基因工程在医学上的发展

基因工程在医学上的发展
基因工程在医学上的发展

基因工程在医学上的发展

【摘要】

基因治疗是目前最具革命性的一项医疗技术。随着人类基因组计划的顺利实施,基因治疗有望成为治疗遗传病、肿瘤、心血管病、病毒感染及其它难治性疾病的有效手段。本文从基因治疗(基因治疗的现状、肿瘤的基因治疗)、基因预防、基因治疗技术、基因治疗存在的问题和未来发展等进行综述。

【关键词】基因治疗基因预防基因治疗技术现状、问题和未来发展

人类的疾病是由于其本身的基因的核苷酸发生变化有关。近年来,基因治疗作为一种安全的、新的疾病治疗手段,在一定程度上取得了重大进展。

基因治疗

基因疗法,就是利用健康的基因来填补或替代基因疾病中某些缺失或病变的基因,目前的基因疗法是先从患者身上取出一些细胞,然后利用对人体无害的逆转录病毒当载体,把正常的基因嫁接到病毒上,再用这些病毒去感染取出的人体细胞,让它们把正常基因插进细胞的染色体中,使人体细胞就可以“获得”正常的基因,以取代原有的异常基因。

一、基因治疗的现状

生物医学的深入研究表明,人类的各种疾病都直接或间接与基因有关。因此,可认为人类的一切疾病都是“基因病”。故人类疾病可分为三大类:一类是单基因病。这类疾病只需一个基因缺陷即可发生,如腺苷脱氨基酶(ADA)缺陷症。二是多基因病。此类疾病的病因大多比较复杂,不但涉及各个基因,往往还与环境因素有关,基因缺陷和疾病表型都具有明显的多样性。Ⅰ型糖尿病、肿瘤、心血管疾病等皆属此类。三是获得性基因病。此乃病原微生物入侵所致,如艾滋病、乙型肝炎等。因此,理论上,人类所有的疾病都可采用基因治疗。

二、肿瘤的基因治疗

目前治疗癌症的基因疗法种类颇多,主要集中在免疫基因治疗、药物敏感性基因治疗、肿瘤抑制基因治疗治疗三个方面。

1免疫基因治疗

常用方法有:①细胞因子基因治疗:将某些细胞因子基因如IL拟2、IL拟4、IL拟6、B7拟1,GM拟CSF等转染肿瘤细胞后,增强机体对肿瘤细胞的免疫反应。②肿瘤抗原基因免疫治疗:将某些肿瘤抗原基因如MHC基因等转染肿瘤细胞,增强肿瘤细胞免疫原性。③反义基因治疗:应用反义核酸在转录和翻译水平,

通过碱基互补原则封闭某些异常基因的表达,反义核酸被称为信息药物。④用抗体抑制癌基因的产物杀灭肿瘤细胞。

另外,端粒酶在形成过程中依赖一种染色体端粒分泌出的名叫HTERT的蛋白质,它是端粒酶产生的基础和模板。采用基因工程手段对这种蛋白进行改造,抑制端粒酶的产生过程,从而可以阻止癌细胞的无限分裂。

2 药物敏感性基因治疗

利用单纯疱疹病毒胸苷激酶(HSV TK)基因来治疗脑恶性胶质瘤,用“自

杀基因”插入正在分裂增殖的肿瘤细胞,并与肿瘤基因组整合而生出胸苷激酶。该酶能使进入肿瘤细胞,原来对该细胞无毒的一种叫更昔洛韦的药物立即成为毒死肿瘤细胞的“杀手”,并能杀死邻近的肿瘤细胞。我国上海市肿瘤研究所基因实验室在国内率先研制成功的胸苷激酶基因工程化细胞制剂已开始用于脑恶性胶质细胞瘤的基因治疗。

3 肿瘤抑制基因治疗

恶性肿瘤本质是一种基因病,肿瘤的发生、发展与复发均与基因的改变密切相关。因此,基因治疗针对的是肿瘤发生的根源——在基因水平上对肿瘤进行根治。这方面研究最多的为野生型P53基因疗法。将重组的人P53腺病毒,通过注射导入人体所需的P53抑癌基因,以抑制肿瘤发展,甚至缩小肿瘤。

三、基因预防

细胞在演变为癌之前的数年甚至几十年中,分子水平的基因突变多数已经出现,及时了解某些特定基因的完损与否,就可以通过减少对致癌因素的接触以及修复基因的功能来达到预防的目的,例如高血压、糖尿病、乳腺癌等。干细胞是细胞最早期、最原始的阶段,可以通过干预干细胞基因,纠正疾病基因。基因检测是21世纪预防医学最伟大的发明。它使人们真正地可以了解自己的健康,尤其对我们的下一代进行基本疾病的基因检测其意义更重大,如果提前知道他们身上有哪些疾病的易感基因,我们完全可以通过对居住条件、膳食组成、生活方式、增加体检频度、接受早期诊治等多种方法,来有效地规避疾病。

基因治疗技术

一、基因治疗常用方法

有两种,即体内疗法和体外疗法。体内疗法是将外源基因导入受体体内有关的器官组织和细胞内,以达到治疗目的,这是一种简便易行的方法,如肌肉注射、静脉注射、器官内灌输、皮下包埋等,但其缺点是基因转染率较低。研究和应用较多的还是体外疗法,即先在体外将外源基因导入载体细胞,然后将基因转染后的细胞回输给受者,使携有外源基因的载体细胞在体内表达治疗产物,以达到治疗目的。最常用的技术有三种:(1)体外处理疗法:将有基因缺陷的体细胞取出后,引入正常的基因拷贝后再送回体内;(2)原位疗法:使用载体将目的基因直接导入靶细胞;(3)体内疗法:将基因载体注入血液,定向寻找靶细胞并将基因安全有效地导入。

二、基因治疗载体

有效的基因治疗依赖于外源基因在受体中高效、稳定的表达,而这在很大程度上取决基因治疗所采用的载体系统。基因治疗载体可分两大类:病毒性载体和非病毒性载体。

1 病毒性载体

病毒性载体如逆转录病毒、腺病毒、腺相关病毒、痘苗病毒、疱疹病毒等。逆转录病毒应用最早,研究也相当深入,目前仍被广泛应用。

2 噬菌体载体

近年来,噬菌体因其高增殖、安全、大容量等特性而受到人们重视,但由于噬菌体缺乏对哺乳类细胞的趋向性而受到限制。利用M13噬菌体通过成纤维生长因子(FGF)介导连接靶细胞,从而达到目标基因的转移。厌氧菌作为基因治疗的载体,具有肿瘤靶向性强、安全性高等特点,是一种新型的基因治疗载体。当厌氧菌携带具有治疗作用的目的基因时,可有效的抑制实体瘤细胞的生长。有人用双歧杆菌、乳酸杆菌和梭状芽孢等厌氧菌作为肿瘤基因治疗载体。

基因治疗存在的问题

一、人体基因治疗试验的危险性

在没有完全解释人类基因组的运转机制,充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。例如病毒感染的细胞,通常不只一种,这样,当病毒载体携带基因进入人体,它们改变的不仅是靶细胞。而且,当基因被加入DNA中时,也存在新基因加错地方的可能,因而导致癌症或其它损害的危险。当DNA直接注入肿瘤,或使用脂质体传递系统时,也存在外来基因擅自进入生殖细胞(精子或卵子)而产生遗传变异的微小机会。而转入的基因“过分表达”,合成过多原先没有的蛋白质产生危害的可能。另外,转入的基因也有引起发炎或免疫反应的可能。特别是当试验重复时,病人的病毒会感染其他人或进入外界的可能。

二、社会和伦理问题

基因诊断和治疗技术是未来医学中的主流技术,但它也是一把双刃剑。基因诊断中的道德问题包括基因取舍、基因歧视、基因隐私等,基因治疗中的道德问题包括基因设计、基因改造等。基因诊断和治疗要坚持的道德原则有人类尊严与平等原则、知情同意原则、科学性原则、优后原则和治病救人原则等。总的来说,基因疗法面临的问题与任何一个重大新技术发展时所面临的问题是一样的。这些技术能实现很多益处,但也会由于滥用而带来危害。

三、目前基因治疗所面临的问题

基因治疗是一种新的治疗手段,可以治疗多种疾病,包括癌症、遗传性疾病、感染性疾病、心血管疾病和自身免疫性疾病。过去几年里,全球基因治疗临床试验取得了很大的进步。实际上,基因治疗也遇到了很多困难。目前尚存在很多根本性的问题:许多基因缺陷病的早期诊断还有困难;缺乏对靶细胞定向导入基因的技术;基因治疗载体的安全性和有效性问题;导入基因的表达和调控问题;发现新的治疗基因,尤其是对疾病相关基因还不十分清楚的肿瘤基因治疗。

随着科学技术的飞速发展,基因治疗将会取得更大的进步和突破,运用到更广的医学领域,对人类的健康产生深远的影响。

【参考文献】

1 邓洪新,田聆,魏于全. 基因治疗的现状、问题和展望[J]. 生命科学, 2005

2 蔡冬坡.肿瘤基因治疗的现状和展望[J].中国肿瘤临床, 1994

3 杨晓忠,张黎军. 白血病基因治疗研究进展[J]. 医学研究杂志, 1998

4 张彦娜,王骅,叶燕丽,等. P53基因治疗宫颈癌的试验与临床研究[J]. 中华实用医药杂志, 2003

5 曹志平. 基因诊断和治疗技术中的医学道德[J]. 中国高等医学教育, 2007

6 张秀娟.基因治疗的有效性和安全性分析[J].中国临床康复, 2003

7 顾健人. 基因治疗的现状与对策[J]. 中华医学杂志, 1997,

基因工程在医学上的应用

基因工程及其在医学中的应用 摘要: 作为生物工程技术的核心,及新工程的发展与应用,在医学方面有着非 同凡响的影响。本文首先回顾了基因工程的发展简史,然后在基因工程制药,抗病毒疫苗,疾病治疗及基因诊病等方面综述了基因工程在医学中的应用。基因工程将给医药方面带来更美好的前景。 关键词:基因工程医学应用 1 前言: 分子生物学主要是从分子水平上阐述生命现象和本质的科学,是现代生命科学的“共同语言”。分子生物学又是生命科学中进展迅速的前沿学科,它的理论和技术已经渗透到其他基础生物学科的各个领域,它的主要核心内容是通过生物的物质基础---核酸、蛋白、酶等生物大分子的结构、功能及其相互作用的运动规律的研究来阐明生命分子基础,从而探讨生命的奥秘。这门课与基因工程关系很大,主要讲了核酸、蛋白、酶等生物大分子的结构、功能以及它们之间的相互作用。近年来,随着生物技术的飞速发展,分子生物学在较多领域得以应用。其中在核酸,基因方面医学中的发展迅猛。基因工程在制药,抗病菌疫苗发展前景较广,在疾病治疗及诊断对人们生活影响较大。本文将对基因工程的发展及其在医学中的应用作简单的阐述。 2 基因工程的发展 基因工程又叫遗传工程,是分子遗传学和工程技术相结合的产物,是生物技术的主体。基因工程是指用酶学方法将异源基因与载体DNA在体外进行重组,将形成的重组因子转入受体细胞,使异源基因在其中复制并表达,从而改造生物特性,生产出目标产物的高新技术。 1857年至1864年,孟德尔通过豌豆杂交试验,提出了生物体的性状是由遗传基因子控制的。1909年,丹麦生物学家约翰生首先提出基因一词代替孟德尔的遗传因子。1910年至1915年,美国遗传学家摩尔根通过果蝇实验,首次将代表某一性状的基因同特定的染色体联系起来,创建了基因学说。直到1944年,美国微生物学家埃弗里等通过细菌转化研究,证明基因的载体是DNA而不是蛋白质,从而确立了遗传的物质基础。1953年,美国的遗传学家华生和英国的生物学家克里克揭示了DNA分子双螺旋模型和半保留复制机理,解决了积阴德自我复制和传递问题。开辟了分子生物学的研究时代。之后,1958年克里克确立了中心法则。1961年雅各和莫诺德提出的操纵子学说以及说有64种密码子的破译,成功的揭示了遗传信息的流向和表达问题,为基因工程的发展奠定了坚实的基础。 DNA分子的切除与连接,基因的转化技术,还有诸如核酸分子杂交,凝胶电泳,DNA序列结构分析等分子生物学试验方法的进步为基因的创立和发展奠定了强有力的技术基础。 1972年,美国斯坦福大学的P.Berg构建了世界上第一个重组分子,发展了DNA重组技术,并因此获得了1980年的诺贝尔学奖。1983年,美国斯坦福大

基因工程练习题

1.cDNA克隆与基因组克隆有何不同? 2.怎样将一个平末端DNA片段插入到EcoRI限制位点中去? 3.在Cohen构建有生物功能重组体的第一步实验中,用EcoRI切割了R6-5质粒,然后转化E.coli C600,在卡那霉素抗性子板上筛选到了pSCl01,它是由R6-5的三个EcoRI片段组成,请推测这个质粒具有什么遗传特性? 4.某学生在用EcoRI切割外源DNA片段时,出现了星号活性,请分析可能的原因? 5.在序列5’—CGAACATATGGAGT-3’中含有一个6bp的Ⅱ类限制性内切核酸酶的识别序列,该位点的序列可能是什么? 6.用连接酶将Sau 3AI('GATC)切割的DNA 与经BamHI(G 'GATCC)切割的DNA连接起来后,能够被BamHI切割的机率有多大(用百分比表示)? 7.用Klenow酶填补的办法可使5’黏性末端转变成平末端。这种方法常使DNA 上的某些限制酶的识别位点消失。请 问,对于下列限制酶,用这种方法处

理会不会使它们的识别序列都消失? Sau 3AI('GATC);Taq I(T 'CGA), BssHⅡ(G 'CGCGC)。 8.以大肠杆菌质粒DNA为载体克隆一个编码动物激素的基因,并使之在大肠杆菌中进行表达,简要说明实验中可能遇到的问题及可能的解决办法。 9.假定你分离到一个E.coli的Thr-突变体,并推测有可能是ThrA基因突变。 请设计一个方案用PCR从染色体DNA 扩增突变的ThrA基因,测定突变的序 列。(注:E.coli野生型的ThrA基因 的序列是已知的) 10.酵母人工染色体要在酵母细胞中稳定存在,必须有哪些基本的结构? 11.用EcoRI和HindⅢ分别切割同一来源的染色体DNA,并进行克隆,在前者的克隆中筛选到A基因,但在后者的克隆中未筛选到A基因,请说明原因。 12.一个携带有氨苄和卡那霉素抗性基因的质粒被仅在卡那霉素基因中有识别位点的EcoRI消化。消化物与酵母DNA连接后转

基因工程考试试题.doc

基因工程 一名词解释 DNA,1、限制与修饰系统:限制酶的生物学功能一般被认为是用来保护宿主细胞不受外源DNA的感染,可讲解外 来 从而阻止其复制和整合到细胞中。一般来说,与限制酶相伴而生的修饰酶是甲基转移酶,或者说是甲基化酶,能保护 自身的 DNA不被讲解。限制酶和甲基转移酶组成限制与修饰系统。 2、各种限制与修饰系统的比较 Ⅱ型Ⅰ型Ⅲ型 识别位点4~6bp,大多为回文序列二分非对称5~7bp 非对称 切割位点在识别位点中或靠近识别位点无特异性,至少在识别位点外100bp 识别位点下游 24~26bp 简答 1. 何谓 Star activity?简述Star activity的影响因素及克服方法? 答:在极端非标准条件下,限制酶能切割与识别序列相似的序列,这个改变的特征称为星星活性。 pH 引起星星活性的的因素:①高甘油浓度(>5%);②酶过量( >100U/μl );③低离子强度( <25mmol/L);④高(> ;⑤有机溶剂如DMSO (二甲基亚砜)、乙醇、乙二醇、二甲基乙酰胺、二甲基甲酰胺等;⑥用其它二价阳离子 星星活性的抑制措施:①减少酶的用量,避免过量酶切,减少甘油浓度;②保证反应体系中无有机溶剂或乙醇;③提高离子强度到100 ~ 150mM(在不抑制酶活性的前提下);④降低反应pH至;⑤使用Mg2+作为二价阳离子。 2. 试回答影响限制性内切核酸酶切割效率的因素?(影响酶活性的因素?) 答:外因:反应条件、底物纯度(是否有杂质、是否有盐离子和苯酚的污染)、何时加酶、操作是否恰当,反应体系的选择、反应时间的长短 内因:星星活性、底物甲基化、底物的构象 3、 DNA末端长度对酶切割的影响 答:限制酶切割 DNA 时,对识别序列两端的非识别序列有长度要求,也就是说在识别序列两端必须要有一定数量的 核苷酸,否则限制酶将难以发挥切割活性。在设计PCR引物时,如果要在末端引入一个酶切位点,为保证能够顺利切 割扩增的 PCR产物,应在设计的引物末端加上能够满足要求的碱基数目。一般需加 3 ~4 个碱基对。 4、何为载体?一个理想的载体应具备那些特点? 答:将外源 DNA 或目的基因携带入宿主细胞的工具称为载体。载体应具备:①在宿主细胞内必须能够自主复制(具 备复制原点);②必须具备合适的酶切位点,供外源DNA 片段插入,同时不影响其复制;③有一定的选择标记,用于 筛选;④其它:有一定的拷贝数,便于制备。 5 抗性基因( Resistant gene)是目前使用的最广泛的选择标记,常用的抗生素抗性有哪几种?并举两例说明其原理? 答:氨苄青霉素抗性基因( ampr)、四环素抗性基因(tetr )、氯霉素抗性基因( Cmr)、卡那霉素和新霉素抗性基因( kanr , neor )以及琥珀突变抑制基因supF 。 ⑴青霉素抑制细胞壁肽聚糖的合成,与有关的酶结合,抑制转肽反应并抑制其活性。氨苄青霉素抗性Ampr 编码一个酶,可分泌进入细胞的周质区,并催化β - 内酰胺环水解,从而解除氨苄青霉素的毒性。 ⑵四环素与核糖体 30S 亚基的一种蛋白质结合,从而抑制核糖体的转位。 Tetr 编码一个由 399 个氨基酸组成的膜 结合蛋白,可阻止四环素进入细胞。 6. 何为α - 互补?如何利用α - 互补来筛选插入了外源DNA 的重组质粒? 答:α - 互补指 lacZ 基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β - 半乳糖苷酶阴性的突变体之间实现互补。α - 互补是基于在两个不同的缺陷β-半乳糖苷酶之间可实现功能互补而建立的。实现α- 互补主要有两部分组成:LacZ △ M15 ,放在 F 质粒或染色体上,随宿主传代;LacZ' ,放在载体上,作为筛选标记,当在 LacZ' 中插入一个片断后,将不可避免地导致产生无α- 互补能力的β-半乳糖苷酶片断。在诱导物IPTG 和底物 X-gal (同时可作为生色剂)的作用下,含重组质粒的菌落不能产生有活性的β-半乳糖苷酶,不能分解 X-gal ,呈现白色,而含非重组质粒的菌落则呈现兰色。以此达到筛选的目的。 7、试简述λ噬菌体的裂解生长状态Lytic growth 和溶原状态 Lysogenic state 两种循环的分化及其调节过程? 答:裂解生长状态是λ噬菌体在宿主中大量复制并组装成子代λ噬菌体颗粒,导致宿主细胞裂 解。溶原状态为λ噬菌体基因组 DNA 通过位点专一性重组整合到宿主染色体DNA 中随宿主的繁殖传到子代细胞。调节过程:由感染复数

基因工程的发展前景同步练习3

《基因工程的发展前景》同步练习 1.基因工程与蛋白质工程的区别是( ) A.基因工程需对基因进行分子水平操作,蛋白质工程不对基因进行操作 B.基因工程合成自然界已存在的蛋白质,蛋白质工程可以合成自然界不存在的蛋白质 C.基因工程是分子水平操作,蛋白质工程是细胞水平(或性状水平)的操作 D.基因工程完全不同于蛋白质工程 2.蛋白质工程的研究将对生命科学产生重大影响。下列关于蛋白质工程的叙述,不正确的是( ) A.实施蛋白质工程的前提条件是了解蛋白质结构和功能的关系 B.基因工程是蛋白质工程的关键技术 C.蛋白质工程是对蛋白质分子的直接改造 D.蛋白质工程是在基因工程的基础上,延伸出来的第二代基因工程 3.猪的胰岛素用于人体时降血糖效果不明显,原因是猪胰岛素分子中有一个氨基酸与人的不同。为了使猪胰岛素用于治疗人类糖尿病,用蛋白质工程的蛋白质分子设计的最佳方案是( ) A.对猪胰岛素进行一个氨基酸的替换 B.将猪胰岛素和人胰岛素进行拼接组成新的胰岛素 C.将猪和人的胰岛素混合在一起治疗糖尿病 D.根据人的胰岛素设计制造一种全新的胰岛素 4.干扰素是动物体内合成的一种蛋白质,可以用于治疗病毒感染和癌症,但体外保存相当困难,如果将其分子中的一个半胱氨酸变成丝氨酸,就可以在-70 ℃条件下保存半年,给广大患者带来了福音。 (1)蛋白质的合成是受基因控制的,因此获得能够控制合成“可以保存的干扰素”的基因是生产的关键,依据蛋白质工程原理,设计实验流程,让动物生产“可以保存的干扰素”: (2)基因工程和蛋白质工程相比较,基因工程在原则上只能生产____________的蛋白质,不一定符合______________的需要。而蛋白质工程是以蛋白质分子的结构规律及其与生物功能的关系为基础,通过__________或__________,对现有蛋白质进行________,或制造一种新的蛋白质,以满足人类的生产和生活需要。 结构。________蛋白质工程实施的难度很大,原因是蛋白质具有十分复杂的(3). (4)对天然蛋白质进行改造,应该直接对蛋白质分子进行操作,还是通过对基因的操作来实现?______________。原因是________________________________________。 5.基因工程是在现代生物学、化学和工程学基础上建立和发展起来的,并有赖于微生物学理论和技术的发展运用。基因工程基本操作流程如下图,请据图分析回答:

基因工程练习题(附答案)

基因工程练习题 1、在基因工程中使用的限制性核酸内切酶,其作用是( ) A、将目的基因从染色体上切割出来 B、识别并切割特定的DNA核苷酸序列 C、将目的基因与运载体结合 D、将目的基因导入受体细胞 2、基因工程中常用细菌等原核生物作受体细胞的原因不包括( ) A、繁殖速度快 B、遗传物质相对较少 C、多为单细胞,操作简便 D、DNA为单链,变异少 3、基因工程是DNA分子水平的操作,下列有关基因工程的叙述中,错误的是( ) A、限制酶只用于切割获取目的基因 B、载体与目的基因可以用同一种限制酶处理 C、基因工程所用的工具酶是限制酶,DNA连接酶 D、带有目的基因的载体是否进入受体细胞需检测 4、运用现代生物技术,将苏云金芽孢杆菌的抗虫基因整合到棉花细胞中,为检测实验是否成功,最方便的方法是检测棉花植株是否有( ) A、抗虫基因 B、抗虫基因产物 C、新的细胞核 D、相应性状 5、转基因动物转基因时的受体细胞是( ) A、受精卵 B、精细胞 C、卵细胞 D、体细胞 6、基因工程中常见的载体是( ) A、质体 B、染色体 C、质粒 D、线粒体 7、水母发光蛋白由236个氨基酸构成,其中Asp、Gly、Ser构成发光环,现已将这种蛋白质的基因作为生物转基因的标记,在转基因技术中,这种蛋白质的作用是( ) A、促使目的基因导入宿主细胞中B、促使目的基因在宿主细胞中复制 C、使目的基因容易被检测出来 D、使目的基因容易成功表达 8、运用现代生物技术的育种方法,将抗菜青虫的Bt基因转移到优质油菜中,培育出转基因抗虫的油菜品种,这一品种在生长过程中能产生特异的杀虫蛋白质,对菜青虫有显著抗性,能大大减轻菜青虫对油菜的危害,提高油菜产量,减少农药使用,据以上信息,下列叙述正确的是( ) A、Bt基因的化学成分是蛋白质 B、Bt基因中有菜青虫的遗传物质 C、转基因抗虫油菜能产生杀虫蛋白是由于具有Bt基因 D、转基因抗虫油菜产生的杀虫蛋白是无机物 9、人的糖蛋白必须经内质网和高尔基体进一步加工合成,通过转基因技术,可以使人的糖蛋白基因得以表达的受体细胞是( ) A、大肠杆菌 B、酵母菌 C、T 噬菌体 D、质粒DNA 4 10、不属于质粒被选为基因运载体的理由是() A.能复制 B.有多个限制酶切点C.具有标记基因D.它是环状DNA

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

基因工程测试题

基因工程测试题 一、选择题: 1.人的糖蛋白必须经内质网和高尔基体进一步加工合成。通过转基因技术可以使人的糖蛋白基因得以表达的受体细胞是( ) A.大肠杆菌 B.酵母菌 C.肺炎双球菌 D.乳酸菌 2.下列有关基因工程的叙述,正确的是( ) A.DNA连接酶将碱基对之间的氢键连接起来 B.目的基因导入受体细胞后,受体细胞即发生基因突变 C.限制性核酸内切酶识别序列越短,则该序列在DNA中出现的几率就越大 D.常用的载体有大肠杆菌、噬菌体和动植物病毒等 3.我国科学家运用基因工程技术,将苏云金芽孢杆菌的抗虫基因导入棉花细胞并成功表达,培育出了抗虫棉。下列叙述不正确的是( ) A.抗虫基因的提取和运输需要专用的工具酶和载体 B.重组DNA分子中替换一个碱基对,不一定导致毒蛋白的毒性丧失 C.抗虫棉的抗虫基因可通过花粉传递到近缘作物,从而造成基因污染 D.转基因抗虫棉是否具有抗虫特性是通过检测棉花对抗生素抗性来确定的 4.如图是获得抗虫棉的技术流程示意图。卡那霉素抗性基因(kan r)常作为标记基因,只有含卡那霉素抗性基因的细胞才能在卡那霉素培养

基上生长。下列叙述正确的是( ) A.构建重组质粒过程中需要限制性核酸内切酶和DNA连接酶 B.愈伤组织的分化产生了不同基因型的植株 C.卡那霉素抗性基因(kan r)中有该过程所利用的限制性核酸内切酶 的识别位点 D.抗虫棉有性生殖后代能保持抗虫性状的稳定遗传 5.上海医学研究所成功培育出第一头携带人白蛋白基因的转基因牛。他们还研究出一种可大大提高基因表达水平的新方法,使转基因动物乳汁中的药物蛋白含量提高30多倍,以下与此有关的叙述中正确的是( ) A.“转基因动物”是指体细胞中出现了新基因的动物 B.“提高基因表达水平”是指设法使牛的乳腺细胞中含有更多的人白蛋白基因 C.只有从转基因牛乳汁中才能获取人白蛋白,是因为人白蛋白基因只在牛乳腺细胞中含有 D.转基因牛的肌肉细胞中也有人白蛋白基因,但不发生转录、翻译,不能合成人白蛋白 6.下列关于蛋白质工程和基因工程的比较,不合理的是( )

分子生物学与基因工程原理

分子生物学与基因工程原理复习资料 一、名词解释 1. 分子生物学:是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学;是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。 2. 染色体:是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。 3. DNA 多态性:是指DNA 序列中发生变异而导致的个体间核苷酸序列的差异,主要包 括单核苷酸多态性(single nucleotide polymorphism , SNP)和串联重复序列多态性 ( tandem repeats polymorphism )两类。 4. DNA 的半保留复制:DNA 复制过程中,由亲代DNA 生成子代DNA 时,每个新形成的子代DNA 中,一条链来自亲代DNA ,另一条链则是新合成的,这种复制方式称半保留复制。 5. 冈崎片段:在DNA 复制过程中,前导链能连续合成,而滞后链只能是断续的合成5 3 的多个短片段,这些不连续的小片段称为冈崎片段。 6.SNP:single nucleotide polymorphism ,单核苷酸多样性,是基因组DNA 序列中单个核苷酸的突变引起的多态性。 7. “基因”的分子生物学定义:产生一条多肽链或功能RNA 所必需的全部核甘酸序列。 8. 获得性遗传:是有机体在生长发育过程中由于环境的影响而不是基因突变所形成的新的遗传性状。 9. DNA 甲基化:是基因的表观修饰方式之一,指生物体在(DNA methyltransferase ,DNMT)的催化下,以S-腺苷甲硫氨酸(SAM)为甲基供体,将甲基转移到特定的碱基上的过程。 10. CDNA文库:以mRNA为模板,经反转录酶催化,体外合成cDNA,与适当的载体 (常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖 扩增。这样包含着细胞全部mRNA 信息的cDNA 克隆集合称为该组织细胞cDNA 文库。11. 基因组:是指一个细胞或者生物体所携带的全部遗传信息。生物个体的所有细胞的基因组是固定的。 12. 蛋白质组学:指在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。 13. 转录组:广义上指某一生理条件或环境下,一个细胞、组织或生物体内所有转录产 物的总和,包括信使RNA、核糖体RNA、转运RNA及非编码RNA ;狭义上指细胞中转录出来的所有mRNA 的总和。 14. 基因定点突变技术:通过改变基因特定位点核苷酸序列来改变所编码的氨基酸序列的一

基因工程在医药工业中的的应用

基因工程及其在医学中的应用基因工程及其在医学中的应用基因工程及其在医学中的应用基因工程及其在医学中的应用 摘要: 作为生物工程技术的核心,及新工程的发展与应用,在医学方面有着非同凡响的影响。本文首先回顾了基因工程的发展简史,然后在基因工程制药,抗病毒疫苗,疾病治疗及基因诊病等方面综述了基因工程在医学中的应用。基因工程将给医药方面带来更美好的前景。关键词关键词关键词关键词: 基因工程医学应用1 前言前言前言前言:分子生物学主要是从分子水平上阐述生命现象和本质的科学,是现代生命科学的“共同语言”。分子生物学又是生命科学中进展迅速的前沿学科,它的理论和技术已经渗透到其他基础生物学科的各个领域,它的主要核心内容是通过生物的物质基础---核酸、蛋白、酶等生物大分子的结构、功能及其相互作用的运动规律的研究来阐明生命分子基础,从而探讨生命的奥秘。这门课与基因工程关系很大,主要讲了核酸、蛋白、酶等生物大分子的结构、功能以及它们之间的相互作用。近年来,随着生物技术的飞速发展,分子生物学在较多领域得以应用。其中在核酸,基因方面医学中的发展迅猛。基因工程在制药,抗病菌疫苗发展前景较广,在疾病治疗及诊断对人们生活影响较大。本文将对基因工程的发展及其在医学中的应用作简单的阐述。2 基因工程的发展基因工程的发展基因工程的发展基因工程的发展基因工程又叫遗传工程,是分子遗传学和工程技术相结合的产物,是生物技术的主体。基因工程是指用酶学方法将异源基因与载体DNA在体外进行重组,将形成的重组因子转入受体细胞,使异源基因在其中复制并表达,从而改造生物特性,生产出目标产物的高新技术。1857年至1864年,孟德尔通过豌豆杂交试验,提出了生物体的性状是由遗传基因子控制的。1909年,丹麦生物学家约翰生首先提出基因一词代替孟德尔的遗传因子。1910年至1915年,美国遗传学家摩尔根通过果蝇实验,首次将代表某一性状的基因同特定的染色体联系起来,创建了基因学说。直到1944年,美国微生物学家埃弗里等通过细菌转化研究,证明基因的载体是DNA 而不是蛋白质,从而确立了遗传的物质基础。1953年,美国的遗传学家华生和英国的生物学家克里克揭示了DNA分子双螺旋模型和半保留复制机理,解决了积阴德自我复制和传递问题。开辟了分子生物学的研究时代。之后,1958年克里克确立了中心法则。1961年雅各和莫诺德提出的操纵子学说以及说有64种密码子的破译,成功的揭示了遗传信息的流向和表达问题,为基因工程的发展奠定了坚实的基础。DNA分子的切除与连接,基因的转化技术,还有诸如核酸分子杂交,凝胶电泳,DNA序列结构分析等分子生物学试验方法的进步为基因的创立和发展奠定了强有力的技术基础。1972年,美国斯坦福大学的P.Berg构建了世界上第一个重组分子,发展了DNA重组技术,并因此获得了1980年的诺贝尔学奖。1983年,美国斯坦福大学的S.Chen等人也成功的进行了另一个体外DNA重组试验并发现了细菌间性状的转移。这是基因工程发展史上第一次成功实现重组转化成功的例子,基因工程从此诞生了。基因工程问世近30年,不论是基因理论研究领域,还是在生产实践中的应用,均已取得了惊人的成绩。给国民经济的发展和人类社会的发展带来了深远而广泛的影响。3 基因工程在药学方面的应用基因工程在药学方面的应用基因工程在药学方面的应用基因工程在药学方面的应用运用基因工程技术对基因的转导和整合来获取新的抗体,及新药的制取及研究都具有较高效益;基因技术在诊断疾病及刑事案件的侦破方面发挥着不可小觑的力量,因此基因工程在药学发展有着深远影响。 3.1 基因工程制药基因工程制药基因工程制药基因工程制药基因工程制药开创了制药工业的新纪元,解决了过去不能生产或者不能经济生产的药物问题。现在,人类已经可以按照需要,通过基因工程生产出大量廉价优质的新药物和诊断试剂,诸如人生长激素、人的胰岛素、尿激酶、红细胞生成素、白细胞介素、干扰素、细胞集落刺激因子、表皮生长因子等。令人振奋的是,具有高度特异性和针对性的基因工程蛋白质多肽药物的问世,不仅改变了制药工业的产品结构,而且为治疗各种疾病如糖尿病、肾衰竭、肿瘤、侏儒症等提供了有效的药物。 3.2 基因工程抗病毒疫苗基因工程抗

基因工程练习题

第一章绪论 1基因:是指DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。 2管家基因与奢侈基因:具有相同遗传信息的同一个体细胞间其所利用的基因并不相同,有的基因活动是维持细胞基本代谢所必须的,而有的基因则在一些分化细胞中活动,这正是细胞分化、生物发育的基础。前者称为管家基因,而后者被称为奢侈基因 结构基因与调节基因:结构基因是可以转录成为各种RNA(rRNA,tRNA,snRNA)直接行使功能,或者转录成信使RNA(mRNA)然后翻译成多肽链,最终形成各种功能蛋白质和酶。从广义上讲,任何一种能够调节或限制其他基因活性的基因都可以叫做调节基因。 移动基因:转座子属于可移动的遗传因子 重叠基因:它的同一部分DNA可以编码两种不同的蛋白质,也就是说同一部份DNA存在2个重叠基因 3基因组:是指一个生物体、细胞器或病毒的全部基因 4断裂基因:被间隔序列间隔成若干个部分,而形成不连续形式的基因,是真核基因的普遍形式 5假基因:是一类在基因组中稳定存在,序列组成也酷似正常基因,但不能表现出任何功能的DNA序列。 6启动子:DNA链上能指示RNA转录起始的DNA序列称为启动子,(1)-35序列提供RNA聚合酶全酶识别位点,(2)-10序列是酶与DNA紧密结合的位点,(3)RNA 合成的起始点 7复制子:DNA 中发生复制的独立单位称为复制子(Replicon),这是一段具有特殊结构的DNA序列,载体有复制起点才能使与它结合的外源基因在宿主细胞中独立复制繁殖。 8增强子:就是远离转录起始点(1 ~ 30 kb)、决定基因的时间、空间特异性表达、增强启动子转录活性的DNA序列,其发挥作用的方式通常与方向、距离无关。9单克隆抗体:由单一细胞克隆生成的抗体是单克隆抗体,所有这些抗体分子都是相同的并以同样的亲合力结合在抗源的相同部位上 10黏性末端:由限制性内切酶切割后在双链DNA的切口处产生交替互补的单链末端 11操纵子:是指染色体控制蛋白质(酶)合成的功能单位,操纵子包括调节基因、操纵基因和结构基因 12终止子:模板DNA上存在终止转录的特殊信号称为终止子。 13克隆:是指从一个共同祖先无性繁殖下来的一群遗传上同一的DNA分子细胞或由个体所组成的特殊的生物群体

基因工程的现状与发展趋势

题目:基因工程的现状与发展趋势专业:13食品科学与工程 学号:132701105 姓名:盛英奇 日期:2015/7/1

【摘要】从20世纪70 年代初发展起来的基因工程技术,经过40多年来的进步与发展,已成为生物技术的核心内容。生物学成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 【关键词】基因工程技术;应用;前景;现状 一、墓因工程的原理及研究内容 基因工程是人们在揭示生命之谜的过程中建立起来的。早在300多年前,人们就发现,世界上生物尽管种类繁多,千姿百态,但都是细胞(如肉眼看不见的细菌等微生物)或者是由细胞构成的(如现存的200多万种多细胞动植物)。人们还发现,生物有遗传和变异的特征,遗传保证了生物种类的延续不断,变异则赋予生物种的进化,保证生物种类对环境的适应。而生物的所有特性及遗传变异都是由生物体细胞内的遗传物质所决定的,这种遗传物质就是被科学家称之为脱氧核糖核酸(简称DNA)的大分子物质,一般位于生物的细胞核内。DNA是由许多核昔酸连接而成的高分子化合物,如把DNA比喻成长链条,核昔酸就是组成这链条的一个个环节。生物细胞核内的DNA分子是由两条成对的多核昔酸长链互相缠人类开始学会干预生物的变异,即通过杂交、筛选等方式改变生物物种的某些特性,使之有利于人类,如水稻、小麦等作物的育种,家禽家畜优良品系的培育等,它是通过动植物父、母本交配繁殖时,生殖细胞内DNA上相应性状基因互相间可能出现的交换来实现的,这种交换的概率是人们不能控制的,所以选种的过程较为缓慢,需几年乃至几十年的时间,而且亲缘关系相差较远的生物种之间很难杂交。而本世纪}o年代初诞生的基因工程,则是按照人类的需要,从某种生物体的基因组中,分离出带有目的基因(即所需基因)的DNA片段,运用重组DNA技术,对这些DNA片段进行体外操作,把不同来源的基因按照设计的蓝图,重新构成新的基因组(即重组体),再将重组DNA分子插入到原先没有这类DNA 片段的受体细胞(亦称宿主细胞)的DNA上,并使其不仅能“安家落户”,而且能“传种接代”,即能准确地把该外源基因的遗传特性在新的细胞(宿主细胞)里增殖和表达出来。就像一台机器上的零部件拆下来安装到另一台机器上。在生物体中,这种生命零件就是基因。因为用的是工程技术的方法原理,故称基因工程,亦叫遗传工程。用这种方法所形成的杂种DNA分子与神话中的那种狮首、羊身、

试述基因及基因工程技术与人类生存与发展之间的关系

试述基因及基因工程技术与人类生存与发展之间的关系 学院:物理科学与工程技术学院姓名:学号: 摘要: 科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。这对我们人类社会一切生物的生存与发展将会带来巨大的影响。 关键字:基因工程,转基因,安全性,人类健康。 1 基因工程 1.1 定义 基因工程(genetic engineering;gene engineering)又名重组脱氧核糖核酸技术(recombinant DNA technique) ,狭义的基因工程仅指用体外重组DNA技术去获得新的重组基因;广义的基因工程则指按人们意愿设计,通过改造基因或基因组而改变生物的遗传特性。如用重组DNA技术,将外源基因转入大肠杆菌中表达,使大肠杆菌能够生产人所需要的产品;将外源基因转入动物,构建具有新遗传特性的转基因动物;用基因敲除手段,获得有遗传缺陷的动物等。 1.2 发展 1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。 2 基因工程应用 2.1 农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 2.1.1转基因鱼 生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.1.2.转基因牛 乳汁中含有人生长激素的转基因牛(阿根廷)。 2.1.3转黄瓜抗青枯病基因的甜椒 2.1.4转鱼抗寒基因的番茄 2.1.5转黄瓜抗青枯病基因的马铃薯

探究基因工程在医学上的应用和发展

探究基因工程在医学上的应用和发展

摘要:基因工程在诊病、制药、病毒疫苗、治疗疾病中发挥了巨大作用,它在医学上的广泛应用已经成为人们关注的热点。人们将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达;人们应用这种新的科技制作出已前从来不能人为生产的药物,同时还能治疗各种遗传疾病造福人类.。这就是基因工程。 关键词:基因基因工程染色体基因工程诊病基因制药 绪论: 基因工程技术是一项极为复杂的高新生物技术, 它利用现代遗传学与分子生物学的理论和方法, 按照人类所需, 用DNA 重组技术对生物基因组的结构和组成进行人为修饰或改造, 从而改变生物的结构和功能, 使之有效表达出人类所需要的蛋白质或人类有益的生物性状[1]。基因工程从诞生至今, 仅有30 年的历史, 然而, 无论是在基础理论研究领域, 还是在生产实际应用方面, 都已取得了惊人的成绩。首先,基因工程给生命科学自身的研究带来了深刻的变化。目前科学家已完成了多种细胞器的基因组全序列测定工作。其次, 基因工程具有广泛的应用价值, 能为工农业生产、医药卫生、环境保护开辟新途径。 正文: 基因工程是按着人们的科研或生产需要,在分子水平上,用人工方法提取或合成不同生物的遗传物质,在体外切割,拼接形成重组DNA,然后将重组DNA与载体的遗传物质重新组合,再将其引入到没有该DNA片段的受体细胞中,进行复制和表达,生产出符合人类需要的产品或创造出生物的新性状,并使之稳定地遗传给下一代。按目的基因的克隆和表达系统,分为原核生物基因工程、酵母基因工程、植物基因工程和动物基因工程。基因工程具有广泛的应用价值,为工农业生产和医药卫生事业开辟了新的应用途径,也为遗传病的诊断和治疗提供了有效方法。基因工程还可应用于基因的结构、功能与作用机制的研究,有助于生命起源和生物进化等重大问题的探讨。基因工程是最为复杂的科学技术之一。 正常的人体细胞包含有23对染色体(除生殖细胞外), 他们是遗传物质的载体,是脱氧核糖核酸(DNA)以及核蛋白在细胞分裂时的呈现形式,每一条染色体由许多基因组成, 基因是指携带有遗传信息的DNA或RNA序列,也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现. 基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是基因能够“突变”,突变绝大多数会导致疾病,另外的一小部分是非致病突变。非致病突变给自然选择带来了原

基因工程的利与弊

基因工程的利与弊 基因工程的原理:基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 操作方法是:将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA 分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 例如:将大鼠的生长激素基因导入小鼠受精卵.首先在大鼠的体细胞中提取染色体,分离目标基因.用限制性核酸内切酶处理载体,再将载体与基因片段连接(这里用到DNA连接酶)。通过显微注射的方法将这些重组基因注入小鼠的受精卵内,最后让这些受精卵生长发育。结果小鼠生出几只带有大鼠生长激素基因的小鼠,这些小鼠的生长速度非常快,其个体是同窝其他小鼠的1.8倍,成为“巨型小鼠”。 基因工程中的载体常选取大肠杆菌的环状DNA,用到的工具酶有限制性内切酶、DNA 连接酶,其次还得用到DNA聚合酶。限制性核酸内切酶,用来切割目的基因和载体,主要是2型酶;DNA连接酶,用来连接目的基因和载体,有两类,连接平末端的和粘性末端的,若末端不相同连不起来的话,还得用DNA聚合酶来加片段,如加CCC-和GGG-,再用连接平末端的连接酶来连接。 将目的基因导入受体细胞的方法有: 植物常用的是农杆菌转化法、基因枪法和花粉管通道法。农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物和裸子植物的受伤部位。农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中,并且可以通过减数分裂稳定的遗传给后代。基因枪法基本原理是通过动力系统将带有基因的金属颗粒(金粒或钨粒),将DNA吸附在表面,以一定的速度射进植物细胞,从而实现稳定转化的

基因工程在医学上的应用和发展

基因工程在医学上的应用和发展 发表时间:2010-11-01T13:32:03.983Z 来源:《中外健康文摘》2010年第28期供稿作者:于欣王玉红[导读] 重组DNA技术的发展使得设计新的无毒副作用的疫苗成为可能,并已取得了突破性进展。 于欣王玉红(通讯作者)(辽宁大连医科大学附属第一医院辽宁大连 116011)【中图分类号】R969 【文献标识码】A 【文章编号】1672-5085(2010)28-0206-02 【摘要】基因工程在诊病、制药、病毒疫苗、治疗疾病中发挥了巨大作用,它在医学上的广泛应用已经成为人们关注的热点。人们期待着基因工程能给人类带来财富、健康和幸福。 【关键词】基因工程抗体 DNA 遗传基因重组基因工程制药基因工程抗病毒疫苗基因工程治疗疾病基因工程诊病随着社会的发展,时代的进步,医学已经进入了一个飞速发展的阶段。随着人们生活水平的日益提高,随之而来的便是各种疾病。新的药物层出不穷,在医学历史上掀起一阵又一阵的波澜。近年来,尤以基因工程,蛋白质工程,胚胎细胞工程,动、植物细胞工程备受科学家青睐。其中最为基本的就是基因工程。那么,究竟什么是基因工程呢? 基因工程 基因工程是按着人们的科研或生产需要,在分子水平上,用人工方法提取或合成不同生物的遗传物质,在体外切割,拼接形成重组DNA,然后将重组DNA与载体的遗传物质重新组合,再将其引入到没有该DNA片段的受体细胞中,进行复制和表达,生产出符合人类需要的产品或创造出生物的新性状,并使之稳定地遗传给下一代。按目的基因的克隆和表达系统,分为原核生物基因工程、酵母基因工程、植物基因工程和动物基因工程。基因工程具有广泛的应用价值,为工农业生产和医药卫生事业开辟了新的应用途径,也为遗传病的诊断和治疗提供了有效方法。基因工程还可应用于基因的结构、功能与作用机制的研究,有助于生命起源和生物进化等重大问题的探讨。基因工程是最为复杂的科学技术之一。 基因工程的基本程序简单可分为以下几个步骤: 1.对目的基因的提取;2.对基因表达载体的构建;3.将目的基因导入受体细胞;4.受体细胞导入的检验。 2 基因工程在医学上的发展和影响 目前,通过重组DNA产生的工程菌已大量高效地合成出许多人体中的活性多肤,为人体战胜多种疑难疾病提供了有力的武器,也是国际医药工业发展的新的增长点。 重组DNA技术的发展使得设计新的无毒副作用的疫苗成为可能,并已取得了突破性进展。目前,正在开发研制的疫苗种类繁多,成为控制疾病的有效手段。 蛋白质工程是指根据蛋白质的立体结构,采用基因工程等各种手段,根据人们的意愿对天然蛋白质进行修饰改造,使之在多种性能方面优于天然蛋白质。在医学方面,可望通过某些单克隆抗体免疫球蛋白与毒素队融合,来制造“生物导弹”药物,用以攻克肿瘤及其他疾病的治疗等。转基因动物已进入实用阶段,把人的基因或其他外源基因导入动物的技术已经成熟,一种用途是建造新的动物模型;另一种用途是使转基因动物成为一种生物反应器,将有医学价值的活性蛋白基因导入易于繁殖的家畜或家禽受精卵中,在长成的转基因动物体液或血液中收获基因产物。 人类基因组计划和恶性肿瘤的防治从1991年开始的人类基因组计划,是人类科学史上最重大的科学项目之一,是当今生物学,医学领域内一项最为引人注目的系统工程。 3 基因工程在医学上的应用 3.1基因工程制药 基因工程制药开创了制药工业的新纪元,解决了过去不能生产或者不能经济生产的药物问题。现在,人类已经可以按照需要,通过基因工程生产出大量廉价优质的新药物和诊断试剂,取得了巨大的经济效益和社会效益。 3.2基因工程抗病毒疫苗 为人类抵御病毒侵袭提供了用武之地。基因工程乙型肝炎疫苗、狂犬病疫苗、流行性出血热病毒疫苗、轮状病毒疫苗等应用于临床,提高了人类对各种病毒病的抵御能力。 3.3基因工程治疗疾病 基因治疗有两种途径,一是体细胞的基因治疗,二是生殖细胞的基因治疗。体细胞的基因治疗是将正常的遗传基因导入受精的卵细胞内,让这种遗传物质进入受精卵的基因组内,并随着受精卵分裂,分配到每一个子细胞中去,最终纠正未来个体的遗传缺陷。而生殖细胞的基因治疗是将人类设计的“目的基因”导入患有遗传病病人的生殖细胞内,此法操作技术异常复杂,又涉及伦理,缓行之理充足,故尚无人涉足。 3.4基因工程诊病 运用基因手段诊病,从基因中寻找病根,旨在根治遗传性疾病和为癌症、艾滋病、白痴病之类的“不治之症”寻找新的诊断渠道。目前,聚合酶链反应的基因诊断技术是在基因水平上对人体疾病进行诊断的最新技术。此外,用在法医上,特别是鉴定犯罪,只要在犯罪现场采到一滴血、一根毛发或者微量的唾液、精斑或者单个精子,都可为擒获犯罪提供线索。 基因工程是20世纪生命科学领域中最伟大的成就,开辟了生命科学的新纪元。基因工程是一种分子水平上的生物工程,是生物工程的核心,是生物工程的灵魂,它可以超越动物、植物和微生物之间的界限,创造出新的生物类型。基因工程不仅在医学上应用广泛,而且广泛应用在工业、农业、冶金、环保等领域,为人类的丰衣足食和健康长寿提供了持续的实用价值很高的产品,发展前景极为广阔。参考文献 [1]李立家,肖庚富.基因工程.2004. [2]朱宝泉.基因工程技术在医学工业中的应用及进展.1997(2).

相关文档
最新文档