完全平方公式变形公式专题

合集下载

完全平方公式

完全平方公式

专题五 完全平方公式【新知讲解】1.基本公式:完全平方公式:(a+b)2=a 2+2ab+b 2;(a-b)2=a 2-2ab+b2.2.完全平方的变形公式:(1)()2222a b a b ab +=+- (2)()2222a b a b ab +=-+(3)()()222222a b a b a b ++-=+ (4)()()224a b a b ab +--= 3.思想方法:类同于平方差公式.【探索新知】问题导入:()222a b a b +=+ 成立吗?(一)()2a b +=1.运算推导:2.图形理解:(二)()2a b -=1. 运算推导:2. 图形理解:()()2222a b a b b a b -=-+- A 组 基础知识【例题精讲】例1.利用完全平方公式计算:(1)()22a b -+ (2)()2m n --例2.利用完全平方公式计算(1)(a+b+c)² (2)(a+b-c)² (3)(a-b-c)²例3.化简:()()()()22342343232x x x x +++-++-+例4.已知:4,2a b ab +==-.求:(1)22a b + 的值;(2)()2a b -的值.例5.已知1x x +=3.(1)求221x x +的;(2)求441x x +的值.例6.计算下列各题(顺用公式):()3a b +例7. 计算下列各题(逆用公式): (1)26a a ++__= ()2a +(2)241x ++__=( 2) (3)已知2249x axy y -+ 是一个完全平方式,则a 的值为________________. 例8.(变形用公式):若()()()240x z x y y z ----=,试探求x z +与y 的关系。

B 组 能力提升a b1.已知:231x x -+=0.(1)求:221x x+的值;(2)求:441x x +的值. 2.已知x ²+y ²-6x-2y+10=0,求11x y +的值.3.用完全平方公式进行计算:(1)2202 (2)22974.化简:()()22a b c d a b c d +++++--C 组 拓展训练1.配方法:已知:x ²+y ²+4x-2y+5=0,求x+y 的值.2.若 2x y -=,224x y +=,求 20022002x y +的值.3.求证:()()22a b c d a b c d ++-++-++()()22a b c d a b c d -+++--- =()22224a b c d +++4.已知:x ²+y ²+z ²-2x+4y-6z+14=0,求:x+y+z 的值.。

14.2.2-2完全平方公式变形公式专题

14.2.2-2完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+2)1(1222-+=+a a a a 2)1(1222+-=+aa a a 拓展二:ab b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=-拓展三:bc ac ab c b a c b a 222)(2222---++=++拓展四:杨辉三角形3223333)(b ab b a a b a +++=+4322344464)(b ab b a b a a b a ++++=+拓展五: 立方和与立方差))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-二.常见题型:(一)公式倍比 例题:已知b a +=4,求ab b a ++222。

(1)1=+y x ,则222121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2222)()1(则=(二)公式变形(1)设(5a +3b )2=(5a -3b )2+A ,则A=(2)若()()x y x y a-=++22,则a 为 (3)如果22)()(y x M y x +=+-,那么M 等于(4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于(5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一”1.已知x ﹣y=1,x 2+y 2=25,求xy 的值.2.若x+y=3,且(x+2)(y+2)=12.(1)求xy 的值; (2)求x 2+3xy+y 2的值.3.已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).4.已知a ﹣b=3,ab=2,求:(1)(a+b )2(2)a 2﹣6ab+b 2的值.(四)整体代入例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。

完全平方公式知识点例题变式

完全平方公式知识点例题变式

完全平方公式知识点例题变式完全平方公式知识点、例题、变式。

一、完全平方公式知识点。

1. 公式内容。

- (a + b)^2=a^2 + 2ab+b^2- (a - b)^2=a^2-2ab + b^22. 公式结构特点。

- 左边是一个二项式的完全平方,右边是一个三项式。

- 右边第一项是左边第一项的平方,右边第三项是左边第二项的平方,右边第二项是左边两项乘积的2倍(对于(a + b)^2是正的2ab,对于(a - b)^2是负的2ab)。

二、例题。

1. 计算(3x + 2y)^2。

- 解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 3x,b=2y。

- 计算过程:- (3x+2y)^2=(3x)^2+2×(3x)×(2y)+(2y)^2- = 9x^2+12xy + 4y^2。

2. 计算(2m - 5n)^2。

- 解析:根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 2m,b = 5n。

- 计算过程:- (2m - 5n)^2=(2m)^2-2×(2m)×(5n)+(5n)^2- =4m^2-20mn + 25n^2。

三、变式。

1. 已知(x + 3)^2=x^2+ax + 9,求a的值。

- 解析:根据完全平方公式(x + 3)^2=x^2+2× x×3+9=x^2 + 6x+9,因为(x + 3)^2=x^2+ax + 9,所以a = 6。

2. 若(m - n)^2=16,m^2 + n^2=20,求mn的值。

- 解析:- 由完全平方公式(m - n)^2=m^2-2mn + n^2,已知(m - n)^2 = 16,即m^2-2mn + n^2=16。

- 又已知m^2 + n^2=20,将其代入m^2-2mn + n^2=16中,得到20-2mn = 16。

- 移项可得-2mn=16 - 20=-4,解得mn = 2。

完整版)完全平方公式变形公式专题

完整版)完全平方公式变形公式专题

完整版)完全平方公式变形公式专题半期复(3)——完全平方公式变形公式及常见题型一、公式拓展:拓展一:$a+b=(a+b)^2-2ab$a-b=(a-b)^2-2ab$拓展二:$(a+b)-(a-b)=4ab$a+b)=(a-b)+4ab$拓展三:$a+b+c=(a+b+c)-2ab-2ac-2bc$拓展四:杨辉三角形a+b)^2=a^2+2ab+b^2$a+b)^3=a^3+3a^2b+3ab^2+b^3$拓展五:立方和与立方差a^3+b^3=(a+b)(a^2-ab+b^2)$a^3-b^3=(a-b)(a^2+ab+b^2)$二、常见题型:一)公式倍比已知$a+b=4$,求$\frac{a^2+b^2}{2ab}$ 1)$x+y=1$,求$x^2+xy+y^2$2)已知$x(x-1)-(x-y)=-2$,求$x^2-y^2$ 二)公式变形1)设$(5a+3b)^2=(5a-3b)^2+A$,求$A$2)若$(2a-3b)=(2a+3b)+N$,求$N$3)如果$(x-y)+M=(x+y)$,求$M$4)已知$(a+b)=m$,$(a-b)=n$,求$ab$5)若$(2a-3b)=(2a+3b)+N$,求$N$的代数式三)“知二求一”1.已知$x-y=1$,$x^2+y^2=25$,求$xy$的值2.若$x+y=3$,$(x+2)(y+2)=12$,求$xy$和$x^2+3xy+y^2$的值3.已知$x+y=3$,$xy=-8$,求$x^2+y^2$和$(x^2-1)(y^2-1)$的值4.已知$a-b=3$,$ab=2$,求$(a+b)^2$和$a^2-6ab+b^2$的值四)整体代入例1:已知$x-y=24$,$x+y=6$,求$5x+3y$的值例2:已知$a=x+20$,$b=x+19$,$c=x+21$,求$a^2+b^2+c^2-ab-bc-ac$的值⑴若$x-3y=7$,$x-9y=49$,求$x+3y$的值⑵若$a+b=2$,求$a-4b$的值⑶已知$a^2+b^2=6ab$且$a>b$,求$a+b$的值已知$a=2005x+2004$,$b=2005x+2006$,$c=2005x+2008$,则代数式$a^2+b^2+c^2-ab-bc-ca$的值为:begin{aligned}a^2+b^2+c^2-ab-bc-ca&=(2005x+2004)^2+(2005x+2006)^2+(2005x+2008)^2\\ quad-(2005x+2004)(2005x+2006)-(2005x+2006)(2005x+2008)-(2005x+2008)(2005x+2004)\\ 3\cdot(2005x)^2+3\cdot2\cdot2005x+3\cdot(2004^2+2006^2 +2008^2)-3\cdot(2004\cdot2006+2006\cdot2008+2008\cdot2004)\\ 3\cdot2005^2x^2+6\cdot2005x+3\cdot(2004^2+2006^2+2008 ^2)-3\cdot(2004+2006+2008)^2+3\cdot(2004^2+2006^2+2008^2)\\ 3\cdot2005^2x^2+6\cdot2005x+3\cdot(2004^2+2006^2+2008 ^2)-3\cdot2018^2+6\cdot(2004^2+2006^2+2008^2)\\10\cdot(2005^2x^2+2005)+10\cdot(2004^2+2006^2+2008^2) -3\cdot2018^2\\10\cdot(2005^2x^2+2005)+10\cdot(2005^2-1)-3\cdot2018^2\\10\cdot2005^2x^2+10\cdot2005^2-10\cdot2005+10\cdot2005^2-10-3\cdot2018^2\\10\cdot2005^2x^2+20\cdot2005^2-10\cdot2005-3\cdot2018^2-10\\end{aligned}五)杨辉三角观察杨辉三角(1),发现每个数都是上面两个数之和,可以得到如下规律:a+b)^1=a+b$$a+b)^2=a^2+2ab+b^2$$a+b)^3=a^3+3a^2b+3ab^2+b^3$$a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4$$a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5$$根据规律,$(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6 $。

完全平方公式的变形及其应用

完全平方公式的变形及其应用

完全平方公式的变形及其应用完全平方公式的变形及其应用多项式乘法的完全平方公式的变形形式很多,且应用广泛。

下面结合例题,介绍完全平方公式的变形及其应用。

一、变式1:$a^2+b^2=(a+b)^2-2ab$这是因为:由$(a+b)=a^2+b^2+2ab$,移项,得$a^2+b^2=(a+b)^2-2ab$。

例1:已知$x+y=5$,$xy=2$,求下列各式的值:(1)$x^2+y^2$;(2)$x^4+y^4$。

解:由变式1,得(1)$x^2+y^2=(x+y)^2-2xy=5^2-2\times2=21$;(2)$x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=21^2-2\times4=433$。

二、变式2:$a^2+b^2=(a-b)^2+2ab$这是因为:由$(a-b)=a^2-2ab+b^2$,移项,得$a^2+b^2=(a-b)^2+2ab$。

例2:已知$a-\sqrt{11}=5$,求$a^2+11$的值。

解:由变式2,得$a^2+11=\left(a-\sqrt{11}\right)^2+2\sqrt{11}=5^2+2\sqrt{11}=27$。

三、变式3:$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)$这是因为:由$(a+b)=a^2+b^2+2ab$,得$2ab=(a+b)-\left(a^2+b^2\right)$,两边同除以2,得$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)$。

例3:已知$a+b=7$,$a^2+b^2=29$,求$ab$的值。

解:由变式3,得$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)=\dfrac{1}{2}\left(2a+b-\sqrt{7^2-29}\right)=10$。

完全平方公式常考题型

完全平方公式常考题型

完全平方公式常考题型(经典)(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--完全平方公式典型题型一、公式及其变形1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2)公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。

注意:222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+-完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。

2、公式变形 (1)+(2)得:2222()()2a b a b a b ++-+= (12)-)(得: 22()()4a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=-3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++二、题型题型一、完全平方公式的应用例1、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b-3c -1);题型二、配完全平方式1、若k x x ++22是完全平方式,则k =2、.若x 2-7xy +M 是一个完全平方式,那么M 是3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =4、如果224925y kxy x +-是一个完全平方式,那么k =题型三、公式的逆用1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.5.代数式xy -x 2-41y 2等于-( )2 题型四、配方思想1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____.2、已知0136422=+-++y x y x ,求y x =_______.3、已知222450x y x y +--+=,求21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式yx xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= .6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形题型五、完全平方公式的变形技巧1、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

完全平方公式6种变形

完全平方公式6种变形

完全平方公式6种变形在学习数学的过程中,学生们会遇到完全平方公式。

它是一种经典的数学概念,可以通过数学运算容易地计算出一个数的完全平方值。

本文将对完全平方公式的六种变形进行详细讨论。

首先,什么是完全平方公式?它是一种描述数的完全平方的特定的数学结构。

例如,完全平方公式为:(x + y)2 = x2 + 2xy + y2。

它表明,通过将一个数的完全平方和两个数伴随的系数相乘,就可以得到一个数的完全平方。

其次,完全平方公式有六种变形,它们分别是:1.方差公式:(x - y)2 = x2 - 2xy + y22.方和公式:(x + y)2 = x2 + 2xy + y23.方和差的和:(x + y)(x - y) = x2 - y24.方和差的差:(x - y)(x + y) = x2 + y25.方差和的和:(x - y)[2xy = x2 + y26.方差和的差:(x - y)[2xy = x2 - y2第一种变形就是平方差公式。

它表明,只要x和y值相减,系数相乘就可以得到两数之间的平方差值。

第二种变形是平方和公式,它表明,只要x和y值相加,系数相乘就可以得到两数之间的平方和值。

第三种变形是平方和差的和,它表明,当x与y的和乘以x与y的差时,就可以得到平方和差的和。

第四种变形是平方和差的差,它表明,当x与y的差乘以x与y的和时,就可以得到平方和差的差。

第五种变形是平方差和的和,它表明,当x与y的差乘以2xy时,就可以得到平方差和的和。

最后,第六种变形是平方差和的差,它表明,当x 与y的差乘以2xy时,就可以得到平方差和的差。

完全平方公式是一种经典的数学概念,熟练掌握它的变形是很重要的,能够帮助我们计算出一个数的完全平方值,使我们更快地解决数学问题。

因此,我们需要努力掌握和练习完全平方公式的六种变形,这样才能更好地学习数学。

在数学学习中,完全平方公式有六种变形,它们分别是:平方差公式、平方和公式、平方和差的和、平方和差的差、平方差和的和以及平方差和的差。

完全平方公式4个变形

完全平方公式4个变形

完全平方公式4个变形
五年级数学课程中,求解完全平方公式是经常涉及到的一个技能,它有四种变形:
1、一元二次一般式。

这个式子有ax^2+bx+c=0,是含有一个未知数x就可以完成完全平方公式,这里是求ax^2+bx+c=0的解,用二次完全平方公式可以写成:x=(-b±√(b^2-4ac))/2a,从这个公式可以看出,在求解的时候只要把常数的值代入公式里,计算出完全平方根就可以求得x的解。

2、展开完全平方式。

展开完全平方式包括
ax^2+2bx+c=0,这是当b≠0时完全平方式可以分解为两个完全平方和的形式,其公式可以表示为x=(-
b±√(b^2-ac))/a,只要把常数的值代入公式里,计算出完全平方根,就可以求得x的解。

3、完全平方比例定理。

这个定理是说,当
y=ax^2+bx+c=0时,x的取值范围是(-
c/b)±√(c^2/b^2−a/b),所以只要根据这个公式计算出x
的取值范围,就可以求得坐标,并通过坐标表示法确定图形的位置,也可以在图形上做出一些判断。

4、棱锥面完全平方式。

高中数学中最常用的是棱锥面
完全平方式,它的式子有:
z=ax^2+2bxy+y^2+2cx+2dy+e,要是把其中的常数代入
到完全平方的比例定理中去求解,可以求得x和y的值,而且它可以用来画出棱锥面的三维图形。

上述是完全平方公式的四种变形,它们分别有不同的求解方法,每种变形又能应用于不同的场景,学生学习完整括这四种变形,可以更快更有效地完成各种应用题,既可以在计算数学机器上求解,也可以使用绘图系统求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半期复习(3)—— 完全平方公式变形公式及常见题型
一.公式拓展:
拓展一:
拓展二:
拓展三:
拓展四:杨辉三角形
拓展五: 立方与与立方差
二.常见题型:
(一)公式倍比
例题:已知=4,求。

(1),则=
(2)已知=
(二)公式变形
(1)设(5a +3b)2=(5a -3b)2+A,则A=
(2)若()()x y x y a
-=++22
,则a 为 (3)如果,那么M 等于
(4)已知(a+b)2=m,(a —b)2=n,则ab 等于
(5)若,则N 得代数式就是
(三)“知二求一”
1.已知x ﹣y=1,x 2+y 2=25,求xy 得值.
2.若x+y=3,且(x+2)(y+2)=12.
(1)求xy 得值;
(2)求x 2+3xy+y 2得值.
3.已知:x+y=3,xy=﹣8,求:
(1)x 2+y 2
(2)(x 2﹣1)(y 2﹣1).
4.已知a ﹣b=3,ab=2,求:
(1)(a+b)2
(2)a 2﹣6ab+b 2得值.
(四)整体代入
例1:,,求代数式得值。

例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值
⑴若,则=
⑵若,则= 若,则=
⑶已知a2+b2=6ab且a>b>0,求得值为
⑷已知,,,则代数式得值就是.
(五)杨辉三角
请瞧杨辉三角(1),并观察下列等式(2):
根据前面各式得规律,则(a+b)6=.
(六)首尾互倒
1.已知m2﹣6m﹣1=0,求2m2﹣6m+=.
2.阅读下列解答过程:
已知:x≠0,且满足x2﹣3x=1.求:得值.
解:∵x2﹣3x=1,∴x2﹣3x﹣1=0
∴,即.
∴==32+2=11.
请通过阅读以上内容,解答下列问题:
已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7,
求:(1)得值;(2)得值.
(七)数形结合
1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.
(1)您认为图(2)中得阴影部分得正方形边长就是多少?
(2)请用两种不同得方法求图(2)阴影部分得面积;
(3)观察图(2),您能写出下列三个代数式之间得等量关系吗?
三个代数式:(m+n)2,(m﹣n)2,mn.
(4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值.
2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例
如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示.
(1)请写出图3图形得面积表示得代数恒等式;
(2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2.
(八)规律探求
15.有一系列等式:
1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+ 1=292=(42+3×4+1)2…
(1)根据您得观察、归纳、发现得规律,写出8×9×10×11+1得结果
(2)试猜想n(n+1)(n+2)(n+3)+1就是哪一个数得平方,并予以证明.。

相关文档
最新文档