高斯消元法 主元消去法

合集下载

高斯选主元消去法.ppt

高斯选主元消去法.ppt
1 0 1/ 2 0 5/ 2
1 0 r3 2 r20
2/3 0
1 1/2
0 1
1 1/2
2 / 3 3 0 2 r2
0 1 0 0
3/2 1/2
0 3/2 1 1/2
2 1 0
5
r1 3 r2
1 5/ 3 2 0 0 1/ 3
1 0 1/ 2 0 5/ 2 2
1 0 2/ 3 1 0 1 2/ 3 3 0 1 3/ 2 0 3/ 2 1
0 1
r1
r3
2 1
4 2
5 3
0 1
1 1 5/ 3 2 0
1 0 0
0 0
1/3
m31
1 3
1
m32 2
2 r2 3 r1
1 r3 3 r1
0 0
1
2/3 1/3 5/3
101 110
2/3
2 / 3 1 0 1 2/ 3 1/ 3 1 1 0 1/ 3
yn yi
bn (bi
/ ann
n
aij y j ) / aii
j i 1
(i n 1,,2,1)
优点 该方法数值稳定( mi k 1). 缺点 工作量大. 改进方法 列主元消去法,且此时mi k 1.
4.2 列主元素消去法
设已完成第1步~第k-1步计算,得到与原方程组等价的方程组
)第k列与第jk列元素;
1,, n)
bi bi mik bk (i k 1,, n)
二、 回代求解
a11 a12 a1n y1 b1
经过上述过程,方程组约化为
a22
a2n
y2
b2
ann
yn

2-2 Gauss列主元消去法

2-2 Gauss列主元消去法

S2 若ann 0,则输出“ A是奇异矩阵”;停机 . S3 置xn an,n1 / ann ;
对i n 1, n 2,...1,
ai,n1 n aij x j
置xi
j i 1
aii
S4 输出x1, x2,..., xn ;停机.
作业:
P50 习题3
k in
aik
;
S12 若aik ,k 0,则输出“ A是奇异矩阵”;停机 .
S13 若ik k,则
akj aik , j j k,...,n 1;
S14 对i k 1,..., n
置aik aik / akk ; 对j k 1,..., n 1
置aij aij aik akj.
§2-2 Gauss列主元消去法
一、Gauss列主元消去法的引入 例1. 用3位浮点数运算,求解线性方程组
0.0001xx11
x2 x2
1 2
解: 本方程组的精度较高的解为
x* (1.00010001 ,0.99989999 )T
用Gauss消去法求解
A ( A,b)
0.000100 1
1 1
21
0.000100
m2110 000
0
回代后得到
1
1
1.00 104 1.00 104
x1 0.00 , x2 1.00
与精确解相比,该结果显然是错误的 究其原因,在求行乘数时用了很小的数0.0001作除数
如果在求解时将1,2行交换,即
A ( A,b)
1 0.000100
1 1
a(2) i2
,
交换第2行和第i2行,
2in
然后进行消元,得[ A(3) , b(3) ].

数值分析高斯顺序消去法、列主元消去法LU分解法

数值分析高斯顺序消去法、列主元消去法LU分解法

数值分析实验报告(1)学院:信息学院班级:计算机0903班姓名:***学号:********课题一A.问题提出给定下列几个不同类型的线性方程组,请用适当的方法求解线性方程组1、设线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------1368243810041202913726422123417911101610352431205362177586832337616244911315120130123122400105635680000121324⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125 x *= ( 1, -1, 0, 1, 2, 0, 3, 1, -1, 2 )T2、设对称正定阵系数阵线方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------------19243360021411035204111443343104221812334161206538114140231212200420424⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡87654321x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---4515229232060 x * = ( 1, -1, 0, 2, 1, -1, 0, 2 )T3、三对角形线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------4100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----5541412621357 x *= ( 2, 1, -3, 0, 1, -2, 3, 0, 1, -1 )TB.(1)对上述三个方程组分别用Gauss 顺序消去法与Gauss 列主元消去法;平方根 与改进平方根法;追赶法求解(选择其一) (2)编写算法通用程序(3)在应用Gauss 消去时,尽可能利用相应程序输出系数矩阵的三角分解式C.(1)通过该课题的程序编制,掌握模块化结构程序设计方法 (2)掌握求解各类线性方程组的直接方法,了解各种方法的特点 (3)体会高斯消去法选主元的必要性 实验步骤:(高斯消去法,列主元,LU )1顺序高斯消去法2.LU 分解法3.列主元高斯消去法(如下图)(1)高斯消去法运行结果如下(2)对方程的系数矩阵进行LU分解并求出方程组的解(3)列主元高斯消去法实验体会总结:利用gauss消去法解线性方程组的时候,如果没有经过选主元,可能会出现数值不稳定的现象,使得方程组的解偏离精确解。

高斯方法解线性方程组c程序

高斯方法解线性方程组c程序

高斯消去法和高斯主元消去法解线性方程组:高斯消元法:#include<stdio.h>#include<math.h>main(){int gauss(int n,double a[],double b[]); int i;double a[3][3]={{3,-1,4},{-1,2,-2},{2,-3,-2}}; double b[3]={7,-1,0};if(gauss(3,&a[0][0],b)!=0)for(i=0;i<=2;i++)printf("\nx[%d]=%f\n",i,b[i]);}int gauss(int n,double a[],double b[]) {int i,k,j,p,q;double d,t;for(k=0;k<=n-2;k++){d=a[k*n+k];if(d==0)return(0);for(j=k+1;j<=n-1;j++){p=k*n+j;a[p]=a[p]/d;}b[k]=b[k]/d;for(i=k+1;i<=n-1;i++){for(j=k+1;j<=n-1;j++){p=i*n+j;a[p]=a[p]-a[i*n+k]*a[k*n+j];}b[i]=b[i]-a[i*n+k]*b[k];}}d=a[(n-1)*n+n-1];if(fabs(d)+1.0==1.0){printf("fail\n");return(0);}b[n-1]=b[n-1]/d;for(k=n-2;k>=0;k--){t=0.0;for(j=k+1;j<=n-1;j++)t=t+a[k*n+j]*b[j];b[k]=b[k]-t;}return (1);}⎪⎩⎪⎨⎧=---=-+-=+-0232122743321321321x x x x x x x x x结果:x1=2,x2=1,x3=0.5高斯全选主元法:#include<stdio.h>#include<math.h>#include<stdlib.h>main(){int gauss(int n,double a[],double b[]);int i;double a[3][3]={{3,-1,4},{-1,2,-2},{2,-3,-2}}; double b[3]={7,-1,0};if(gauss(3,&a[0][0],b)!=0)for(i=0;i<=2;i++)printf("\nx[%d]=%f\n",i,b[i]);}int gauss(int n,double a[],double b[]){int *js,i,j,L,k,is,p,q;double d,t;js=malloc(n*sizeof(int));L=1;for(k=0;k<=n-2;k++){d=0.0;for(i=k;i<=n-1;i++)for(j=k;j<=n-1;j++){t=fabs(a[i*n+j]);if(t>d){d=t;is=i;js[k]=j;}}if(d+1.0==1.0)L=0;else{if(js[k]!=k)for(i=0;i<=n-1;i++){p=i*n+k;q=i*n+js[k];t=a[p];a[p]=a[q];a[q]=t;}if(is!=k){for(j=k;j<=n-1;j++){p=k*n+j;q=is*n+j;t=a[p];a[p]=a[q];a[q]=t;}t=b[k];b[k]=b[is];b[is]=t;}}if(L==0){free(js);printf("fail\n");return(0);}d=a[k*n+k];for(j=k+1;j<=n-1;j++){p=k*n+j;a[p]=a[p]/d;}b[k]=b[k]/d;for(i=k+1;i<=n-1;i++){for(j=k+1;j<=n-1;j++){p=i*n+j;a[p]=a[p]-a[i*n+k]*a[k*n+j];}b[i]=b[i]-a[i*n+k]*b[k];}}d=a[(n-1)*n+n-1];if(fabs(d)+1.0==1.0){free(js);printf("fail\n");return(0);}b[n-1]=b[n-1]/d;for(i=n-2;i>=0;i--){t=0.0;for(j=i+1;j<=n-1;j++)t=t+a[i*n+j]*b[j];b[i]=b[i]-t;}js[n-1]=n-1;for(k=n-1;k>=0;k--)if(js[k]!=k){t=b[k];b[k]=b[js[k]];b[js[k]]=t;} free(js);return(1);}结果:x1=2,x2=1,x3=0.5。

作业一 高斯消元法和列主元消元法

作业一 高斯消元法和列主元消元法

用高斯消元法和列主元消去法求解线性代数方程组(X*是方程组的精确解)1 高斯消去法1.1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。

为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。

⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I )乘(23-)后加到方程(II )上去,把方程(I )乘(24-)后加到方程(III )上去,即可消去方程(II )、(III )中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-II -=-I =++III)(20223)(445.0)(64323232321x x x x x x x将方程(II )乘(5.03)后加于方程(III ),得同解方程组: ⎪⎩⎪⎨⎧-=-II -=-I =++III)(42)(445.0)(6432332321x x x x x x由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。

下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。

⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a(1-1)如果a 11 ≠ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x其中)0(11)0()1(1aa aijj=, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n + 1)从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2)其中n i a m a aij i ij ij ,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1-1)到(1-2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素。

23.02 高斯选主元素消去法(1)

23.02 高斯选主元素消去法(1)

4.3 列主元高斯 约当(Gauss –Jordan)消去法 3 列主元高斯—约当 约当( 假设G--J消去法已完成第1步~第k-1步,得到与原方程组等价 消去法已完成第1 假设 消去法已完成第 步 的方程组 A( k ) x = b ( k ) ,其中
(k 1 a 1k ) M O ( 1 a kk )1, n − = (k a kk ) M (k a nk ) (k a1n ) ( L a kk )1, n − , (k ) L a kn M (k ) L a nn
x1 + x2 = 0.9
m 21 = r 0.3 × 10−11 1 0.7 0.3 × 10 −11 消元: 消元: ( A, b) = 1 1 0.9 = 0.3333333333 × 10 12 0.3 × 10 −11 1 0. 7 → 12 − 0.2333333333× 1012 − 0.3333333333× 10 0
0.3 ×10−11 x1 + x2 = 0.7 x1 + x2 = 0.9 ⇔ 0.3 × 10−11 x1 + x2 = 0.7 x1 + x2 = 0.9 r 0.3 × 10−11 1 0.7 r ↔ r 1 1 0 .9 消元: 消元:( A, b ) = → 0.3 × 10 −11 1 0.7 1 1 0.9 1 1 0.9 0.3 × 10−11 → (m21 = = 0.3 × 10−11 ) 1 0 1 0.7 x 2 = 0.7000000000 。 计算解: 计算解: x1 = 0.2000000000
k
bk ←bk ⋅ mkk 上述过程完成后 , 即 k = 1, 2 , L , n , 均已完成 , 则 有

解线性方程组的列主元素高斯消去法和lu分解法

解线性方程组的列主元素高斯消去法和lu分解法

数值试验报告分析一、实验名称:解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的及要求:通过数值实验,从中体会解线性方程组选主元的必要性和LU分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

三、算法描述:本次试验采用的是高斯列主元消去法和LU分解法求解线性方程组的解。

其中,高斯消去法的基本思想是避免接近于零的数作分母;能进行到底的条件: 当A可逆时,列主元Gauss(高斯)消去法一定能进行到底。

优点: 具有很好的数值稳定性;具有与顺序Gauss 消去法相同的计算量。

列主元Gauss(高斯)消去法的精度显著高于顺序Gauss(高斯)消去法。

注意:省去换列的步骤,每次仅选一列中最大的元。

矩阵的三角分解法是A=LU,L 是下三角阵,U是上三角阵,Doolittle 分解:L 是单位下三角阵,U是上三角阵;Crout 分解:L 是下三角阵,U是单位上三角阵。

矩阵三角分解的条件是矩阵 A 有唯一的Doolittle 分解的充要条件是 A 的前n-1 顺序主子式非零;矩阵A有唯一的Crout 分解的充要条件是 A 的前n-1 顺序主子式非零。

三角分解的实现是通过(1)Doolittle 分解的实现;(2)Doolittle 分解的缺点:条件苛刻,且不具有数值稳定性。

(3)用Doolittle 分解求解方程组: AX=b LUX=b LY=bA=LU UX=Y ;四、实验内容:解下列两个线性方程组3.01 6.03 1.99 x1 11) 1.27 4.16 1.23 x2 10.987 4.81 9.34 x3 110 7 0 1 x1 83 2.099999 6 2 x2 5.9000012) 5 1 5 1x3 52 1 0 2 x4 1a、用你熟悉的算法语言编写程序用列主元高斯消去法和LU分解求解上述两个方程组,输出Ax=b 中矩阵 A 及向量b, A=LU 分解的L 及U,detA 及解向量x.b、将方程组(1)中系数 3.01 改为 3.00 ,0.987 改为0.990 ,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x 及detA ,并与(1)中结果比较。

解线性方程组-高斯消去法列主元

解线性方程组-高斯消去法列主元

的数作主元 arkk1

max
kin
aikk
1
,然后将第 r 行和第 k 行交换(如 r k )。从而在计算 lik 时保证了被除
数的绝对值大于等于除数的绝对值。
实际计算时,当最大的 arkk1 很小时,求解结果同样会严重失真,则求解过程应当停止。设 0是某个 很小的数,当 arkk1 时,过程应该停止,此时已不是算法的问题,而是方程组本身的问题了。
x3 5 1 5 , x2 3 3x3 3 3 35 3 4 , x1 7 x2 x3 2 7 4 5 2 1
此方法就是高斯消去法。
计算流程
记初始方程组 Ax b 为 A0 x b0 。
k 1,即消去第 2 到第 n 个方程中的 x1 ,假定 a110 0 , 目标
a110 a120
是:
A

a201
a202

an01 an02
a1n0
b10

a110 a120
a20n
b20


0
a212

对于j k 1, , n 做 aijk aijk1 lik akkj 1
bik bik1 lik bkk1
直到 k n 1时,消元过程结束, An1 成为上三角矩阵,最后一个方程成为一元一次方程(只含 xn ),
第一步,消元过程: 对增广矩阵进行消元,
7b 11ຫໍສະໝຸດ , 0 x1
x


x2


x3
2
A b 4
1
1 5 1
1 1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验内容
1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证.
(1)
123
123
123
0.101 2.304 3.555 1.183
1.347 3.712 4.623
2.137
2.835 1.072 5.643
3.035
x x x
x x x
x x x
++=


-++=

⎪-++=

(2)
123
123
123
528
28321
361
x x x
x x x
x x x
++=


+-=

⎪--=

MATLAB计算源程序
1. 用高斯消元法解线性方程组b
AX=的MATLAB程序
输入的量:系数矩阵A和常系数向量b;
输出的量:系数矩阵A和增广矩阵B的秩RA,RB, 方程组中未知量的个数n 和有关方程组解X及其解的信息.
function [RA,RB,n,X]=gaus(A,b)
B=[A b]; n=length(b); RA=rank(A);
RB=rank(B);zhica=RB-RA;
if zhica>0,
disp('请注意:因为RA~=RB,所以此方程组无解.')
return
end
if RA==RB
if RA==n
disp('请注意:因为RA=RB=n,所以此方程组有唯一解.')
X=zeros(n,1); C=zeros(1,n+1);
for p= 1:n-1
for k=p+1:n
m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);
end
end
b=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);
for q=n-1:-1:1
X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);
end
else
disp('请注意:因为RA=RB<n,所以此方程组有无穷多解.')
End
End
2.列主元消元法及其MATLAB程序
用列主元消元法解线性方程组b
AX=的MA TLAB程序
输入的量:系数矩阵A和常系数向量b;
输出的量:系数矩阵A和增广矩阵B的秩RA,RB, 方程组中未知量的个
数n和有关方程组解X及其解的信息.
function [RA,RB,n,X]=liezhu(A,b)
B=[A b]; n=length(b); RA=rank(A);
RB=rank(B);zhica=RB-RA;
if zhica>0,
disp('请注意:因为RA~=RB,所以此方程组无解.')
return
end
if RA==RB
if RA==n
disp('请注意:因为RA=RB=n,所以此方程组有唯一解.')
X=zeros(n,1); C=zeros(1,n+1);
for p= 1:n-1
[Y,j]=max(abs(B(p:n,p))); C=B(p,:);
B(p,:)= B(j+p-1,:); B(j+p-1,:)=C;
for k=p+1:n
m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);
end
end
b=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);
for q=n-1:-1:1
X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);
end
else
disp('请注意:因为RA=RB<n,所以此方程组有无穷多解.') end
end
三.实验过程:
1(1)编写高斯消元法的MATLAB文件如下:
clear;
A=[0.101 2.304 3.555;-1.347 3.712 4.623;-2.835 1.072 5.643];
b=[1.183;2.137;3.035];
[RA,RB,n,X] =gaus (A,b)
运行结果为:
请注意:因为RA=RB=n,所以此方程组有唯一解.
RA =
3
RB =
3
n =
3
X =
-0.3982
0.0138
0.3351
(2)编写高斯消元法MATLAB文件如下:
clear;
A=[5 2 1;2 8 -3;1 -3 -6];
b=[8;21;1;];
[RA,RB,n,X] =gaus (A,b)
运行结果为:
请注意:因为RA=RB=n,所以此方程组有唯一解.
RA =
3
RB =
3
n =
3
X =
1
2
-1
在MATLAB中利用逆矩阵法检验结果:
(1) 在command windows中直接运行命令:
A=[0.101 2.304 3.555;-1.347 3.712 4.623;-2.835 1.072 5.643];
b=[1.183;2.137;3.035];X=A\b
运行结果为:
X =
-0.3982
0.0138
0.3351
(2) 在command windows中直接运行命令:
A=[5 2 1;2 8 -3;1 -3 -6];
b=[8;21;1;];X=A\b
运行结果为:
X =
1
2
-1
两小题所得结果相同,检验通过
2(1)编写列组高斯消元法MATLAB文件如下:
clear;
A=[0.101 2.304 3.555;-1.347 3.712 4.623;-2.835 1.072 5.643];
b=[1.183;2.137;3.035];
[RA,RB,n,X] =liezhu(A,b)
运行结果:
请注意:因为RA=RB=n,所以此方程组有唯一解.
RA =
3
RB =
3
n =
3
X =
-0.3982
0.0138
0.3351
(2)编写列组高斯消元法的MATLAB文件如下:
clear;
A=[5 2 1;2 8 -3;1 -3 -6];
b=[8;21;1;]
[RA,RB,n,X] =liezhu(A,b)
运行结果为:
请注意:因为RA=RB=n,所以此方程组有唯一解.
RA =
3
RB =
3
n =
3
X =
1
2
-1
与题 1 中逆矩阵计算所得结果相同,检验通过。

相关文档
最新文档