计算机原理实验室实验报告
计算机组成原理实验报告

实验一:数字逻辑——交通灯系统设计子实验1:7 段数码管驱动电路设计(1)理解利用真值表的方式设计电路的原理;(2)利用Logisim 真值表自动生成电路的功能,设计一个 7 段数码管显示驱动。
二、实验方案设计7 段数码管显示驱动的设计方案:(1)输入:4 位二进制(2)输出:7 段数码管 7 个输出控制信号(3)电路引脚:(4)实现功能:利用 7 段数码管显示 4 位二进制的 16 进制值(5)设计方法:由于该实验若直接进行硬件设计会比较复杂,而7 段数码管显示的真值表较容易掌握,所以我们选择由真值表自动生成电路的方法完成该实验。
先分析设计 7 段数码管显示驱动的真值表,再利用Logisim 中的“分析组合逻辑电路”功能,将真值表填入,自动生成电路。
(6)真值表的设计:由于是 4输入 7输出,真值表共有 16 行。
7输出对应 7个引脚,所以需要依次对照LED 灯的引脚顺序进行设计,如下图所示(注意LED 的引脚顺序):三、实验步骤(1)在实验平台下载实验框架文件RGLED.circ;(2)在Logisim 中打开RGLED.circ 文件,选择数码管驱动子电路;(3)点击“工程”中的“分析组合逻辑电路”功能,先构建4输入和7输出,再在“真值表”中,将已设计好的真值表的所有数值仔细对照着填入表格中,确认无误后点击“生成电路”,自动生成的电路如下图所示:(4)将子电路封装为如下形式:(5)进行电路测试:·自动测试在数码管驱动测试子电路中进行测试;·平台评测自动测试结果满足实验要求后,再利用记事本打开RGLED.circ 文件,将所有文字信息复制粘贴到Educoder 平台代码区域,点击评测按钮进行测试。
四、实验结果测试与分析(1)自动测试的部分结果如下:(2)平台测试结果如下:综上,本实验测试结果为通过,无故障显示。
本实验的关键点在于:在设计时需要格外注重LED 灯的引脚顺序,保证0-9 数字显示的正确性,设计出正确的真值表。
计算机组成原理实验报告

计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。
实验一,逻辑门电路实验。
在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。
逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。
在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。
实验二,寄存器和计数器实验。
在本次实验中,我们学习了寄存器和计数器的原理和应用。
寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。
通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。
实验三,存储器实验。
在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。
通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。
实验四,指令系统实验。
在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。
通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。
实验五,CPU实验。
在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。
通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。
实验六,总线实验。
在本次实验中,我们学习了计算机的总线结构和工作原理。
通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。
结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。
通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。
希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。
《计算机组成原理》实验报告一

《计算机组成原理》实验报告一一、实验目的:编写程序、上机调试、运行程序是进一步学习和掌握汇编语言程序设计的必要手段。
通过本次实验, 学习、掌握运行汇编程序的相关知识。
1、二、实验内容:2、熟悉实验用微机的软、硬件配置(1)硬件: Intel Celeron 500GHz CPU、128M内存(8M作共享显存)、intel810芯片主板、集成i752显卡、maxtro20G硬盘、ps/2接口鼠标、PS/2接口键盘。
(2)软件:DOS 操作系统Windows98 seMASM汇编语言程序3、熟悉运行汇编语言所需的应用程序汇编程序使MASM连接程序使用LINK程序调试程序使用DEBUG程序4、熟悉汇编语言源程序上机操作过程(1)编辑源文件(选择可使用的文本编辑器)(2)汇编源程序文件(3)连接目标文件(4)运行可执行文件5、汇编操作举例用edit编辑myprog.asm文件;(见下图)用MASM.exe编译myprog.asm生成myprog.obj文件;C:\masm\bin> masm.exe由图中可以看出:0 个警告错误0个严格错误汇编通过, 生成mygrog.obj目标文件(如果有严格错误, 汇编不能通过, 必须返回编辑状态更改程序。
)用link.exe命令链接myhprog.obj生成myprog.exe文件!C:\masm\bin> link.exeC:\masm\bin> myprog.exe运行程序结果为:屏幕显示“Hi! This is a dollar sign terminated string.”三、实验总结:1.可以在DOS或Windows状态编辑汇编源程序2.可以使用EDIT 或记事本编辑汇编源程序, 源程序必须以.asm为扩展名。
在记事本中保存文件时, 可以加双引号“myprog.asm”,文件名就不会出现myprog.asm.txt的错误3.熟悉相关的DOS 命令cd 进入子目录mkdir 建立子目录xcopy *.* /s 拷贝当前目录下所有文件及子目录format a: 格式化A盘4.在Windows 系统下运行汇编程序, 有时会有问题, 建议大家熟悉DOS命令,DOS编辑工具, 在DOS状态下运行汇编程序。
计算机组成原理实验报告_存储系统设计实验

实验四存储系统设计实验一、实验目的本实训项目帮助大家理解计算机中重要部件—存储器,要求同学们掌握存储扩展的基本方法,能设计MIPS 寄存器堆、MIPS RAM 存储器。
能够利用所学习的cache 的基本原理设计直接相联、全相联,组相联映射的硬件cache。
二、实验原理、内容与步骤实验原理、实验内容参考:1、汉字字库存储芯片扩展设计实验1)设计原理该实验本质上是8个16K×32b 的ROM 存储系统。
现在需要把其中一个(1 号)16K×32b 的ROM 芯片用4个4K×32b 的芯片来替代,实际上就是存储器的字扩展问题。
a) 需要4 片4个4K×32b 芯片才可以扩展成16K×32b 的芯片。
b) 目标芯片16K个地址,地址线共14 条,备用芯片12 条地址线,高两位(分线器分开)用作片选,可以接到2-4 译码器的输入端。
c) 低12 位地址直接连4K×32b 的ROM 芯片的地址线。
4个芯片的32 位输出直接连到D1,因为同时只有一个芯片工作,因此不会冲突。
芯片内数据如何分配:a) 16K×32b 的ROM 的内部各自存储16K个地址,每个地址里存放4个字节数据。
地址范围都一样:0x0000~0x3FFF。
b) 4个4K×32b 的ROM,地址范围分别是也都一样:0x000~0xFFF,每个共有4K个地址,现在需要把16K×32b 的ROM 中的数据按照顺序每4个为一组分为三组,分别放到4个4K×32b 的ROM 中去。
HZK16_1 .txt 中的1~4096个数据放到0 号4K 的ROM 中,4097~8192 个数据放到 1 号4K 的ROM 中,8193~12288 个数据放到2 号4K 的ROM 中,12289~16384个数据放到3 号4K 的ROM 中。
c) 注意实际给的16K 数据,倒数第二个4K(8193~12288 个数据)中部分是0,最后4K(12289~16384 数据)全都是0。
计算机原理实验报告

实验名称:计算机原理实验实验日期:2023年X月X日实验地点:计算机实验室实验目的:1. 理解计算机的基本工作原理和组成结构。
2. 掌握计算机各部件的功能和相互关系。
3. 熟悉计算机指令系统和工作流程。
4. 培养动手能力和实验技能。
实验内容:一、计算机硬件组成实验1. 实验目的:了解计算机硬件的组成和各部件的功能。
2. 实验步骤:(1)观察计算机主机,识别各硬件部件,如CPU、内存、硬盘、显卡等。
(2)了解各硬件部件的功能和相互关系。
(3)拆装计算机,练习硬件组装和维修。
二、计算机指令系统实验1. 实验目的:熟悉计算机指令系统,掌握指令的格式和功能。
2. 实验步骤:(1)学习计算机指令系统的基础知识,了解指令的分类和功能。
(2)分析指令的格式,掌握指令的编码方式。
(3)编写简单的程序,实现指令的功能。
三、计算机工作流程实验1. 实验目的:理解计算机的工作流程,掌握程序执行的过程。
2. 实验步骤:(1)学习计算机工作流程的基本知识,了解程序的加载、执行和存储过程。
(2)观察计算机运行程序的过程,分析程序执行过程中的指令执行顺序。
(3)编写程序,验证程序执行的正确性。
实验结果与分析:一、计算机硬件组成实验实验结果:通过观察和拆装计算机,掌握了计算机硬件的组成和各部件的功能,熟悉了计算机的硬件结构。
分析:计算机硬件是计算机系统的基础,了解硬件组成有助于更好地理解计算机的工作原理。
二、计算机指令系统实验实验结果:学习了计算机指令系统的基础知识,掌握了指令的格式和功能,能够编写简单的程序实现指令的功能。
分析:计算机指令系统是计算机执行程序的基础,熟悉指令系统对于程序设计和开发具有重要意义。
三、计算机工作流程实验实验结果:理解了计算机的工作流程,掌握了程序执行的过程,能够分析程序执行过程中的指令执行顺序。
分析:计算机工作流程是计算机执行程序的关键,了解工作流程有助于优化程序设计和提高程序执行效率。
实验总结:本次计算机原理实验使我对计算机的基本工作原理和组成结构有了更深入的了解。
计算机组成原理实验报告-寄存器实验

千里之行,始于足下。
计算机组成原理实验报告-寄存器实验计算机组成原理实验报告-寄存器实验》一、实验目的本次实验旨在通过设计和实现一个基本的寄存器,加深对计算机组成原理中寄存器的理解,并掌握寄存器在计算机中的应用。
二、实验设备及软件1. 实验设备:计算机2. 实验软件:模拟器软件Mars3. 实验材料:电路图、线缆、元器件三、实验原理寄存器是计算机的一种重要组成部分,用于存储数据和指令。
一个基本的寄存器通常由一组触发器组成,可以存储多个位的信息。
本实验中,我们需要设计一个16位的寄存器。
四、实验步骤1. 确定寄存器的结构和位数:根据实验要求,我们需要设计一个16位的寄存器。
根据设计要求,选择合适的触发器和其他元器件。
2. 组装寄存器电路:根据电路图,将选择好的元器件按照电路图连接起来。
3. 连接电路与计算机:使用线缆将寄存器电路连接到计算机的相应接口上。
4. 编写程序:打开Mars模拟器软件,编写程序来测试寄存器的功能。
可以编写一段简单的程序,将数据写入寄存器并读取出来,以验证寄存器的正确性。
5. 运行程序并测试:将编写好的程序加载到Mars模拟器中,并运行程序,观察寄存器的输出和模拟器的运行结果。
第1页/共3页锲而不舍,金石可镂。
五、实验结果在本次实验中,我们成功设计和实现了一个16位的寄存器,并进行了相关测试。
经过多次测试,寄存器的功能和性能良好,能够准确地存储和读取数据。
六、实验心得通过本次实验,我对寄存器的结构和工作原理有了更深入的了解。
寄存器作为计算机的一种重要组成部分,起着存储和传输数据的作用。
通过实际操作和测试,我更加清楚了寄存器在计算机中的应用和重要性。
在实验过程中,我遇到了一些问题,如电路连接不稳定、程序错误等,但通过仔细检查和调试,最终解决了这些问题。
这次实验也让我深刻体会到了学习计算机组成原理的重要性,只有深入理解原理并通过实践运用,才能真正掌握计算机的工作原理和能力。
通过这个实验,我有了更深入的认识和理解,对计算机组成原理的学习也更加系统和完整。
计算机组成原理实验报告

实验1 通用寄存器实验一、实验目的1.熟悉通用寄存器的数据通路。
2.了解通用寄存器的构成和运用.二、实验要求掌握通用寄存器R3~R0的读写操作.三、实验原理实验中所用的通用寄存器数据通路如下图所示。
由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。
图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。
RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。
DRCK信号为寄存器组打入脉冲,上升沿有效.准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。
图2—3-3 通用寄存器数据通路四、实验内容1.实验连线连线信号孔接入孔作用有效电平2.寄存器的读写操作①目的通路当RWR=0时,由DI、OP编码产生目的寄存器地址,详见下表.通用寄存器“手动/搭接”目的编码②通用寄存器的写入通过“I/O输入输出单元”向R0、R1寄存器分别置数11h、22h,操作步骤如下:通过“I/O输入输出单元”向R2、R3寄存器分别置数33h、44h,操作步骤如下:③源通路当X2~X0=001时,由SI、XP编码产生源寄存器,详见下表.通用寄存器“手动/搭接”源编码④ 通用寄存器的读出关闭写使能,令K18(RWR )=1,按下流程分别读R0、R1、R2、R3。
五、实验心得通过这个实验让我清晰的了解了通用寄存器的构成以及通用寄存器是如何运用的,并且熟悉了通用寄存器的数据通路,而且还深刻的掌握了通用寄存器R3~R0的读写操作。
实验2 运算器实验一、实验目的掌握八位运算器的数据传输格式,验证运算功能发生器及进位控制的组合功能.二、实验要求完成算术、逻辑、移位运算实验,熟悉ALU 运算控制位的运用.三、实验原理实验中所用的运算器数据通路如图2-3—1所示。
ALU 运算器由CPLD 描述。
运算器的输出FUN 经过74LS245三态门与数据总线相连,运算源寄存器A 和暂存器B 的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O 输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。
计算机实验报告15篇

计算机实验报告计算机实验报告15篇我们眼下的社会,报告使用的次数愈发增长,通常情况下,报告的内容含量大、篇幅较长。
那么报告应该怎么写才合适呢?下面是小编收集整理的计算机实验报告,仅供参考,大家一起来看看吧。
计算机实验报告1实验名称:网络应用综合实验所用仪器材料:能接入INTERNET的计算机一台套一、实验目的1、熟悉上网浏览、检索、下载网络资源的基本方法;2、掌握E-mail的申请及应用;3、了解网络配置与网络安全的相关知识;4、掌握WINDOWS共享目录的使用与简单局域网的组建方法;5、了解简单的网络命令和使用方法。
二、实验内容1、INTERNET的基本操作及WWW的基本应用;2、网络资源的获取;3、E-mail的申请及应用;4、WINDOWS共享目录的使用与局域网的组建。
5、简单的网络基本命令使用。
三、实验步骤(参照实验指导书上的内容,结合实验过程中做的具体内容,完成此项内容的撰写)四、思考与总结(写实验的心得体会等)计算机实验报告2一、实习时间20xx年X月18日到X月10日二、实习地点中****-*三、实习目的通过理论联系实际,巩固所学的知识,提高处理实际问题的能力,为顺利毕业进行做好充分的准备,并为自己能顺利与社会环境接轨做准备。
四、实习内容能对电脑交易和具体的电脑安装步骤进行了解,并查阅资料巩固自我缺漏的电脑经验。
能将具体的计算机知识应用到实际中,在电脑交易的同时,将自己的所学所想所感付诸实践。
能够熟练掌握一定的计算机技巧,比如安装系统,安装插线,识别型号,处理图形和flash等。
能够与别人进行一定程度的计算机交流,并且提供各种买卖信息以及电脑性能好坏的识别。
能够推销贩卖计算机,并且积累丰厚的社会交流经验和提升自我的语言表达能力。
五、实习体会职高生活让我对计算机理论知识有了一定的了解。
但实践出真知,唯有把理论与实践相结合,才能更好地为社会服务。
经过实践和实习,我对未来充满了美好的憧憬,在未来的日子,我将努力做到以下几点:一、继续学习,不断提升理论涵养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩:计算机原理实验室实验报告课程:计算机组成原理姓名:专业:网络工程学号:日期:计算机工程系实验一:运算器实验实验环境PC机+Win 2003+emu8086+proteus仿真器实验日期2015年.10 一.实验内容1.熟悉proteus仿真系统2.设计并验证4位算数逻辑单元的功能3.实现输入输出锁存4.实现8位算数逻辑单元二.理论分析或算法分析实验原理:算术逻辑运算单元的核心是由74LS181 构成,它可以进行二进制数的算术逻辑运算,74LS181 的各种工作方式可通过设置其控制信号来实现。
当正确设置74LS181的各个控制信号,74LS181 会运算数据锁存器内的数据。
由于数据锁存器已经把数据锁存,只要74LS181的控制信号不变,那么74LS181 的输出数据也不会发生改变。
输出缓冲器采用74LS245,当控制信号为低电平时,74LS245导通,把74LS181 的运算结果输出到数据总线,高电平时,74LS245 的输出为高阻。
实验中所用的运算器数据通路如图所示。
其中运算器由两片74LS181以并/串形式构成8位字长的ALU。
运算器的输出经过一个三态门(74LS245)以8芯扁平线方式和数据总线相连,运算器的2个数据输入端分别由二个锁存器(74LS273)锁存,锁存器的输入亦以8芯扁平线方式与数据总线相连,数据开关(INPUT DEVICE)用来给出参与运算的数据,经一三态门(74LS245)以8芯扁平线方式和数据总线相连,数据显示灯(BUS UNIT)已和数据总线相连,用来显示数据总线内容。
三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)实现电路图:1.设计并验证4位算数逻辑单元的功能2.实现8位算数逻辑单元四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)(一)验证了基本要求,实现了设计并验证4位算数逻辑单元、实现输入输出锁存、实现8位算数逻辑单元的功能.运行结果:图一图二:(二)思考问题:单总线,双总线和三总线结构在设计上的异同答:单总线结构:对这种结构的运算器来说,在同一时间内,只能有一个操作数放在单总线上。
为了把两个操作数输入到ALU,需要分两次来做,而且还需要A,B两个缓冲寄存器。
这种结构的主要缺点是操作速度较慢。
虽然在这种结构中输入数据和操作结果需要三次串行的选通操作,但它并不会对每种指令都增加很多执行时间。
只有在对全都是CPU寄存器中的两个操作数进行操作时,单总线结构的运算器才会造成一定的时间损失。
但是由于它只控制一条总线,故控制电路比较简单。
双总线结构:在这种结构中,两个操作数同时加到ALU进行运算,只需一次操作控制,而且马上就可以得到运算结果。
两条总线各自把其数据送至ALU的输入端因而必须在ALU输出端设置缓冲寄存器。
为此,操作的控制要分两步完成:(1)在ALU的两个输入端输入操作数,形成结果并送入缓冲寄存器;(2)把结果送入目的寄存器。
三总线结构:在三总线结构中,ALU的两个输入端分别由两条总线供给,而ALU 的输出则与第三条总线相连。
这样,算术逻辑操作就可以在一步的控制之内完成。
另外,设置了一个总线旁路器。
如果一个操作数不需要修改,而直接从总线2传送到总线3,那么可以通过控制总线旁路器把数据传出;如需要修改,那么就借助于ALU。
五.结论完成了本次实验要求的设计并验证4位算数逻辑单元、实现输入输出锁存、实现8位算数逻辑单元的实验内容。
学会了如何使用proteus仿真系统,掌握了运算器工作原理,熟悉了算术运算的运算过程以及控制这种运算的方法。
实验二:寄存器实验实验环境PC机+Win 2003+emu8086+proteus仿真器实验日期2015.10 一.实验内容1.理解CPU运算器中寄存器的作用2.设计并验证寄存器组(至少四个寄存器)3.实现更多的寄存器(至少8个)二.理论分析或算法分析单元电路:实验中所用的寄存器数据通路如图所示。
由74LS373组成寄存器组成。
寄存器的输入接口用一8芯扁平线连至BUS总线接口,而寄存器的输出接口用一8芯扁平线连至BUS 总线接口。
经CBA二进制控制开关译码产生数据输出选通信号,LDR0、LDR1、LDR2为数据写入允许信号,由二进制控制开关模拟,均为高电平有效。
三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)实验电路:1.设计并验证寄存器组2.扩展成四组(由于空间有限,只能实现两组)四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)(一)验证了基本要求,实现了设计并验证寄存器组(至少四个寄存器)、实现更多的寄存器(至少8个)的功能.运行结果:图一(二)思考问题:随着寄存器的增多,电路设计的复杂度是什么比例增大答:在电路设计中,随着寄存器的增多,电路设计的复杂程度是成倍增大的。
五.结论完成了本次实验要求的设计并验证寄存器组(至少四个寄存器)、实现更多的寄存器(至少8个)的功能的实验内容。
学会了如何扩展多组寄存器以及寄存器的工作原理.明白了CPU运算器中计算器的作用:(1)可将寄存器内的数据执行算术及逻辑运算。
(2)存于寄存器内的地址可用来指向内存的某个位置,即寻址。
(3)可以用来读写数据到电脑的周边设备。
实验三:输入输出实验实验环境ISIS仿真软件实验日期2015.11 实现方法:实验(1)实验(2)实验结果分析实验四:微程序控制器实验实验环境PC机+Win7+proteus仿真器实验日期2015.12一.实验内容基本要求:1.掌握微程序控制器工作原理2设计并实现指令的微程序片段二.理论分析或算法分析程序查询方式是最简单、经济的I/O方式,通常接口中至少有两个寄存器,一个是数据缓冲寄存器,即数据端口,用来存放与方式,通常接口中至少有两个寄存器,一个是数据缓冲寄存器,即数据端口,用来存放与CPU进行传送的数据信息;另一个是供进行传送的数据信息;另一个是供CPU查询的设备状态寄存器,这个寄存器由多个标志位组成,其中最重要的是“外设准备就绪”标志(输入或输出设备的准备就绪标志可以不是同一位)。
当要的是“外设准备就绪”标志(输入或输出设备的准备就绪标志可以不是同一位)。
当CPU得到这位标志后就进行判断,以决定下一步是继续循环等待还是进行得到这位标志后就进行判断,以决定下一步是继续循环等待还是进行I/O传送。
三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)实验电路图将数据送入锁存器:CPU从锁存器中读取数据:准备读取下一个数据:四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)过程分析:在输入设备准备好数据时,发出一个选通信号KEY-BUS,将数据通过总线接收器74LS245送入总线,然后通过总线把数据传送到锁存器74LS373(图中的U2),同时将D触发器U3:B的Q输出端置为1(即灯READ_NEXT亮),表示接口中已经有数据(即准备就绪)。
CPU要从外设输入数据时,先执行输入指令读取状态字,如READ_NEXT=1,再执行输入指令从锁存器中读取数据,同时把DE_C2D 置为1,表示可以准备从外设接收下一个数据;如果READ_NEXT=0;则踏步等待,直至READ_NEXT=1为止。
五.结论通过本次实验,我掌握了程序查询的基本思想以及工作流程。
通过仿真电路,虽然实验中遇到问题,但在老师和同学的帮助下,最终还是实现了程序查询方式的输入接口和输出接口的工作流程仿真,完成了本次实验。
实验五:微程序设计实验实验环境PC机+Win 2003+proteus仿真器实验日期2015.12 一.实验内容1.了解微程序执行过程2.设计并实现指令的微程序执行过程3.分析取指过程与微地址的关系二、理论分析或算法分析1、微程序的设计理论分析或算法分析⑴ 微地址显示灯显示的是后续微地址,而26位显示灯显示的是当前微单元的二进制控制位。
⑵ 微控制代码输出锁存器273(0-2)、175及后续微地址输出锁存器M7~M2(74LS74)。
⑶ CK0、CK1、CK2、CK3为微控制器微代码锁存输出控制位。
⑷ T2为后续微地址输出锁存控制位,在模型机运行状态有效。
⑸ 微控制程序存贮器(6116)片选端CS0、CS1、CS2、CS3受控于管理CPU(89C52)。
⑹ 微控制程序存贮器(6116)读、写端OE、WE均受控于管理CPU(89C52)。
⑺ SE5~SE0是指令译码的输入端,通过译码器确定相应机器指令的微代码入口地址。
⑻ 4片245在CPU管理下产生装载微代码程序所需的四路8位数据总线及低5位地址线。
⑼ 管理CPU(89C52)及大规模可编程逻辑器件MACH128N是系统的指挥与控制中心。
这种方式的特点是微程序控制部件中的微地址中的微地址产生线路主要是微地址计数器MPC,MPC的初值由微程序首址形成线路根据指令操作码编码形成,在微程序执行过程中该计数器增量计数,产生下一条微指令地址。
这使得微指令格式中可以不设置“下地址场”,缩短了微指令长度,也使微程序控制部件结构较简单。
但微程序必须存放在控存若干连续单元中。
2)断定方式微程序控制部件示意图微指令中设有“下地址场”,他指出下条微指令的地址,这使一条指令的微程序中的微指令在控存中不一定要连续存放。
在微程序执行过程中。
微程序控制部件中的微地址形成电路直接接受微指令下地址场信息来产生下条微指令地址,微程序的首址也由此微地址形成线路根据指令操作码产生三、实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)将全部微程序微指令格式变址的二进制代码表四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)(一)验证了基本要求,实现了设计并实现指令的微程序执行过程、分析取指过程与微地址的关系的功能.五.结论完成了本次实验要求的设计并实现指令的微程序执行过程、分析取指过程与微地址的关系的内容,并了解微程序执行过程,微程序即实现程序的一种手段,具体就是将一条机器指令编写成一段微程序。
每一个微程序包含若干条微指令,每一条微指令对应一条或多条微操作。
在有微程序的系统中,CPU内部有一个控制存储器,用于存放各种机器指令对应的微程序段。
当CPU执行机器指令时,会在控制存储器里寻找与该机器指令对应的微程序,取出相应的微指令来控制执行各个微操作,从而完成该程序语句的功能。