.在Rt△ADF中,∵AD2+DF2=AF2,∴32+x2=(4﹣x)2,解得:x=.∴DF的值为.(3)解:过点E作EH⊥AC于点H,交QP于点G,设EP=x,如图2,则有EG⊥PQ.在Rt△AEC中,∵AE=AB=4,EC=BC=AD=3,∴AC=5.∵S△AEC=AE•EC=AC•EH,∴EH===.∵四边形PQMN是矩形,∴PQ∥MN,∴△EPQ∽△ECA,∴==,∴==,∴EG=x,PQ=x,∴GH=EH﹣EG=﹣x,∴S矩形PQMN=PQ•GH=x•(﹣x)=﹣=﹣(x2﹣3x)=﹣[(x﹣)2﹣]=﹣(x﹣)2+3.∵﹣<0,∴当x=时,S矩形PQMN最大,最大值为3.∴当线段PE的长为时,矩形PQMN的面积最大,最大值为3.25.解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A (3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)存在.如图1,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0),∴AB=4,OA=3,OC=4,∴AC==5,∵当点P运动到B点时,点Q停止运动,AB=4,∴AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=|﹣x|,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得 x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0),说明点E在x轴的负半轴上;②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,1.当E在A点左边时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).2.当E在A点右边时,∵OA+AE=3+4=7,∴E(7,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).(3)四边形APDQ为菱形,D点坐标为(﹣,﹣).理由如下:如图2,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形,∵FQ∥OC,∴,∴,∴AF=,FQ=,∴Q(3﹣,﹣),∵DQ=AP=t,∴D(3﹣﹣t,﹣),∵D在二次函数y=x2﹣x﹣4上,∴﹣=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴D(﹣,﹣).。

2019-2020东莞市数学中考模拟试题(带答案)

2019-2020东莞市数学中考模拟试题(带答案)

2019-2020东莞市数学中考模拟试题(带答案)2019-2020东莞市数学中考模拟试题(带答案)⼀、选择题1.如果⼀组数据6、7、x 、9、5的平均数是2x ,那么这组数据的⽅差为() A .4B .3C .2D .12.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣13.如图,若锐⾓△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为()A .①②B .②③C .①②③D .①③4.如图,直线l 1∥l 2,将⼀直⾓三⾓尺按如图所⽰放置,使得直⾓顶点在直线l 1上,两直⾓边分别与直线l 1、l 2相交形成锐⾓∠1、∠2且∠1=25°,则∠2的度数为()A .25°B .75°5.我们将在直⾓坐标系中圆⼼坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是()A .6B .8C .10D .126.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.57.不等式组213312x x +??+≥-?<的解集在数轴上表⽰正确的是()A .B .C .D .8.分式⽅程()()31112x x x x -=--+的解为()A .1x =B .2x =C .1x =-D .⽆解9.下列计算错误的是()D .﹣1.58÷(﹣1.5)7=﹣1.510.在全民健⾝环城越野赛中,甲⼄两选⼿的⾏程y (千⽶)随时间(时)变化的图象(全程)如图所⽰.有下列说法:①起跑后1⼩时内,甲在⼄的前⾯;②第1⼩时两⼈都跑了10千⽶;③甲⽐⼄先到达终点;④两⼈都跑了20千⽶.其中正确的说法有()A .1 个B .2 个C .3 个D .4个11.下列各式化简后的结果为2 的是() A 6 B 12C 18D 3612.8×200=x+40 解得:x=120答:商品进价为120元.故选:B .【点睛】此题考查⼀元⼀次⽅程的实际运⽤,掌握销售问题的数量关系利润=售价-进价,建⽴⽅程是关键.⼆、填空题13.已知a,b,c是△ABC的三边长,a,b满⾜|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.14.如果a是不为1的有理数,我们把11a-称为a的差倒数如:2的差倒数是1112,-1的差倒数是111(1)2=--,已知14a=,2a是1a的差倒数,3a是2a的差倒数,4a是3a的差倒数,…,依此类推,则2019a=___________.15.⼀列数123,,,a a a……na,其中1231211111,,,,111na a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.16.关于x的⼀元⼆次⽅程2310ax x--=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是___________17.已知关于x的⼀元⼆次⽅程mx2+5x+m2﹣2m=0有⼀个根为0,则m=_____.18.等腰三⾓形⼀腰上的⾼与另⼀腰的夹⾓的度数为20°,则顶⾓的度数是.19.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为⼤于﹣4⼩于2的概率是_____.20.已知M、N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.三、解答题21.如图,AD是ABC的中线,AE BC∥,BE交AD于点F,F是AD的中点,连接EC.(1)求证:四边形ADCE是平⾏四边形;(2)若四边形ABCE的⾯积为S,请直接写出图中所有⾯积是13S的三⾓形.22.“安全教育平台”是中国教育学会为⽅便学长和学⽣参与安全知识活动、接受安全提醒的⼀种应⽤软件.某校为了了解家长和学⽣参与“防溺⽔教育”的情况,在本校学⽣中随机抽取部分学⽣作调查,把收集的数据分为以下4类情形:A.仅学⽣⾃⼰参请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学⽣;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆⼼⾓的度数;(3)根据抽样调查结果,估计该校2000名学⽣中“家长和学⽣都未参与”的⼈数.23.某⼩区响应济南市提出的“建绿透绿”号召,购买了银杏树和⽟兰树共150棵⽤来美化⼩区环境,购买银杏树⽤了12000元,购买⽟兰树⽤了9000元.已知⽟兰树的单价是银杏树单价的1.5倍,那么银杏树和⽟兰树的单价各是多少?24.4⽉18⽇,⼀年⼀度的“风筝节”活动在市政⼴场举⾏,如图,⼴场上有⼀风筝A,⼩江抓着风筝线的⼀端站在D处,他从牵引端E测得风筝A的仰⾓为67°,同⼀时刻⼩芸在附近⼀座距地⾯30⽶⾼(BC=30⽶)的居民楼顶B处测得风筝A的仰⾓是45°,已知⼩江与居民楼的距离CD=40⽶,牵引端距地⾯⾼度DE=1.5⽶,根据以上条件计算风筝距地⾯的⾼度(结果精确到0.1⽶,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).25.某公司销售两种椅⼦,普通椅⼦价格是每把180元,实⽊椅⼦的价格是每把400元.(1)该公司在2019年第⼀⽉销售了两种椅⼦共900把,销售总⾦额达到了272000元,求两种椅了各销售了多少把?(2)第⼆⽉正好赶上市⾥开展家俱展销活动,公司决定将普通椅⼦每把降30元后销售,实⽊椅⼦每把降价2a%(a>0)后销售,在展销活动的第⼀周,该公司的普通椅⼦销售量⽐上a%:实⽊椅⼦的销售量⽐第⼀⽉全⽉实⽊椅⼦的销售量多了a%,这⼀周两种椅⼦的总销售⾦额达到了251000元,求a的值.【参考答案】***试卷处理标记,请不要删除⼀、选择题1.A解析:A【解析】分析:先根据平均数的定义确定出x的值,再根据⽅差公式进⾏计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的⽅差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和⽅差的定义.平均数是所有数据的和除以数据的个数.⽅差是⼀组数据中各数据与它们的平均数的差的平⽅的平均数.2.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利⽤同分母分式的减法法则计算,再⽤分式的乘法法则计算即可得到结果.【详解】111x x++-=111xx x+-g=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.3.D 解析:D【解析】如图,连接BE,根据圆周⾓定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐⾓三⾓形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠Ctan∠C>tan∠D,故③正确;故选D.【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平⾏线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平⾏线的性质,运⽤两直线平⾏,同位⾓相等是解答此题的关键.5.A解析:A【解析】试题解析:∵直线l:3与x轴、y轴分别交于A、B,∴B(0,3∴3在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=122x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.⼀次函数图象上点的坐标特征.6.B解析:B【解析】【分析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=3.故选B.7.A解析:A 【解析】【分析】先求出不等式组的解集,再在数轴上表⽰出来即可.【详解】213312x x +??+≥-?<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表⽰为:,故选A .【点睛】本题考查了解⼀元⼀次不等式组和在数轴上表⽰不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.8.D分析:分式⽅程去分母转化为整式⽅程,求出整式⽅程的解得到x 的值,经检验即可得到分式⽅程的解.详解:去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式⽅程⽆解.故选D .点睛:本题考查了分式⽅程的解,始终注意分母不为0这个条件.9.D解析:D 【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算⽅法,以及零指数幂的运算⽅法,逐项判定即可.详解:∵a 2÷a 0?a 2=a 4,∴选项A 不符合题意;∵a 2÷(a 0?a 2)=1,∴选项B 不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C 不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D 符合题意.故选D .点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算⽅法,以及零指数幂的运算⽅法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的⼀个字母,其指数是1,⽽不是0;③应⽤同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.10.C解析:C 【解析】【分析】【详解】解:①由纵坐标看出,起跑后1⼩时内,甲在⼄的前⾯,故①正确;②由横纵坐标看出,第⼀⼩时两⼈都跑了10千⽶,故②正确;③由横纵坐标看出,⼄⽐甲先到达终点,故③错误;④由纵坐标看出,甲⼄⼆⼈都跑了20千⽶,故④正确;故选C .11.C解析:C 【解析】A 不能化简;BC ,故正确;D ,故错误;故选C .点睛:本题主要考查⼆次根式,熟练掌握⼆次根式的性质是解题的关键.12.⽆⼆、填空题13.7【解析】【分析】根据⾮负数的性质列式求出ab 的值再根据三⾓形的任意两边之和⼤于第三边两边之差⼩于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满⾜|a ﹣7|+(b ﹣1)2=0∴a﹣7解析:7 【解析】【分析】根据⾮负数的性质列式求出a 、b 的值,再根据三⾓形的任意两边之和⼤于第三边,两边之差⼩于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满⾜|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,⼜∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查⾮负数的性质:偶次⽅,解题的关键是明确题意,明确三⾓形三边的关系.14.【解析】【分析】利⽤规定的运算⽅法分别算得a1a2a3a4…找出运算结果的循环规律利⽤规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4?三个数依次不断循环∵2019÷3=673∴a2019解析:34. 【解析】【分析】利⽤规定的运算⽅法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利⽤规律解决问题. 【详解】∵a 1=4 a 2= 11111143a ==---, a 3=211311413a ?? ??==---, a 4=31143114a ==--, …数列以4,?1334,三个数依次不断循环,∵2019÷3=673,∴a 2019=a 3=34,故答案为:34.【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进⼀步利⽤规律解决问题【详解】解:…由此可以看出三个数字⼀循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进⼀步利⽤规律解决问题.【详解】解:1234123 11111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字⼀循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112.故答案为20112.考点:规律性:数字的变化类.16.解析:94-解:∵关于x 的⼀元⼆次⽅程ax 2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a >? 94设f (x )=ax 2-3x-1,如图,∵实数根都在-1和0之间,∴-1<?32a-<0,∴a <?32,且有f (-1)<0,f (0)<0,即f (-1)=a×(-1)2-3×(-1)-1<0,f (0)=-1<0,解得:a <-2,∴?94<a<-2,故答案为?94<a<-2.17.2【解析】【分析】根据⼀元⼆次⽅程的定义以及⼀元⼆次⽅程的解的定义列出关于m的⽅程通过解关于m的⽅程求得m的值即可【详解】∵关于x的⼀元⼆次⽅程mx2+5x+m2﹣2m=0有⼀个根为0∴m2﹣2m=解析:2【解析】【分析】根据⼀元⼆次⽅程的定义以及⼀元⼆次⽅程的解的定义列出关于m的⽅程,通过解关于m的⽅程求得m的值即可.【详解】∵关于x的⼀元⼆次⽅程mx2+5x+m2﹣2m=0有⼀个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了⼀元⼆次⽅程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意⼆次项系数a≠0这⼀条件.18.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三⾓形的顶⾓是钝⾓时腰上的⾼在外部根据三⾓形的⼀个外⾓等于与它不相邻的两个内⾓的和即可求得顶⾓是90°+20°=110°;当等腰三⾓形的顶⾓解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三⾓形的顶⾓是钝⾓时,腰上的⾼在外部.根据三⾓形的⼀个外⾓等于与它不相邻的两个内⾓的和,即可求得顶⾓是90°+20°=110°;当等腰三⾓形的顶⾓是锐⾓时,腰上的⾼在其内部,故顶⾓是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三⾓形的性质;2.分类讨论.19.【解析】【分析】列表得出所有等可能结果从中找到积为⼤于-4⼩于2的结果数根据概率公式计算可得【详解】列表如下:-2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为⼤于-4⼩于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为⼤于-4⼩于2的概率为612=12,故答案为12.【点睛】此题考查的是⽤列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;⽤到的知识点为:概率=所求情况数与总情况数之⽐.20.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代⼊相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:(,112).【解析】【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代⼊相应的函数中得,b=12a①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112).点睛:主要考查了⼆次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.三、解答题21.(1)见解析;(2)ABD ?,ACD ?,ACE ?,ABE ? 【解析】【分析】(1)⾸先证明△AFE ≌△DFB 可得AE=BD ,进⽽可证明AE=CD ,再由AE ∥BC 可利⽤⼀组对边平⾏且相等的四边形是平⾏四边形可得四边形ADCE 是平⾏四边形;(2)根据⾯积公式解答即可.【详解】证明:∵AD 是△ABC 的中线,∴BD=CD ,∵AE ∥BC ,∴∠AEF=∠DBF ,在△AFE 和△DFB 中,AEF DBF AFE BFD AF DF ===∠∠??∠∠,∴△AFE ≌△DFB (AAS ),∴AE=BD ,∴AE=CD ,∵AE ∥BC ,∴四边形ADCE 是平⾏四边形;(2)∵四边形ABCE 的⾯积为S ,∵BD=DC ,∴四边形ABCE 的⾯积可以分成三部分,即△ABD 的⾯积+△ADC 的⾯积+△AEC 的⾯积=S ,∴⾯积是12S 的三⾓形有△ABD ,△ACD ,△ACE ,△ABE .【点睛】此题主要考查了平⾏四边形的判定,全等三⾓形的判定和性质.等腰三⾓形的判定和性质等知识,解题的关键是正确寻找全等三⾓形解决问题.22.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆⼼⾓的度数为54°;(3)该校2000名学⽣中“家长和学⽣都未参与”有100⼈. 【解析】分析:(1)根据A 类别⼈数及其所占百分⽐可得总⼈数;(2)总⼈数减去A 、C 、D 三个类别⼈数求得B 的⼈数即可补全条形图,再⽤360°乘以C类别⼈数占被调查⼈数的⽐例可得;(3)⽤总⼈数乘以样本中D 类别⼈数所占⽐例可得.详解:(1)本次调查的总⼈数为80÷20%=400⼈;(2)B 类别⼈数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆⼼⾓的度数为360°×60400=54°;(3)估计该校2000名学⽣中“家长和学⽣都未参与”的⼈数为2000×0N F N ==100⼈.点睛:本题考查了条形统计图、扇形统计图及⽤样本估计总体的知识,解题的关键是从统计图中整理出进⼀步解题的信息.23.银杏树的单价为120元,则⽟兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式⽅程,从⽽可以解答本题.试题解析:解:设银杏树的单价为x 元,则⽟兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式⽅程的解,∴1.5x =180.答:银杏树的单价为120元,则⽟兰树的单价为180元.24.风筝距地⾯的⾼度49.9m .【解析】【分析】作AM ⊥CD 于M ,作BF ⊥AM 于F ,EH ⊥AM 于H .设AF =BF =x ,则CM =BF =x ,DM =HE =40-x ,AH =x +30-1.5=x+28.5,在Rt △AHE 中,利⽤∠AEH 的正切列⽅程求解即可. 【详解】如图,作AM ⊥CD 于M ,作BF ⊥AM 于F ,EH ⊥AM 于H .∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地⾯的⾼度49.9 m.【点睛】本题考查了解直⾓三⾓形的应⽤,解决此问题的关键在于正确理解题意得基础上建⽴数学模型,把实际问题转化为数学问题.25.(1)普通椅⼦销售了400把,实⽊椅⼦销售了500把;(2)a的值为15.【解析】【分析】(1)设普通椅⼦销售了x把,实⽊椅⼦销售了y把,根据总价=单价×数量结合900把椅⼦的总销售⾦额为272000元,即可得出关于x,y的⼆元⼀次⽅程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a的⼀元⼆次⽅程,解之取其正值即可得出结论.【详解】(1)设普通椅⼦销售了x把,实⽊椅⼦销售了y把,依题意,得:900 180400272000 x yx y+=+=,解得:400500 xy==.答:普通椅⼦销售了400把,实⽊椅⼦销售了500把.(2)依题意,得:(180﹣30)×400(1+103a%)+400(1﹣2a%)×500(1+a%)=251000,整理,得:a2﹣225=0,解得:a1=15,a2=﹣15(不合题意,舍去).答:a的值为15.【点睛】本题考查了⼆元⼀次⽅程组的应⽤以及⼀元⼆次⽅程的应⽤,找准等量关系,正确列出⼆元⼀次⽅程组和⼀元⼆次⽅程是解题关键.。

2020-2021学年东莞市东华初级中学八年级上期中数学模拟试卷

2020-2021学年东莞市东华初级中学八年级上期中数学模拟试卷

2020-2021学年东莞市东华初级中学八年级上期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)
1.(3分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()
A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB 【解答】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;
B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;
C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;
D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.
故选:B.
2.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()
A.B.C.D.
【解答】解:A、不是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项正确;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:B.
3.(3分)若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2B.﹣2C.12D.﹣12
【解答】解:∵点A(m,n)和点B(5,﹣7)关于x轴对称,
∴m=5,n=7,
则m+n的值是:12.
故选:C.
4.(3分)若n边形的内角和等于外角和的3倍,则边数n为()
第1 页共14 页。

广东省东莞市2020版九年级数学中考模拟试卷(一)(I)卷

广东省东莞市2020版九年级数学中考模拟试卷(一)(I)卷

广东省东莞市2020版九年级数学中考模拟试卷(一)(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·江岸期末) 下列式子从左到右变形正确的是()A .B .C .D .2. (2分) (2019九下·昆明模拟) 小明记录了昆明市年月份某一周每天的最高气温,如表:日期最高气温那么这周每天的最高气温的众数和中位数分别是()A . ,B . ,C . ,D . ,3. (2分)已知点P关于x轴的对称点P1的坐标是(2,3),则点P坐标是()A . (-3,-2)B . (-2,3)C . (2,-3)D . (3,-2)4. (2分)既是轴对称,又是中心对称图形的是()A . 圆B . 等腰三角形C . 梯形D . 平行四边形5. (2分)下列线段中不能组成三角形的是()A . 2,2,1B . 2,3,5C . 3,3,3D . 4,3,56. (2分) (2019九下·衡水期中) 关于x的一元二次方程有两个不相等的正实数根,则m的取值范围是()A .B . 且C .D .7. (2分)(2017·河东模拟) 若M(,y1)、N(,y2)、P(,y3)三点都在函数(k >0)的图象上,则y1、y2、y3的大小关系是()A . y2>y3>y1B . y2>y1>y3C . y3>y1>y2D . y3>y2>y18. (2分)如图,把正方体纸盒沿棱剪开,平铺在桌面上,原来与点A重合的顶点是()A . IB . JC . GD . H9. (2分) (2017九下·沂源开学考) 在平行四边形ABCD中,AC=4,BD=6,P是BD上的.任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.如图,设BP=x,EF=y,则能反映y与x之间关系的图象为()A .B .C .D .10. (2分) (2019九上·惠州期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A . ①④B . ②④C . ①②③D . ①②③④二、填空题 (共8题;共8分)11. (1分)绝对值相等且符号不相同的数他们互为________。

广东省东莞市2020届中考数学仿真模拟试卷 (含解析)

广东省东莞市2020届中考数学仿真模拟试卷 (含解析)

广东省东莞市2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2014的相反数是()A. 2014B. 12014C. −12014D. −20142.已知一组数据4,0,−3,6,2,−1,则这组数据的中位数是()A. 1B. −3C. 2D. 03.已知点M与点N(2,5)关于x轴对称,那么点M的坐标为()A. (−2,5)B. (2,5)C. (−2,−5)D. (2,−5)4.一个多边形的内角和等于360°,它是()A. 四边形B. 五边形C. 六边形D. 七边形5.若式子√a−3在实数范围内有意义,则a的取值范围是()A. a>3B. a≥3C. a<3D. a≤36.若以△ABC各边中点为顶点的三角形的周长是18cm,则△ABC的周长是()A. 9cmB. 36cmC. 54cmD. 72cm7.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A. y=(x−1)2+1B. y=(x+1)2+1C. y=2(x−1)2+1D. y=2(x+1)2+18.不等式组{x−2<03x<4x+3的解集为()A. −3<x<2B. −3<x<−2C. x<2D. x>−39.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB 于点G,则GE的长是()A. 3√3−4B. 4√2−5C. 4−2√3D. 5−2√310.二次函数y=ax2+bx+c(a≠0)的图象如图.对称轴x=−1.下列结论:①4ac−b2<0;②4a+c<2b;③3b+2c<0.其中正确结论的个数是()A. 3个B. 2个C. 1个D. 0个二、填空题(本大题共7小题,共28.0分)11.分解因式:xy―x=_____________.12.若单项式2x m y n与−2x2y3是同类项,则m n=______ .13.已知√2a+8+|b−√3|=0,则ab=______.14.若x−2y=−3,则5−x+2y=______.BC长为半径画弧,两弧15.如图,分别以线段BC的两个端点为圆心,以大于12分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=______cm.16.如图,扇形的圆心角为120°,半径为6,将此扇形围成一个圆锥,则圆锥的底面半径为______.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:[(x+2y)(x−2y)−(x+4y)2]÷4y,其中x=1,y=4.四、解答题(本大题共7小题,共56.0分)19.我区某校数学兴趣小组在本校学生中开展了以“垃圾分类知多少”为主题的专题调查活动,采取随机抽样的方式进行问卷调查.问卷调查的结果分为四个等级:“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并根据调查所得到的结果绘制了如下不完整的统计图:根据以上信息解答下列问题:(1)求本次被调查的学生人数;(2)补全条形统计图;(3)若该校有学生1500人,请根据调查结果,估计这些学生中“比较了解”垃圾分类知识的人数.20.如图,∠A=∠D=90°,AB=CD,AC,BD相交于点E.求证:(1)△ABC≌△DCB;(2)△EBC是等腰三角形.21. 已知方程组{5x +y =3ax +5y =4与方程组{x −2y =55x +by =1有相同的解,求a 、b 的值.22. 在⊙O 中,弦AB 与弦CD 交于点G ,OA ⊥CD 于点E ,过点B 的直线交CD 的延长线于点F ,且FG =FB .(1)如图1,求证:BF 为⊙O 的切线:(2)如图2,连接BD 、AC ,若BD =BG ,求证:AC//BF ;(3)在(2)的条件下,若,CD =1,求⊙O 的半径.23.某社区去年购买了A,B两种型号的共享单车,购买A种单车共花15000元,购买B种单车共花费14000元,购买A种单车的数量是购买B种单车数量的1.5倍,且购买一辆A种单车比购买一辆B种单车少200元.(1)求去年购买一辆A种和一辆B种单车各需要多少元?(2)为积极响应政府提出的“绿色发展·低碳出行”号召,该社区决定今年再买A,B两种型号的单车共60辆,恰逢厂家对A,B两种型号单车的售价进行调整,A种单车售价比去年购买时提高了10%,B种单车售价比去年购买时降低了10%,如果今年购买A,B两种单车的总量用不超过34000元,那么该社区今年最多购买多少辆B种单车?24.如图,已知直线y=−x+4与反比例函数y=k的图象相交于点A(−2,a),并且与x轴相交于点xB.(1)求a的值.(2)求反比例函数的表达式(3)求△AOB的面积.25.如图,抛物线y=−x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.-------- 答案与解析 --------1.答案:A解析:本题主要考查了相反数,解题的关键是熟记相反数的定义.利用相反数的定义求解即可.解:−2014的相反数是2014.故选A.2.答案:A解析:解:把数据按从小到大排列:−3,−1,0,2,4,6,共有6个数,最中间的两个数为0和2,它们的平均数为(0+2)÷2=1,即这组数据的中位数是1.故选:A.先把数据按从小到大排列:−3,−1,0,2,4,6,然后根据中位数的定义求出中间两个数0和2的平均数即可.本题考查了中位数的定义:把一组数据按从小到大(或从大到小)排列,最中间那个数(或最中间两个数的平均数)叫这组数据的中位数.3.答案:D解析:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可.解:点N(2,5)关于x轴的对称点M的坐标是(2,−5).故选:D.4.答案:A解析:此题考查多边形的内角与外角,已知多边形的内角和求边数,可以转化为方程的问题来解决.n边形的内角和是(n−2)⋅180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解:由题意可得:(n−2)⋅180°=360°,解得:n=4.则它是四边形,故选A.5.答案:B解析:本题考查的知识点为:二次根式的被开方数是非负数.根据被开方数大于等于0列式计算即可得解.解:由题意得,a−3≥0,解得a≥3.故选:B.6.答案:B解析:本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的关键.如图:根据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.解:如图:∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴BC=2DF,AB=2EF,AC=2DE;∴AB+BC+AC=2EF+2DF+2DE=2(EF+DF+DE)=2×18=36.故选B.7.答案:C解析:本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.根据平移规律,可得答案.解:根据图像可知函数解析式为:y=2x2−2,则平移后的解析式为:y=2(x−1)2+1.故选C.8.答案:A解析:解:解不等式x−2<0,得:x<2,解不等式3x<4x+3,得:x>−3,则不等式组的解集为−3<x<2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:C解析:解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得:FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,∴∠DFC′=60°,∴∠DC′F=30°,∴FC′=FC=2DF,∵DF+CF=CD=3,∴DF+2DF=3,解得:DF=1,∴DC′=√3DF=√3,则C′A=3−√3,AG=√3(3−√3),设EB=x,∵∠B′GE=∠AGC′=∠DC′F=30°,∴GE=2x,则√3(3−√3)+3x=3,解得:x=2−√3,∴GE=4−2√3;故选:C.由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得出FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,求出∠DC′F=30°,得出FC′=FC=2DF,求出DF=1,DC′=√3DF=√3,则C′A=3−√3,AG=√3(3−√3),设EB=x,则GE=2x,得出方程,解方程即可.本题考查了翻折变换的性质、正方形的性质、勾股定理、含30°角的直角三角形的性质等知识;熟练掌握翻折变换和正方形的性质,根据题意得出方程是解决问题的关键.10.答案:B解析:解:∵抛物线与x轴有交点,∴△>0,∴b2−4ac>0,∴4ac−b2<0,故①正确,∵x=−2时,y>0,∴4a−2b+c>0,∴4a+c>2b,故②错误,∴对称轴x=−1,=−1,∴−b2a∴b=2a,∴y=ax2+2ax+c,∵x=1时,y<0,∴3a+c<0,∴6a+2c<0,∴3b+2c<0,故③正确.故选:B.根据二次函数的性质以及图象信息,一一判断即可.本题考查二次函数的性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.答案:x(y−1)解析:[分析]直接提取公因式x,进而分解因式得出答案.[详解]解:xy―x=x(y−1)故答案为:x(y−1).[点睛]此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:8解析:解:∵单项式2x m y n与−2x2y3是同类项,∴m=2,n=3,∴m n=8,故答案为:8.根据同类项是字母相同且相同字母的指数也相同,可得m、n的值再根据代数式求值,可得答案.本题考查了同类项,利用同类项得出m、n的值是解题关键.13.答案:−4√3解析:解:∵√2a+8+|b−√3|=0,∴2a+8=0,b−√3=0,解得a=−4,b=√3,ab=−4√3,故答案为−4√3.先根据非负数的性质求出a,b的值,代入求得ab的值.本题考查了非负数的性质,几个非负数的和为0,这几个数都为0.14.答案:8解析:解:∵x−2y=−3,∴5−x+2y=5−(x−2y)=5−(−3)=8.故本题答案为8.将已知条件整体代入所求代数式即可.本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.15.答案:6解析:解:由作图可知:AE垂直平分线段BC,∴AB=AC,BF=CF,∴∠B=∠C=60°,∵AB=12cm,∠BAF=90°−60°=30°,∴BF=12AB=6(cm)故答案为:6.首先证明AB=AC,BF=CF,在Rt△ABF中求出BF即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:2解析:解:设圆锥的底面半径为r,扇形的弧长为:120π×6180=4π,则2πr=4π,解得,r=2,故答案为:2.根据弧长公式求出扇形的弧长,根据圆锥的底面圆周长是扇形的弧长列式计算即可.本题考查的是圆锥的计算,掌握弧长公式、圆锥的底面圆周长是扇形的弧长是解题的关键.17.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,AB,∵AD=1.5+1=2.5=12AB=2.5,∴OD=12∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:原式=(x2−4y2−x2−8xy−16y2)÷4y=(−8xy−20y2)÷4y=−2x−5y当x=1,y=4时,原式=−2−20=−22,故答案为−22.解析:本题考查整式的化简求值.先运用整混合运算法则化简整式,再把x、y值代入计算即可.19.答案:解:(1)本次被调查的学生人数是36÷18%=200(人).答:本次被调查的学生人数是200人;(2)比较了解的人数是200−40−36−4=120(人).;=900(人).(3)比较了解垃圾分类的人数是1500×120200答:这些学生中“比较了解”垃圾分类知识的人数是900人.解析:(1)根据基本了解的人数是36,所占的百分比是18%,据此即可求得总人数;(2)利用总人数减去其它组的人数即可求得比较了解的人数,从而补全直方图;(3)利用总人数1500乘以对应的百分比即可求得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.答案: 解:(1)∵∠A =∠D =90°,∴在Rt △ABC 和Rt △DCB 中,{BC =CB AB =DC, ∴Rt △ABC≌Rt △DCB(HL).(2)∵Rt △ABC≌Rt △DCB ,∴∠ACB =∠DBC ,∴BE =CE ,∴△EBC 是等腰三角形.解析: 本题考查了全等三角形的判定与性质以及等腰三角形的判定,证明三角形全等是解题的关键.(1)由“HL ”可证Rt △ABC≌Rt △DCB ;(2)由全等三角形的性质可得∠ACB =∠DBC ,可得BE =CE ,可得结论.21.答案:解:由题意得出:方程组{5x +y =3x −2y =5的解与题中两方程组解相同,解得:{x =1y =−2, 将x =1,y =−2代入ax +5y =4,解得:a −10=4,∴a =14,将x =1,y =−2,代入5x +by =1,得5−2b =1,∴b =2.解析:根据题意得出方程组{5x +y =3x −2y =5的解与题中两方程组解相同,进而得出x ,y 的值代入另两个方程求出a ,b 的值即可.此题主要考查了二元一次方程的解,根据题意得出两方程的同解方程是解题关键.22.答案:证明:(1)如图,连接OB ,∵FG=FB,∴∠FGB=∠FBG,∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°,又∵∠FGB=∠FBG,∠FGB=∠AGC,∴∠FBG+∠OBA=90°,即∠OBF=90°,∴OB⊥FB,∵AB是⊙O的弦,∴点B在⊙O上,∴BF是⊙O的切线;(2)∵BD=BG,∴∠DGB=∠GDB,∵∠CAB和∠BDC都是弧BC所对的圆周角,∴∠CAB=∠BDC,∴∠CAB=∠FGB,∵∠FGB=∠FBG,∴∠CAB=∠GBF,∴AC//FB;(3)∵OA⊥CD,CD=1,∴CE=CD=.∵AC//BF,∴∠ACE=∠F,∴tan∠ACE=tan∠F,∵tan∠F=,∴tan∠ACE=,∴,即,∴AE=.如图,连接OC,设⊙O的半径为R,在Rt△CEO中,CO2=CE2+OE2,即,解得R=,即⊙O的半径为.解析:本题考查的是圆的综合题,涉及到切线的判定,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,熟练掌握和各种几何图形有关的定理及性质是解本题的关键.(1)连接OC,OB,根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可;(2)由已知条件易证∠DGB=∠GDB,因为∠CAB和∠BDC都是弧BC所对的圆周角,所以∠CAB=∠BDC,进而可证明∠CAB=∠GBF,则AC//BF;(3)根据垂径定理求得CE=.再根据已知条件易证∠ACE=∠F,所以tan∠F=tan∠ACE=,易求AE的长度.设⊙O的半径为R,在Rt△CEO中,CO2=CE2+OE2,,解方程求出R的值即可.23.答案:解:(1)设购买一辆B型单车的成本为x元,则购买一辆A型单车的成本为(x−200)元,可得:15000 x−200=1.5×14000x,解得:x=700,经检验x=700是原方程的解,700−200=500,答:去年购买一辆A种和一辆B种单车各需要500元,700元;(2)设购买B型单车m辆,则购买A型单车(60−m)辆,可得;700×(1−10%)m+500×(1+10%)(60−m)≤34000,解得:m≤12.5,∵m是正整数,∴m的最大值是12,答:该社区今年最多购买B种单车12辆.解析:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程:(2)根据总价=单价×数量结合总成本不超过3.4万元,列出关于m的一元一次不等式.(1)设购买一辆B型单车的成本为x元,则购买一辆A型单车的成本为(x−200)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买B型单车m辆,则购买A型单车(60−m)辆,根据购买A、B两种单车的总费用不超过34000元,即可得出关于m的一元一次不等式,解之即可得出结论;24.答案:(1)6;(2)y=−12x;(3)12.解析:[分析](1)点A在直线y=−x+4,故点A(−2,a)满足y=−x+4即可(2)用待定系数法,把(1)中点A的坐标代入y=kx即可(3)△AOB的面积=底×高÷2,过A点作AD⊥x轴于D,求出AD,OB即可.[详解]解:(1)将A(−2,a)代入y =−x +4中,得:a =−(−2)+4所以a =6.(2)由(1)得:A(−2,6),将A(−2,6)代入y =k x 中,得到6=k −2即k =−12,所以反比例函数的表达式为:y =−12x , (3)如图:过A 点作AD ⊥x 轴于D ;因为A(−2,6)所以 AD =6,在直线y =−x +4中,令y =0,得x =4,所以B(4,0)即OB =4 ,所以△AOB 的面积S =12OB ×AD =12×4×6=12.[点睛]熟练掌握解析式的求法,在进行与线段有关的计算时,注意点的坐标与线段长度的关系.25.答案:解:(1)由题意得,−1+5+n =0,解得,n =−4,∴抛物线的解析式为y =−x 2+5x −4;(2)y =−x 2+5x −4=−(x −52)2+94, 抛物线对称轴为:x =52,顶点坐标为 (52,94);(3)∵点A的坐标为(1,0),点B的坐标为(0,−4),∴OA=1,OB=4,在Rt△OAB中,AB=√OA2+OB2=√17,①当PB=PA时,PB=√17,∴OP=PB−OB=√17−4,此时点P的坐标为(0,√17−4),②当PA=AB时,OP=OB=4,此时点P的坐标为(0,4).解析:本题考查的是待定系数法求函数解析式、定义三角形的性质,掌握待定系数法求出函数解析式的一般步骤、灵活运用分情况讨论思想是解题的关键.(1)把点A的坐标代入解析式,计算即可;(2)利用配方法把一般式化为顶点式,根据二次函数的性质解答;(3)分PB=PA、PA=AB两种情况,根据等腰三角形的性质解答.。

2020东莞中考数学第一次模拟试卷(含答案)

2020东莞中考数学第一次模拟试卷(含答案)

)21212注意事项:2019-2020 学年东莞联考第二学期初三第一次模拟考试数学试卷1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上第 I 卷(选择题)一、单选题(每小题 3 分,共 30 分) 1.下列四个实数中,最小的实数是( ) A . 0.001B .﹣C .0D .﹣22.下列图形是轴对称又是中心对称图形的是 ()AB C D3. 下列因式分解正确的是()A .x 2﹣1=(x ﹣1)2B .x 2﹣9y 2=(x ﹣9y )(x +9y )C . a 2 - a = a (a - 1)D . a 2 + 2a + 1 = a (a + 2) + 14. 某班数学兴趣小组 10 名同学的年龄情况如下表:则这 10 名同学年龄的平均数和中位数分别是()A .13.5,13.5B .13.5,13C .13,13.5D .13,145. 一个多边形的每个外角都等于 45°,则这个多边形的边数是( ) A .11B .10C .9D .86. 能判定四边形 ABCD 为平行四边形的条件是()A .AB ∥CD ,AD =BC B .∠A =∠B ,∠C =∠D C .AB =CD ,AD =BC D .AB =AD ,CB =CD7. 如图,扇形纸扇完全打开后,外侧两竹条 AB ,AC 夹角为 150°,AB 的长为 36cm ,BD 的长为 18cm ,则的长为( )cm15 A.πB .15πC .18πD .36π48. 若关于 x 的一元二次方程 x 2+6x -a =0 无实数根,则 a 的值可以是下列选项中的(A .-10B .-9C .9D .109. 等腰三角形的一边长为 5,周长为 20.则这个等腰三角形的底边长为()A .5B .10C .5 或 10D .5 或 7.510. 如图,函数 y =ax 2+bx +c (a ,b ,c 为常数,且 a ≠0)经过点(-1,0)、(m ,0),且 1<m <2,下列结论:①ab <0;②0< -b < 1;③若点 A (-2,y ),B (2,y )在抛物线上,则 y <y ;2a 2④a (m -1)+b =0.其中结论正确的有()个A .1B .2C .3D .4年龄(岁) 12 13 14 15 人数1441⎨1- x 投石子的总次数 50 次 150 次 300 次 600 次 石子落在空白 区域内的次数 14 次85 次199 次400 次石子落在空白区域内的频率7 25 17 30 199 300 2 3二、填空题(每小题 4 分,共 28 分)11. 计算 (3x )3÷ 2x 的结果为 .12. 根据规划,“一带一路”地区覆盖总人口约 4 400 000 000 人,这个数用科学记数法表示为.⎧x + 4 < 313.不等式组⎪≤ 1的解集是.⎩⎪ 314. 已知在半径为 3 的⊙O 中,弦 AB 的长为 4,那么圆心 O 到 AB 的距离为 . 15.设 a 为一元二次方程 2x 2+3x ﹣2020=0 的一个实数根,则 4a 2+6a +2 =.16. 如图,小明在操场上做游戏,他在沙地上画了一个面积为 15 的矩形,并在四个角画上面积不等的扇形,在不远处的固定位置向矩形内部投石子,记录如下(石子不会落在矩形外面和各区域边缘): 请根据表格中的数据估计矩形中空白部分的面积是.17. 如图,在菱形 ABCD 中,∠BAD =60°,AC 与 BD 交于点 O ,E 为 CD 延长线上的一点,且 CD =DE ,连接BE 分别交 AC ,AD 于点 F ,G ,连接 OG ,则下列结论中一定成立的是 .1①OG = 2AB ;②与△EGD 全等的三角形共有 5 个;③S 四边形 ODGF >S △ABF ;④由点 A 、B 、D 、E 构成的四边形是菱形.三、解答题(每小题 6 分,共 18 分) 18.计算: (1- 3 8)0- 2 cos 45︒+ |1-| -( 1 )-1 4第 17 题图a 2 -119.先化简,再求值: - a 2- 2a +1 a 2 - 2a a - 2÷ a ,其中 a = +1 .20.如图,已知△ABC 中,∠BAC =20°,∠BCA =125°.(1) 尺规作图:作 AC 的垂直平分线,交 BC 的延长线于点 D (不写作法,保留作图痕迹)(2) 连接 AD ,求∠BAD 的度数.2 22 21. 某中学八年级学生在寒假期间积极抗击疫情,开展老师“在你身边”评星活动,学生可以从“自理星” 、“ 读书星”、“健康星”、“孝敬星”、“ 劳动星”等中选一个项目参加争星竞选,根据该校八年级学生的“争星”报名情况,绘制成了如下两幅不完整的统计图,请根据图中信息回答下列问题:(1)参加年级评星的学生共有人;将条形统计图补充完整;(2) 扇形统计图中“读书星”对应的扇形圆心角度数是;(3) 若八年级 1 班准备推荐甲、乙、丙、丁四名同学中的 2 名代表班级参加学校的“劳动星” 报名,请用表格或树状图分析甲和乙同学同时被选中的概率.22.某工厂准备今年春季开工前美化厂区,计划对面积为 2000m 2 的区域进行绿化,安排甲、乙两个工程队完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的 2 倍,并且在独立完成面积为 480m 2 区域的绿化时,甲队比乙队少用 6 天.(1) 求甲、乙两工程队每天能完成绿化的面积分别是多少 m 2?(2) 若工厂每天需付给甲队的绿化费用为 0.4 万元,乙队为 0.5 万元,要使这次的绿化总费用不超过 10 万元,至少应安排甲队工作多少天?23.如图,两个全等的等腰直角三角形放置在平面直角坐标系中,OA 在 x 轴上,∠COD =∠OAB =90°,OC = , k反比例函数 y = 的图象经过点 B .x(1) 求反比例函数的解析式;k (2) 把△OCD 沿射线 OB 移动,当点 D 落在 y =x求点 D ′的坐标.图象上的 D ′ 时,24.如图,AB 为⊙O 的直径,CD⊥AB 于点E,F 是CD 上一点,且BF=DF,延长FB 至点P,连接CP,使PC=PF,延长BF 与⊙O 交于点G,连结BD,GD.(1)连结BC,求证:CD=GB;(2)求证:PC 是⊙O 的切线;1(3)若tan G=3,且AE﹣BE=3,求FD 的值.25.如图,抛物线y=x2+bx+c的与x轴交于点A(-1,0),与y轴交于点C(0,-3),(1)求该抛物线的解析式及顶点的坐标;(2)若P 是线段OB 上一动点,过P 作y 轴的平行线交抛物线于点H,交BC 于点N,设OP= t 时,△BCH 的面积为S.求S 关于t 的函数关系式;若S 有最大值,请求出S 的最大值,若没有,请说明理由;(3)若P 是x 轴上一个动点,过P 作射线PQ∥AC 交抛物线于点Q,随着P 点的运动,在x 轴上是否存在这样的点P,使以A、P、Q、C 为顶点的四边形为平行四边形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.8 35 2019-2020 学年第二学期初三第一次模拟考试答案及评分标准1. D2. C3.C4.A5.D6.C7. B8.A9.A10.C11.27x22或 13.5x 212. 4.4⨯10913.-2 ≤ x <-1 14. 15. 404216. 1017.①④18.解:原式=1- 2 ⨯2+2-1- 44 分= - 46 分19 (a +1)(a-1)a (a - 2).解:原式=(a -1)2- a - 2÷ a…………2 分= a +1 -1 a -1= a +1 -a -1…………3 分当a=+1 时, a -1 a -1=a +1- a +1a -1原式=2= 2 =2 +1-1 2…………6 分2=a -1…………4 分20.解:(1)如图,点 D 为所求; ......................................................... 3 分(2)∵∠BCA =125°,∴∠ACD =180°-∠BCA =180°-125°=55°, ......... 4 分∵ED 垂直平分 AC ,∴DC =AD , .................................. 5 分 ∴∠ACD =∠CAD =55°,∴∠BAD =∠BAC +∠CAD=20°+55°=75°. ..... 6 分21.解:(1)50,.....1 分补全条形统计图如下:..... 2 分(2) 72°;……3 分2 222 22 (3)树状图为:……….4 分共有 12 种等可能的结果,其中甲和乙同学同时被选中的结果有 2 种………. 6 分∴P(甲和乙同学同时被选中)= 2 =1……….8 分12 622. 解:(1)设乙工程队每天能完成绿化的面积是 x (m 2),根据题意得:1 分480- 480= 6 2 分x 2x解得:x =40,3 分经检验:x =40 是原方程的解,4 分则甲工程队每天能完成绿化的面积是 40×2=80答:甲、乙两工程队每天能完成绿化的面积分别是 80m 2、40m 2; 5 分 (2)设应安排甲队工作 y 天,根据题意得:6 分0.4 y +2000 - 80 y⨯ 0.5 ≤ 107 分40解得:y ≥25,答:至少应安排甲队工作 25 天.8 分23. 解:(1)∵△AOB 和△COD 为全等的等腰直角三角形,OC = ,∴AB =OA =OC =OD =,∴点 B 坐标为(, ), …… 1 分代入 y =k得,k = 2 ⨯ x∴反比例函数解析式为y =2x=2;……………. 2 分…………….3 分(2)依题意,得 DD ′∥OB ,过 D ′作 D ′E ⊥x 轴于点 E ,交 DC 于点 F ,设 CD 交 y 轴于点 M , (4)分∵OC =OD =,∠AOB =∠COM =45°,∴OM =MC =MD =1,……5 分∴点 D 坐标为(-1,1),设 D ′横坐标为 t ,则 OE =MF =t ,……. 6 分2 2 2∴D ′F =DF =t +1,∴D ′E =D ′F +EF =t +2,∴D ′(t ,t +2), ∵D ′在反比例函数图象上,∴t (t +2)=2,解得t 1 =-1+,t 2 = -1- (舍去), .................... 7 分∴D ′( ﹣1,+1) ................... 8 分24.解:(1)证明:∵BF =DF ,∴∠FBD =∠FDB ,…..1 分∴∠BCD =∠DGB ∵ BD =DB∴△BCD ≌△DGB (AAS )…..2 分∴CD =GB ...................... 3 分(2) 证明:连接 OC . .................... 4 分∵ ∴∠COB =2∠EDB∵∠PFC =∠FDB +∠FBD =2∠FDB ,∴∠COB =∠PFC , ∵PF =PC ,∴∠PFC =∠PCF ,∴∠PCF =∠COB , ...................... 5 分∵AB ⊥CD ,∴∠COB +∠OCE =90°,∴∠OCE +∠PFC =90°,即∠OCP =90°,∴OC ⊥PC , ……6 分∴PC 是圆 O 的切线. .................. 7 分(3) 连接 AC ,∵直径 AB ⊥弦 CD 于 E , ∴,CE =DE ,∴∠BCD =∠BDC=∠A =∠G ,∵tan G= 1 , ∴tan ∠BCD=BE =1,tan A=CE = 13CE 3AE 3设 BE =x ,则 CE =3x ,AE =9x∵ AE ﹣BE = 8 33∴9x -x =8 33解得 x=3 , .. 8 分3∴BE=∴BC= 3,CE = 3== 30 ,CD =2CE =2330,∵∠FBD =∠FDB ,∠BDC =∠BCD ,∴∠FBD =∠BCD∵ 3 33CE 2 + BE 2( 3)2+ ( 3 )2 3 33 33∵∠FDB=∠BDC ∴△DFB △DBC,....... 9 分分 5 分 6 分 ⎨ ⎨⎩ ⎩ - 3 2 30 即 3 = DF DB = DF ∴FD=5 3……………10 分2 3 30 DC DB9325. 解:(1)将 A (-1,0),C (0,-3)代入 y=x 2+bx +c ,得⎧1- b + c = 0⎩c = -3……………1 分解得⎧b = -2 , ∴抛物线的表达式为:y =x 2﹣2x ﹣3=(x -1)2- 4 ; ........ 2 分⎩c = -3∴顶点坐标为(1,﹣4). .......................................................................... 3 分(2)如图 1,连接 BC 、CH 、BH ,设 H (t , t 2﹣2t ﹣3);设直线 BC 解析式为 y = kx + m ,代入 B ( 3, 0 ), C ( 0,-3),得⎧3k + m =⎨m = -3⎧k = 1 , 解得⎨m = -3∴直线 BC 的解析式为 y =x ﹣3; ............................ 4 ∴N (t ,t ﹣3)∴S △1 BCH=2 • N H •OB = 1 2 •( t ﹣3 - t 2+2t +3) •3= (t - 3t ) …… 2 则当t = 3 时,S 有最大值,最大值是 27…..2 8(3)存在,………7 分P (1,0),(2+,0),(2- ,0) …….10 分理由如下:①如图 2,当 Q 在 x 轴下方时,作 QE ⊥x 轴于 E ,∵PQ ∥AC∴当 PQ =AC 时,四边形 ACQP 为平行四边形, ∴△PEQ ≌△AOC , ∴EQ =OC =3,∴-(x 2-2x -3)=3,77∴P(1,0).……… 8 分7 7 ②如图 3,当 Q 在 x 轴上方时,作 QF ⊥x 轴于 F ,∵PQ ∥AC∴当 PQ =AC 时,四边形 ACQP 为平行四边形, ∴△PFQ ≌△AOC ,∴FQ =OC =3, ∴x 2﹣2x ﹣3=3,解得 x =1+ 或 x =1﹣ ,∴P (2+ ,0),(2- ,0).综上所述,P 点为(1,0),(2+ 7 7 7 7Q P,0),(2-,0).…….10 分。

东莞市2020年中考数学模拟试题及答案

东莞市2020年中考数学模拟试题及答案

东莞市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。

①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年广东省东莞市东华初级中学中考数学模拟试卷一.选择题(共10小题,满分30分)
1.0.7的倒数是()
A.7
10B.7C.
10
7
D.
1
7
2.中国高速路里程已突破13万公里,居世界第一位,将13万用科学记数法表示为()A.0.13×105B.1.3×104C.1.3×105D.13×104
3.如图所示的几何体,它的左视图是()
A.B.C.D.
4.一个多边形每个外角都等于36°,则这个多边形是几边形()
A.7B.8C.9D.10
5.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()
A.是轴对称图形,但不是中心对称图形
B.是中心对称图形,但不是轴对称图形
C.既是轴对称图形,又是中心对称图形
D.既不是轴对称图形,也不是中心对称图形
6.不等式组{x−1<−4
3x≤6
的解集为()
A.x<﹣3B.x<3C.x≤2D.﹣3<x≤2 7.如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()
A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°
8.若关于x 的一元二次方程(m ﹣1)x 2+2x +m 2﹣1=0的常数项为0,则m 的值是( )
A .1
B .±1
C .﹣1
D .±2
9.在△ABC 中,ED ∥BC ,S 四边形BCDE :S △ABC =21:25,AD =4,则DC 的长为( )
A .4
B .6
C .8
D .10
10.如图,点P 是▱ABCD 边上的一动点,E 是AD 的中点,点P 沿E →D →C →B 的路径移
动,设P 点经过的路径长为x ,△BAP 的面积是y ,则下列能大致反映y 与x 的函数关系的图象是( )
A .
B .
C .
D .
二.填空题(共7小题,满分28分,每小题4分)
11.(4分)使式子√x+1x−1
有意义的x 的取值范围是 . 12.(4分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随
机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是 .
13.(4分)因式分解:a 3﹣9a = .。

相关文档
最新文档