初三数学暑假班讲义第03讲-因式分解-学案
九年级数学教案因式分解

九年级数学教案因式分解九年级数学教案:因式分解教学目标:1. 理解因式分解的概念和基本原理;2. 掌握因式分解的常见方法和技巧;3. 能够独立完成因式分解的题目。
教学重点:1. 理解因式分解的定义和意义;2. 掌握提取公因式、差平方、完全平方式等常见的因式分解方法;3. 能够将多项式进行因式分解。
教学准备:1. 教师准备教学投影仪、教材、笔和纸;2. 学生准备教材、笔和纸。
教学过程:一、导入(15分钟)在课堂开始时,教师可以给学生出示一道简单的数学题目,如:将x² - 4进行因式分解,并解释因式分解的概念和基本原理。
二、讲解因式分解的常见方法(30分钟)1. 提取公因式法:示范一个简单的例子,如12x + 8y,教师可以引导学生将12和8分别写成2×2×3和2×2×2,然后提取公因式2,最后得到2(6x + 4y)。
通过多个练习题目,让学生熟练掌握该方法。
2. 差平方公式:以x² - 4为例,教师可以解释差平方公式的含义,然后引导学生进行因式分解,得到(x + 2)(x - 2)。
通过多个类似的例子,让学生理解并掌握该方法。
3. 完全平方式:示范一个例子,如x² + 6x + 9,教师可以引导学生观察到(x + 3)²得到x² + 6x + 9,然后通过学生的思考,指导他们得出因式分解为(x +3)(x + 3)。
三、练习与拓展(40分钟)1. 在课堂上设计一些练习题目,包括提取公因式、差平方和完全平方式的因式分解,让学生独立完成。
2. 将练习题目逐一讲解,纠正学生的错误,并解释正确的方法和步骤。
四、归纳总结(10分钟)让学生总结因式分解的常见方法和技巧,将学习到的知识整理成笔记,以便日后复习和巩固。
五、课堂小结与作业布置(5分钟)对本节课的内容进行小结,强调因式分解的重要性和应用。
布置相关的作业,要求学生独立完成一定数量的因式分解题目。
(人教版)初中数学因式分解教案(5篇)

(人教版)初中数学因式分解教案(5篇)第一篇:(人教版)初中数学因式分解教案1,教学目标【课前预习】:知识回顾1、单项式乘单项式的法则是把之积作为积的系数,相同字母的作为积里这个字母的指数,只在一个单项式中含有的字母,则连同其指数作为积的一个。
2、单项式与多项式相乘,就是根据乘法律,用单项式乘多项式的,再把所得的。
3、多项式与多项式相乘,先用一个多项式的乘另一个多项式的再把所得的。
4、写出完全平方公式写出平方差公式。
5、叫多项式的因式分解。
6、因式分解与整式乘法的关系怎样?7、填空: m(a+b+c)=(a+b)(c+d)=(a+b)(c+d)=(a+b)2=(a-b)2= 2,例题例1、已知a+b=-3, ab=2, 求a2+b2;(a-b)2 的值。
例2、先化简,后求值:2x2(x2-x+1)-x(2x3-10x2+2x), 其中x=0.25例 3.计算:(1)(a+9)(a+1)(2)(5-2x+y)(2x+5-y)(3)(2x+3y)2(2x-3y)2例4: 分解因式(1)x4-1(2)49(a-b)2-6(a+b)2(3)x4y4-8x2y2+16 3,作业一、耐心填一填(每小题2分,共18分)1、计算:(5⨯10)⨯(3⨯10)=________;(用科学记数法表示)42a(a+b)-b(a-b)=_____________.2、⑴·3ab2c=—24a3b5c;⑵(—a—b)2=a22ab+b23、.多项式—3x2y3z+9x3y3z—6x4yz2的公因式是___________;分解因式a3—4ab2=.4、用一张包装纸包一本长、宽、厚如图所示的书(单位:cm),如果将封面和封底每一边都包进去3cm.则需长方形的包装纸cm2.5、若a—b=2,3a+2b=3,则3a(a—b)+2b(a—b)=.二、精心选一选6、下列四个等式从左至右的变形中,是因式分解的是:()A.(a+1)(a—1)=a2—1;B.(x—y)(m—n)=(y—x)(n—m);C.ab—a—b+1=(a—1)(b—1); D.m23⎫⎛—2m—3=m m—2—⎪.m⎭⎝7、计算(3a+b)(-3a-b)等于:()A.9a2-6ab-b2 B.—b2-6ab-9a2 C.b2-9a2 D.9a2-b212、下列多项式, 在有理数范围内不能用平方差公式分解的是:()A.—x2+y2 B.4a2—(a+b)2 C. a2—8b2 D. x2y2—113、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是:()A.(a—b)2=a2—2ab+b2 B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a+b)(a—b)=a2—b214、如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为:()A.4 B.8 C.—8 D.±8215、(x-mx+1)(x-2)的积中x的二次项系数为零,则m的值是:A.1B.–1 C.–2D.2三、用心做一做 1.计算:(1)(2x-3y)2-(y+3x)(3x-y)(2)(x+y)(x2+y2)(x-y)(x4+y4)(3).(a-2b+3)(a+2b-3)(4).[(x-y)2+(x+y)2](x2-y2)222⎡⎛11⎫⎛⎫、先化简,再求值:⎢a—⎪— a+⎪⎤⎥(a+3),其中2⎭2⎭⎥⎝⎢⎣⎝⎦a= —23、分解因式:(1)4x3y+4x2y2+xy3;(3)x3-25x(4)4x4-4x3+x2;(5)ab+a+b+14、已知(a+b)2=7,(a—b)2=4,求a2+b2和ab的值.5、阅读解答题:(2)(a+b)2+2(a+b)+1 有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:(2004年河北省初中数学竞赛题)若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a—2)=a2—a—2,y=a(a—1)=a2—a ∵x—y=(a∴x<y 看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算 1.345⨯0.345⨯2.69—1.3452 —1.345⨯0.3452 2用这种方法不仅可比大小,也能解计算题哟!—a—2—a2—a=—2<0 )()第二篇:初中数学因式分解练习题1.(2014•黔南州)下列计算错误的是()A.a•a2=a3 C.2m+3n=5mnA.a2+4a-21=a(a+4)-21 C.(a-3)(a+7)=a2+4a-21 A.a2+1 A.-3B.a2-6a+9 B.-1B.a2b-ab2=ab(a-b)D.(x2)3=x6B.a2+4a-21=(a-3)(a+7)D.a2+4a-21=(a+2)2-25 C.x2+5y C.1D.x2-5y D.316.(2014•攀枝花)因式分解a2b-b的正确结果是()A.b (a+1)(a-1)A.x(x2-9)A.a(x-6)(x+2)A.x2+y2 A.(x+y)2=x2+y2 C.x2y+xy2=(xy)3 A.(a2+1)2 A.(x+2)(x-2)A.(x-2)2 A.m2+n2=(m+n)2 D.(a-2)(a+1)C.(a-b)2=a2-2ab+b2 A.(x2)3=x6 C.x2-2xy+y2=(x-y)2 A.x2+2x-1=(x-1)2 C.(x+1)2=x2+2x+1 A.x2-xy A.x(x2-4)A.y(x-y)2 A.a2(a-2)+aD.y(x+y)(x-y)D.2(x+9)(x-9)A.x2+2x-1=(x-1)2 C.x3-4x=x(x+2)(x-2)B.x2+xyB.x(x+4)(x-4)B.y(x+y)(x-y)B.a(a2-2a)B.(a2-1)2 B.(x+2)2 B.x2B.a(b+1)(b-1)B.x(x-3)2 B.a(x-3)(x+4)B.x2-yC.b(a2-1)C.x(x+3)2 C.a(x2-4x-12)C.x2+x+1 B.x2y2=(xy)4 D.x4÷x2=x2 C.a2(a2-2)C.(x-4)2 C.(x-1)2D.(a+1)2(a-1)2 D.(x-2)2 D.x(x-2)D.b(a-1)2 D.x(x+3)(x-3)D.a(x+6)(x-2)D.x2-2x+117.(2014•广东)把x3-9x分解因式,结果正确的是()18.(2014•怀化)多项式ax2-4ax-12a因式分解正确的是()19.(2014•玉林)下面的多项式在实数范围内能因式分解的是()21.(2014•官渡区一模)下列运算正确的是()2.(2014•海南)下列式子从左到右变形是因式分解的是()3.(2014•安徽)下列四个多项式中,能因式分解的是()4.(2014•台湾)若x2-4x+3与x2+2x-3的公因式为x-c,则c 之值为何?()5.(2014•台湾)(3x+2)(-x6+3x5)+(3x+2)(-2x6+x5)+(x+1)(3x6-4x5)与下列哪一个式子相同?()A.(3x-4x)(2x+1)C.-(3x6-4x5)(2x+1)A.x2-1 A.-1 A.a(a-1)22.(2014•下城区一模)分解因式a4-2a2+1的结果是()23.(2014•衡阳二模)把代数式x2-4x+4分解因式,下列结果中正确的是()24.(2014•滨湖区二模)分解因式(x-1)2-1的结果是()25.(2014•上城区二模)下列因式分解正确的是()B.m2-4n2=(m-2n)(m+2n)D.a2-3a+1=a(a-3)+1 B.x2•x3=x5 D.3x-2x=1B.-x2+(-2)2=(x-2)(x+2)D.x2-4x=x(x+2)(x-2)C.x2+y2C.x(x+2)(x-2)C.y(x+y)2 C.a(a-1)2D.x2-y2D.(x+2)(x-2)D.y(x2-2xy+y2)D.a(a+1)(a-1)B.(3x-4x)(2x+3)D.-(3x6-4x5)(2x+3)C.x2-2x+1 C.1C.(a-2)(a-1)B.(x-4)x=x-4x D.m2-2mn+n2=(m+n)26.(2014•威海)将下列多项式分解因式,结果中不含因式x-1的是()B.x(x-2)+(2-x)B.0 B.a(a-2)D.x2+2x+1 D.27.(2014•漳州)若代数式x2+ax可以分解因式,则常数a不可以取()8.(2014•仙桃)将(a-1)2-1分解因式,结果正确的是()9.(2014•常德)下面分解因式正确的是()A.x+2x+1=x(x+2)+1 C.ax+bx=(a+b)x10.(2014•河北)计算:852-152=()A.70A.x2-y2=(x-y)2 C.xy-x=x(y-1)B.700C.4900B.a2+a+1=(a+1)2 D.2x+y=2(x+y)D.700011.(2014•岳阳)下列因式分解正确的是()26.(2014•郯城县模拟)下列运算错误的是()27.(2014•路北区二模)下列各因式分解正确的是()29.(2014•长清区一模)下列多项式中,能运用公式法因式分解的是()30.(2014•天桥区二模)把多项式x3-4x分解因式所得的结果是()31.(2014•朝阳区一模)把多项式x2y-2xy2+y3分解因式,正确的结果是()32.(2014•邢台一模)分解因式:a3-2a2+a=()33.(2014•南充模拟)下列各因式分解正确的是()12.(2014•衡阳)下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③-x2+y2=(x+y)(x-y)A.3个B.2个C.1个B.x2+2x-1=(x-1)2 D.x-x+2=x(x-1)+2B.y(x-y)B.2(x-3)2D.0个13.(2014•毕节地区)下列因式分解正确的是()A.2x2-2=2(x+1)(x-1)C.x+1=(x+1)A.y(x+y)A.2(x2-9)14.(2014•泉州)分解因式x2y-y3结果正确的是()C.y(x-y)C.2(x+3)(x-3)B.-x2+(-2)2=(x-2)(x+2)D.(x+1)2=x2+2x+115.(2014•义乌市)把代数式2x2-18分解因式,结果正确的是()第三篇:初中数学因式分解(练习题)初中因式分解的常用方法例1、分解因式:am+an+bm+bn例2、分解因式:2ax-10ay+5by-bx练习:分解因式1、a2-ab+ac-bc2、xy-x-y+1例3、分解因式:x2-y2+ax+ay例4、分解因式:a2-2ab+b2-c2练习:分解因式3、x2-x-9y2-3y4、x2-y2-z2-2yz综合练习:(1)x3+x2y-xy2-y3(2)ax2-bx2+bx-ax+a-b(3)x2+6xy+9y2-16a2+8a-1(4)a2-6ab+12b+9b2-4a(5)a4-2a3+a2-9(6)4a2x-4a2y-b2x+b2y(7)x2-2xy-xz+yz+y2(8)a2-2a+b2-2b+2ab+1(9)y(y-2)-(m-1)(m+1)(10)(a+c)(a-c)+b(b-2a)(11)a2(b+c)+b2(a+c)+c2(a+b)+2abc(12)a3+b3+c3-3abc 例5、分解因式:x2+5x+6例6、分解因式:x2-7x+6练习5、分解因式(1)x2+14x+24(2)a2-15a+36(3)x2+4x-5练习6、分解因式(1)x2+x-2(2)y2-2y-15(3)x2-10x-24例7、分解因式:3x2-11x+10练习7、分解因式:(1)5x2+7x-6(2)3x2-7x+2(3)10x2-17x+3(4)-6y2+11y+10例8、分解因式:a2-8ab-128b2练习8、分解因式(1)x2-3xy+2y2(2)m2-6mn+8n2(3)a2-ab-6b2例9、2x2-7xy+6y2例10、x2y2-3xy+2练习9、分解因式:(1)15x2+7xy-4y2(2)a2x2-6ax+8综合练习10、(1)8x6-7x3-1(2)12x2-11xy-15y2(3)(x+y)2-3(x+y)-10(4)(a+b)2-4a-4b+3(5)x2y2-5x2y-6x2(6)m2-4mn+4n2-3m+6n+2(7)x2+4xy+4y2-2x-4y-3(8)5(a+b)2+23(a2-b2)-10(a-b)2 (9)4x2-4xy-6x+3y+y2-10(10)12(x+y)2+11(x2-y2)+2(x-y)2思考:分解因式:abcx2+(a2b2+c2)x+abc例11、分解因式:x2-3xy-10y2+x+9y-2练习11、分解因式(1)x2-y2+4x+6y-5(2)x2+xy-2y2-x+7y-6(3)x2+xy-6y2+x+13y-6(4)a2+ab-6b2+5a+35b-36例12、分解因式(1)x2-3xy-10y2+x+9y-2(2)x2+xy-6y2+x+13y-6练习12、分解因式(1)x2+xy-2y2-x+7y-6(2)6x2-7xy-3y2-xz+7yz-2z2第四篇:【初中数学】复习资料--因式分解常用技巧总结因式分解常用技巧总结基本的四种技巧:一.提取公因式法:ma+mb+mc=m(a+b+c);例:6xy2-9x2y-y3=二.公式法:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)2推广:a3±b3=(a±b)(a2μab+b2);an-bn=(a-b)(an-1+an-2b+an-3b+Λ+abn-2+bn-1)an+bn=(a+b)(an-1-an-2b+an-3b+Λ-abn-2+bn-1)(n为奇数)例:8x-3127y3=变式1:x8+x6+x4+x2+1=答案:(x4+x3+x2+x+1)(x4-x3+x2-x+1)三.十字相乘法:x+(a+b)x+ab=(x+a)(x+b)推广:a1a2x+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2),(a1a2≠0)xy-ax+by-ab=(x+b)(y-a)22例:6m+7mn-20n=变式1:x+xy-6y+x+13y-6=四.分组分解法:分组以后能提公因式或利用公式分解,从而把原多项式因式分解例:9a-6a+2b-b=25-4x-8xy-4y22222222=推广:(1)拆项法:把多项式里的某一项拆成两项或多项,使其能进行分组分解例:x4-7x2+1=答案:(x2-3x+1)(x2+3x+1)(2)添项法:在多项式中适当地添上一些项,使其能转化为可进行分组分解例:3x6-x12-1=答案:(x3-x6+1)(x3+x6-1)变式1:x3-9x+8=变式2:x4+4=其他重要的因式分解技巧:1.换元法:换元法是在分解因式时,通过将原式的代数式用字母代替后,达到简化原式结构的目的例1:(x+1)(x+2)(x+3)(x+6)+x2=提示:令m=x2+6,原式=(x2+6x+6)2 例2:xy(xy+1)+(xy+3)-2(x+y+答案:(x+1)(y+1)(x-1)(y-1)变式1:(x+1)(x+2)(x+3)(x+4)-24=变式2:(x-4x+1)(x+3x+1)+10x=2.主元法:主元法就是将多元(多个字母)中某个元作为主要字母,视其他元为常数,重新按主元排列多项式,排除非主元字母的干扰,从而简化问题。
因式分解数学教案优秀5篇

因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
初中数学因式分解教案

初中数学因式分解教案一、教学目标:1. 知识与技能:学生能够理解因式分解的概念,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决实际问题。
2. 过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学表达能力,提高学生解决数学问题的能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的价值和魅力。
二、教学重难点:1. 教学重点:掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2. 教学难点:如何正确找出多项式各项的公因式,以及如何确定提公因式后的另外一个因式。
三、教学过程:1. 引入新课:通过复习多项式乘法,引导学生思考:如何将一个多项式化为几个整式的积的形式?从而引出因式分解的概念。
2. 探索新知:(1) 提公因式法:引导学生观察两个多项式的乘积,找出它们之间的公因式,并将公因式提出来。
例如,分解因式:x^2 - 4x + 4,我们可以先提出公因式x,得到x(x - 4),然后再利用平方差公式进行进一步分解。
(2) 公式法:引导学生掌握平方差公式和完全平方公式,并能够运用这两个公式进行因式分解。
例如,分解因式:x^2 - 9,我们可以利用平方差公式a^2 - b^2 = (a + b)(a - b)进行分解,得到(x + 3)(x - 3)。
3. 巩固练习:提供一些练习题,让学生运用所学的因式分解方法进行解答,巩固所学知识。
4. 课堂小结:总结本节课所学的因式分解方法,强调提公因式法和公式法在因式分解中的应用,以及正确找出多项式各项的公因式和确定提公因式后的另外一个因式的方法。
四、课后作业:1. 完成教材后的相关练习题。
2. 总结因式分解的方法和技巧,写一篇关于因式分解的心得体会。
通过以上教学设计,希望能够帮助学生掌握因式分解的基本方法,提高学生解决数学问题的能力,激发学生学习数学的兴趣。
初三数学因式分解的应用教案

初三数学因式分解的应用教案【】初三数学因式分解的运用教案教案让先生学会运用因式分解停止复杂的多项式除法并且学会运用因式分解解复杂的方程。
教学目的1、会运用因式分解停止复杂的多项式除法。
2、会运用因式分解解复杂的方程。
二、教学重点与难点教学重点:因式分解在多项式除法和解方程两方面的运用。
教学难点:运用因式分解解方程触及较多的推理进程。
三、教学进程〔一〕引入新课1、知识回忆(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②运用平方差公式: = (a+b) (a-b)③运用完全平方公式:a 2ab+b =(ab) (2) 课前热身:①分解因式:(x +4) y - 16x y〔二〕师生互动,讲授新课1、运用因式分解停止多项式除法例1 计算: (1) (2ab -8a b) (4a-b)(2)(4x -9) (3-2x)解:(1) (2ab -8a b)(4a-b) =-2ab(4a-b) (4a-b) =-2ab (2) (4x -9) (3-2x) =(2x+3)(2x-3) [-(2x-3)] =-(2x+3) =-2x-3 一个小效果 :这里的x能等于3/2吗 ?为什么?想一想:那么(4x -9) (3-2x) 呢?练习:课本P162课内练习12、协作学习想一想:假设 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才可以满足条件呢? (让先生自己思索、相互之间讨论!)理想上,假定AB=0 ,那么有下面的结论:(1)A 和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0试一试:你能运用下面的结论解方程(2x+1)(3x-2)=0 吗?3、运用因式分解解复杂的方程例2 解以下方程: (1) 2x +x=0 (2) (2x-1) =(x+2) 解:x(x+1)=0 解:(2x-1) -(x+2) =0那么x=0,或2x+1=0 (3x+1)(x-3)=0原方程的根是x1=0,x2= 那么3x+1=0,或x-3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2等练习:课本P162课内练习2做一做!关于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?教员总结:运用因式分解解方程的基本步骤(1)假设方程的左边是零,那么把左边分解因式,转化为解假定干个一元一次方程;(2)假设方程的两边都不是零,那么应该先移项,把方程的左边化为零以后再停止解方程;遇到方程两边有公因式,异样需求先停止移项使左边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) -16x =0解:将原方程左边分解因式,得 (x +4) -(4x) =0(x +4+4x)(x +4-4x)=0(x +4x+4)(x -4x+4)=0 (x+2) (x-2) =0接着继续解方程,5、练一练① a、b、c为三角形的三边,试判别 a -2ab+b -c 大于零?小于零?等于零?解: a -2ab+b -c =(a-b) -c=(a-b+c)(a-b-c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a-b+c﹥0 a-b-c ﹤0即:(a-b+c)(a-b-c) ﹤0 ,因此 a -2ab+b -c 小于零。
中考数学复习第3课时《因式分解》教学设计

中考数学复习第3课时《因式分解》教学设计一. 教材分析《因式分解》是中考数学的重要内容,主要涉及提公因式法、公式法、分组分解法等因式分解方法。
通过学习,使学生掌握因式分解的基本方法和技巧,提高解题能力。
二. 学情分析学生在学习《因式分解》之前,已掌握有理数的运算、方程的解法等基础知识。
但部分学生对因式分解的方法和应用还不够熟练,需要通过本节课的学习进行巩固和提高。
三. 教学目标1.知识与技能目标:使学生掌握因式分解的基本方法,提高解题能力。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心。
四. 教学重难点1.重点:因式分解的基本方法。
2.难点:因式分解在实际问题中的应用。
五. 教学方法采用“问题驱动”的教学方法,引导学生主动探究、合作交流,通过实例讲解、练习巩固,使学生掌握因式分解的方法。
六. 教学准备1.教学课件:制作课件,展示因式分解的方法和实例。
2.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入因式分解的概念,激发学生的兴趣。
2.呈现(15分钟)讲解因式分解的基本方法:提公因式法、公式法、分组分解法。
并通过实例演示,使学生理解并掌握这些方法。
3.操练(10分钟)让学生独立完成一些因式分解的练习题,检验学生对因式分解方法的掌握程度。
4.巩固(5分钟)对学生的练习进行点评,总结因式分解的注意事项,加深学生对知识点的理解。
5.拓展(10分钟)讲解因式分解在实际问题中的应用,让学生体会因式分解在解决问题中的重要性。
6.小结(5分钟)对本节课的内容进行总结,使学生形成知识体系。
7.家庭作业(5分钟)布置适量的家庭作业,巩固所学知识。
8.板书(5分钟)总结因式分解的基本方法和步骤,方便学生复习。
教学过程每个环节所用时间:导入5分钟,呈现15分钟,操练10分钟,巩固5分钟,拓展10分钟,小结5分钟,家庭作业5分钟,板书5分钟。
初中数学因式分解教案优秀范文

初中数学因式分解教案优秀范文一、教学目标1.理解因式分解的基本概念和方法;2.能够对简单的多项式进行因式分解;3.培养学生分析问题、解决问题的能力;4.提高学生的数学思维能力和应用能力。
二、教学重难点1.教学重点:因式分解的基本概念和方法;2.教学难点:应用因式分解解决实际问题。
三、教学过程1. 导入环节1.教师可以通过类比例子,让学生理解因式分解的基本概念。
例如:a2+2ab+b2可以理解为(a+b)2。
2.提问:“你们学过哪些多项式?”引导学生思考及讨论。
然后,由教师引导进入因式分解的概念,并结合例子加深理解。
2. 讲解环节1.教师先通过简单的例子让学生了解因式分解的方法,然后扩大讲解到多项式的因式分解。
示例:3x2y+6xy2可以因式分解为3xy(x+2y)。
2.对于难一些的多项式,可以先拆分简单的因子,然后再应用因式分解法。
示例:16x2+40y2+4xy可以拆分为4(4x2+10y2+xy),再应用因式分解法。
3. 实践环节1.学生自己动手解决一些实际问题,例如:展开简单的式子,或者根据实际情况应用因式分解法。
2.针对实际问题的解决方法,可以通过教师给出一些思路和方法切入,或者小组合作学习之后交流解题方法,提高学生学习兴趣。
4. 总结环节1.教师让学生了解因式分解的方法和步骤,并在实践环节中发现问题,更好地理解因式分解的应用。
2.总结因式分解的关键之处,在学生中加深对知识的理解,并激发学生对知识的学习兴趣。
四、教师评价1.了解学生的产出,在教学评价中主要考察学生的应用能力。
2.采取多样化评价手段,在教学过程中多采用小组合作、答辩和作业等方式进行评价。
避免在一次考试中对学生进行测评,包括学生的参与度和表现在内。
五、教学反思1.引导学生提出问题并互相解决问题。
2.加强对复杂问题的解答经验,充分利用教师的勘误,不断改进教学方法,提高学生的兴趣。
3.鼓励学生自由思考、交流思想和解决问题,使学习成为主动而积极的过程。
初中数学因式分解教案(通用13篇)

初中数学因式分解教案初中数学因式分解教案(通用13篇)作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。
来参考自己需要的教案吧!下面是小编为大家整理的初中数学因式分解教案,欢迎阅读,希望大家能够喜欢。
初中数学因式分解教案篇1一、教学目标【知识与技能】了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
【过程与方法】通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。
【情感态度价值观】在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。
二、教学重难点【教学重点】运用平方差公式分解因式。
【教学难点】灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。
三、教学过程(一)引入新课我们学习了因式分解的定义,还学习了提公因式法分解因式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?大家先观察下列式子:(1)(x+5)(x—5)=,(2)(3x+y)(3x—y)=,(3)(1+3a)(1—13a)=他们有什么共同的特点?你可以得出什么结论?(二)探索新知学生独立思考或者与同桌讨论。
引导学生得出:①有两项组成②两项的符号相反③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来?初中数学因式分解教案篇2知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学暑假班讲义第03讲-因式分解-学案高效提分源于优学第03讲因式分解温故知新一.重点回顾回忆整式乘法运算法则1.单项式乘多项式2.多项式乘多项式课堂导入课题扩展因式分解是初中代数中一种重要的恒等变形,也是处理数学问题的重要手段和工具,学习因式分解,除了掌握提公因式法.公式法.分组分解法等基本方法外,还要熟悉一些特殊的方法和技巧。
一.巧拆项在某些多项式的因式分解过程中,若将多项式的某一项(或某几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。
二.巧添项在某些多项式的因式分解过程中,若在所给多项式中加.减相同的项,再用基本方法分解,也可使问题化难为易。
三.巧换元在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单.易于分解的多项式,从而使问题化繁为简,迅速获解。
四.展开巧组合若一个多项式的某些项是积的形式,直接分解比较困难,则可展开重新组合,然后再用基本方法分解。
五.巧用主元对于含有两个或两个以上字母的多项式,若无法直接分解,可以其中一个字母为主元进行变形整理。
知识要点一因式分解1.因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做因式分解。
2.因式分解与整式乘法的关系如果把整式乘法看成一个变形过程,那么多项式的因式分解就是整式乘法的逆过程;如果把多项式的因式分解看成一个变形过程,那么整式乘法又是多项式的因式分解的逆过程。
3.公因式的定义我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
4.确定公因式的方法确定公因式的一般步骤(1)如果多项式的第一项系数是负数,应把公因式的符号取“”;(2)确定公因式的数字因数当各项系数都是整数时,取多项式各项系数的最大公约数为公因式的系数;(3)确定公因式的字母及其指数取多项式各项都含有的相同字母(或因式),其指数取最低次。
5.提公因式法如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法。
提公因式法的依据是乘法的分配律,它的实质是单项式乘多项式时乘法分配律的“逆用”。
6.公式法(1)用平方差公式因式分解(2)用完全平方公式因式分解(3)因式分解的一般步骤步骤有公因式先提公因式;没有公因式,可以尝试公式法因式分解;如果上述方法都不可以,可以先整理多项式,然后分解;必须分解到最后。
典例分析一.因式分解的定义例1.下列从左边到右边的变形,是因式分解的是()A(3x)(3x)9x2Bm2n2(mn)(mn)C(y1)(y3)(3y)(y1)D4yz2y2zz2y(2zyz)z例2.若x22x5是x4px2q的一个因式,那么pq的值等于学霸说因式分解与整式乘法是相反方向的变形,二者是一个式子的不同表现形式;者赤裸裸的残酷的掠夺,激起了当地土著民族顽强的反抗。
举一反三1.下列各式从左到右的变形为分解因式的是()Am2m6(m2)(m3)B(m2)(m3)m2m6Cx28x9(x3)(x3)8xDx21x (x)2.已知多项式x27xymy25x43y24可分解成x.y的两个一次因式,则实数m3.先阅读第(1)题的解答过程,然后再解第(2)题(1)已知多项式2x3x2m有一个因式是2x1,求m的值解法一设2x3x2m (2x1)(x2axb),则2x3x2m2x3(2a1)x2(a2b)xb比较系数得,解得,解法二设2x3x2mA(2x1)(A为整式)由于上式为恒等式,为方便计算了取,20,故(2)已知x4mx3nx16有因式(x1)和(x2),求m.n的值二.提公因式法典例分析例1.计算a2(2a)3a(3a8a4)的结果是()A3a2B3aC3a2D16a5例2.先化简,再求值(1)2(a2bab2)3(a2b1)2ab21,其中a1,b2(2)2a(ab)(ab)2,其中a3,b5举一反三1.把多项式3m(xy)2(yx)2分解因式的结果是()A (xy)(3m2x2y)B(xy)(3m2x2y)C(xy)(3m2x2y)D(yx)(3m2x2y)【解析】故选B2.已知a32,b32,则代数式ab2a2b的值是3.阅读下列因式分解的过程,再回答所提出的问题1xx(x1)x(x1)2(1x)1xx(x1)(1x)2(1x)(1x)3(1)上述分解因式的方法是,共应用了次(2)若分解1xx(x1)x(x1)2x(x1)3,则需用上述方法3次,结果是(3)分解因式1xx(x1)x(x1)2x(x1)n(n为正整数)结果是三.公式法典例分析例1.把下列各式分解因式(1);2);例2.分解因式(1)(2)(3)(4)(5)例3.已知axxxxx,bxxxxx,cxxxxx,则a2b2c2abacbc的值是()A0B1C2D3例4.若a4b4a22a2b2b26,则a2b2举一反三1.把多项式x2axb分解因式,得(x1)(x3),则a,b的值分别是()Aa2,b3Ba2,b3Ca2,b3Da2,b32.分解因式(ab)212(ab)363.阅读与思考整式乘法与因式分解是方向相反的变形由(xp)(xq)x2(pq)xpq得,x2(pq)xpq(xp)(xq);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如将式子x23x2分解因式分析这个式子的常数项212,一次项系数312,所以x23x2x2(12)x12解x23x2(x1)(x2)请仿照上面的方法,解答下列问题(1)分解因式x27x18启发应用(2)利用因式分解法解方程x26x80;(3)填空若x2px8可分解为两个一次因式的积,则整数p的所有可能值是课堂闯关初出茅庐1.下列各式从左到右的变形中,是因式分解的是()A (a3)(a3)a29BCa24a5a(a4)5Da2b2(ab)(ab)2.下列由左到右的变形,属于因式分解的是()A(x2)(x2)x24Bx24(x2)(x2)Cx243x(x2)(x2)3xDx24(x2)23.将m2(a2)m(a2)分解因式的结果是()A(a2)(m2m)Bm(a2)(m1)Cm(a2)(m1)Dm(2a)(m1)4.多项式2x212xy28xy3的公因式是()A2xyB24x2y3C2xD以上都不对5.对下列各整式因式分解正确的是()A2x2x1x(2x1)1Bx22x1(x21)2C2x2xyx2x(xy1)Dx2x6(x2)(x3)6.10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,第一名胜x1局,负y1局;第二名胜x2局,负y2局;;第名胜x10局,负y10局,若记Mx12x22x102,Ny12y22y102,则()AMNBMNCMNDM.N的大小关系不确定7.由(x2)(x1)x23x2,则x23x2分解因式为8.若4a2kab9b2可以因式分解为(2a3b)2,则k的值为9.分解因式3a312a2b12ab210.分解因式2xy28xy8x优学学霸1.仔细阅读下面例题,解答问题例题已知二次三项式x24xm有一个因式是(x3),求另一个因式以及m的值解设另一个因式为(xn),得x24xm(x3)(xn),则x24xmx2(n3)x3nn34,m3n,解得n7,m21另一个因式为(x7),m的值为21问题(1)若二次三项式x25x6可分解为(x2)(xa),则a;(2)若二次三项式2x2bx5可分解为(2x1)(x5),则b;(3)仿照以上方法解答下面问题已知二次三项式2x25xk有一个因式是(2x3),求另一个因式以及k的值2.先化简,再求值(1)已知ab2,ab2,求a3b2a2b2ab3的值(2)求(2xy)(2xy)(2yx)(2yx)的值,其中x2,y13.“字相乘法”能把二次三项式分解因式,对于形如ax2bxycy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即aa1a2,把y2项系数c分解成两个因数c1,c2的积,即cc1c2,并使a1c2a2c1正好等于xy项的系数b,那么可以直接写成结果ax2bxycy2(a1xc1y)(a2xc2y)例分解因式x22xy8y2解如图1,其中111,8(4)2,而2121(4)x22xy8y2(x4y)(x2y)而对于形如ax2bxycy2dxeyf的x,y的二元二次式也可以用字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mqnpb,pkqje,mknjd,即第1,2列.第2,3列和第1,3列都满足字相乘规则,则原式(mxpyj)(nxqyk);例分解因式x22xy3y23xy2解如图3,其中111,3(1)3,212;而2131(1),1(1)231,31211;x22xy3y23xy2(xy1)(x3y2)请同学们通过阅读上述材料,完成下列问题(1)分解因式6x217xy12y22x2xy6y22x17y12x2xy6y22x6y(2)若关于x,y的二元二次式x27xy18y25xmy24可以分解成两个一次因式的积,求m 的值考场直播1.【xx春深圳期末】仔细阅读下面例题,解答问题例题已知二次三项式x24xm有一个因式是(x3),求另一个因式以及m的值解设另一个因式为(xn),得x24xm(x3)(xn)则x24xmx2(n3)x3n解得n7,m21另一个因式为(x7),m的值为21问题仿照以上方法解答下面问题已知二次三项式2x23xk有一个因式是(2x5),求另一个因式以及k的值2.【xx深圳】因式分解(1)6xy29x2yy3(2)(p4)(p1)3p套路揭密(1)掌握因式分解的定义及意义;(2)因式分解中,提公因式及公式法需要熟练的掌握应用。
自我挑战1.下列各式中,从左到右的变形是因式分解的是()A2a22a12a(a1)1B(xy)(xy)x2y2Cx26x5(x5)(x1)Dx2y2(xy)22xy2.下列各式从左到右的变形是因式分解的是()Am (ab)mambBa2a2a(a1)2C4a29b2(2a3b)(2a3b)Dx2(x)(x)3.多项式5mx325mx210mx各项的公因式是()A5mx2B5mx3CmxD5mx4.多项式18a2b212a3b2c6ab2的公因式是()A6ab2B6ab2cCab2D6a3b2c5.下列因式分解正确的是()Am2n2(mn)(mn)Bx22x1(x1)2Ca2aa(a1)Da22a1a(a2)16.因式分解的结果是(xyz)(xyz)的多项式是()Ax2(yz)2B(xy)2z2C(xy)2z2Dx2(yz)27.多项式xnyn因式分解的结果是(xy)(xy)(x2y2),则n8.因式分解6x3y12xy23xy9.分解因式(3ab)(ab)abb210.把下列各式分解因式(1)2m(mn)28m2(nm)(2)8a2b12ab24a3b311.下面是某同学对多项式(x24x2)(x24x6)4进行因式分解的过程解设x24xy,原式(y2)(y6)4(第一步)y28y16(第二步)(y4)2(第三步)(x24x4)2(第四步)(1)该同学第二步到第三步运用了因式分解的A提取公因式B平方差公式C两数和的完全平方公式D两数差的完全平方公式(2)该同学因式分解的结果是否彻底(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(3)请你模仿以上方法尝试对多项式(x22x)(x22x2)1进行因式分解13思考乐优学产品中心初中组。