函数图形的描绘
23-曲线的凹凸性、描绘函数图形

趋于零 , 则称此直线 L 为曲线 y = f ( x ) 的一条 渐近线 .
曲 线 的 渐 近 线
水平渐近线
垂直渐近线
斜渐近线
水平渐近线
若 lim f ( x) b , 则曲线 f ( x) 有一条水平渐近线 y b .
x
这里的极限可以是
x
lim f ( x) b 或 lim f ( x) b .
x
垂直渐近线
若 lim f ( x) , 则曲线 y f ( x) 有一条垂直渐近线 x a .
x a
这里的极限可以是 xlim f ( x) , a lim lim f ( x) ; f ( x) ,
x a
x a
x a
lim f ( x) ; lim f ( x) .
f ( x) ( x 1) lim lim 1 2 x x x ( x 1) x
b k
现在给定一个函数 , 我们可以讨论它的:
定义域、 值 域、 奇偶性、 有界性、 周期性、 连续性、 间断点、 可微性、 单调性、 极 值、 最 值、 凹凸性、 拐 点、 渐近线、 零点位置 . 用极限讨论函数的变化趋势 . 用泰勒公式将函数离散化 .
三、函数图形的描绘
作函数图形的一般步骤如下: (1) 确定函数的定义域 , 观察奇偶性、周期性 . (2) 求函数的一、二阶导数 , 确定极值可疑点和拐点可疑点 .
若 f ( x) 在点 x0 两侧符号相反, 则
点 ( x0 , f ( x0 )) 为曲线 y f ( x) 的拐点 .
定理
( 判别拐点的充分条件 )
设 f ( x) C ( I ) , f ( x) 在 U( x0 ) ( x0 I ) 内三阶可导 .
高等数学——函数图形的描绘

函数图形的描绘在中学时我们用描点法来作函数的图像,这种方法常遗漏曲线的一些关键点,如极值点、拐点等,使得函数的一些重要性态难以准确地显示出来。
在本章前两节我们借助于导数的符号讨论了函数图形的升降和凹凸,以及在什么地方有极值点,什么地方有拐点,这样也就基本掌握了函数的性态,并把函数的图形画得比较准确。
此外,为了描绘函数图形在无穷远处的走势,还有必要讨论函数图形在无穷远处的变化趋势,即渐近线。
一、渐近线1、定义定义 若曲线)(x f y =上一动点沿着曲线无限远去时,该点与某条定直线L 的距离趋于零,则称直线L 为曲线)(x f y =的渐近线(如图153--)。
2、分类渐近线可分为水平渐近线、铅直渐近线和斜渐近线。
(1)水平渐近线 若函数)(x f y =的定义域为无穷区间,且C x f x =∞→)(lim (或C x f x x =-∞→+∞→)(lim )() 图153--则称直线C y =为曲线)(x f y =的水平渐近线。
例如,因为01lim=∞→x x ,故直线0=y 为曲线xy 1=的水平渐近线;又如,因为2arctan lim π=+∞→x x ,2arctan lim π-=-∞→x x ,故直线2π=y 及直线2π-=y 均为曲线x y arctan =的水平渐近线。
(2)铅直渐近线 若函数)(x f y =在点0x 处间断,且∞=→)(lim 0x f x x则称直线0x x =为曲线)(x f y =的铅直渐近线。
注:铅直渐近线定义式∞=→)(lim 0x f x x 中,0x x →可换作-→0x x 或+→0x x ,∞→)(x f 亦可换作-∞→)(x f 或+∞→)(x f 。
例如,因为∞=→x x 1lim0,故直线0=x 为曲线xy 1=的铅直渐近线;又如,因为-∞=+→x x ln lim 0,故直线0=x 为曲线x y ln =的铅直渐近线。
*(3)斜渐近线 设有函数)(x f y =,若0)]()([lim =+-∞→b ax x f x则称直线b ax y +=为曲线)(x f y =的斜渐近线,其中xx f a x )(lim∞→=,])([lim ax x f b x -=∞→注:若x x f x )(lim ∞→不存在,或虽然xx f x )(lim ∞→存在但])([lim ax x f x -∞→不存在,则可以断定)(x f y =不存在斜渐近线。
2.4.2函数的凹凸与图形的描绘

端点为x = 0及x = 5, f (0) = 5, f (1) = 9, f (3) = 5, f (5) = 25, ∴ f ( x)在[0,5]上的最大值为25, 最小值为5. 最小值为5
y
25
20
15
10
5
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
x
f ( x) = x3 - 6 x 2 + 9 x + 5在 [ 0,5] 上的最大值和最小值.
x
( −∞ ,−1) − 1
+
(−1,3) −
−
3 0
极 小 值
( 3,+∞ )
+
f ′( x ) f ( x)
0
极 大 值
↑
↓
↑
极 值 f (−1) = 10, −
极 值 f ( 3) = −22.
f ( x ) = x 3 − 3 x 2 − 9 x + 5图形如下
M
m
定理2 (第二判别法 第二判别法) 定理2-1 (第二判别法)
定理1 定理1 如果 f ( x) 在[a, b] 上连续,在(a, b) 内具有
一阶和二阶导数,若在(a, b) 内 (1) f ′′( x) > 0,则 f ( x) 在[a, b] 上的图形是凹的; (2) f ′′( x) < 0,则 f ( x) 在[a, b] 上的图形是凸的.
例1 判断曲线 y = x 3 的凹凸性 . 解 Q y′ = 3 x 2 , y′′ = 6x ,
第四节 导数的应用
(二)
一、函数的极值
函数渐近线及函数图形的描绘

使用图形计算器绘制函数图形
简单易用、无需额外设置
图形计算器的操作通常非常简单,只需要选择相应的函数 类型或输入函数表达式,就可以自动绘制出相应的图形。 用户无需进行复杂的设置或调整参数,使得绘图过程更加 快速和简便。
使用图形计算器绘制函数图形
功能相对有限
VS
相对于数学软件,图形计算器的功能 相对有限。它们通常只能绘制基本的 函数图形,如直线、二次函数、三角 函数等,而无法绘制更复杂的函数图 形或进行高级的图形定制。
功能强大、精确度高
数学软件如Matlab、Mathematica和Maple等,提供了强大的绘图工具和函数 库,可以绘制各种复杂的函数图形,包括三维图形和极坐标图形。这些软件通常 具有高精度的计算和绘图能力,能够准确地表示函数的形状和变化趋势。
使用数学软件绘制函数图形
操作简便、可视化效果好
这些软件通常具有直观的用户界面和易于操作的命令语言,使得用户可以轻松地绘制函数图形。同时,这些软件还提供了丰 富的颜色、线条样式和标记工具,使得绘制的图形更加生动和易于理解。
验证模型
通过比较函数渐近线和实际数据,可以验证数学模型的准确 性和可靠性。
在科学计算中的应用
数据拟合
在科学实验中,利用函数渐近线可以 对实验数据进行拟合,得到更准确的 结论。
理论推导
在理论推导中,函数渐近线可以作为 理论依据,帮助推导出新的科学理论。
04 函数图形的描绘工具和技 术
使用数学软件绘制函数图形
平移变换
对称变换
将函数图像沿x轴或y轴方向平移一定 的距离。
将函数图像关于原点、x轴或y轴进行 对称。
伸缩变换
将函数图像在x轴或y轴方向上伸缩一 定的比例。
高等数学3.4 曲线的凹凸性与拐点 函数图形的描绘

x f (x) f (x)
( , 2)
2 0
拐点(2, 3)
(2, + ) +
其中 , 分别表示曲线凸和凹.
例 4 讨论曲线 y = ln(1 + x2) 的凹凸区间与拐点. 解 定义域为( , ). 因为
y 2x , 1 x2
y
2(1 x 2 ) (1 x 2 )2
O1
x
-1
曲线 y x3 是凹的.
所以,点(0,0) 为曲线 y x3 的拐点.
例 3 讨论曲线 f (x) = x3 - 6x2 + 9x + 1 的凹凸 区间与拐点.
解 定义域为( , ).
因为
f (x) = 3x2 - 12x + 9,
f (x) = 6x - 12 = 6(x - 2 ), 令 f (x) = 0,可得 x = 2.
当 x ( , 2) 时,f (x) < 0, 此区间是凸区间. 当 x (2, + ) 时,f (x) > 0, 此区间是凹区间.
当 x = 2 时, f (x) = 0,因 f (x) 在 x = 2 的两 侧变号,而 f (2) = 3, 所以 (2, 3)是该曲线的拐点.
(2) 用上述各点按照从小到大依次将(a,b) 分成小 区间,再在每个小区间上考察 f (x) 的符号;
(3) 若 f (x) 在某点 xi 两侧近旁异号,则(xi , f (xi )) 是曲线y = f (x)的拐点,否则不是.
例 2 曲线 y x3的定义域为(,),画其草图.
则称直线
x = x0近线.
例如, 对于曲线 y = ln x 来说, 因为
高等数学入门——描绘函数图像的一般步骤及例子

高等数学入门——描绘函数图像的一般步骤及例子高等数学是大学数学的基础课程之一,其重要内容之一是描绘函数的图像。
描绘函数图像的一般步骤如下:1.确定定义域和函数的类型:首先需要确定函数的定义域,即函数可以取值的范围。
同时,需要确定函数是一元函数还是多元函数,是线性函数还是非线性函数等。
2.求导或求导数的一般规律:对于一元函数,可以通过求导的方法来描绘函数的变化趋势。
求导可以确定函数的关键点,如极值点、拐点等。
对于多元函数,则需要利用偏导数来确定函数的变化趋势。
3.确定增减、凹凸和拐点:通过求导或偏导数,可以确定函数的单调性和凹凸性。
当导数为正时,函数单调递增;当导数为负时,函数单调递减。
当二阶导数大于零时,函数凹,小于零时函数凸。
4.确定函数的特殊点:特殊点包括与坐标轴的交点、零点、无穷大点等。
这些点是函数图像的关键部分,需要特别关注。
5.确定函数的渐近线:渐近线是函数图像在无穷远点的变化趋势。
有水平渐近线、垂直渐近线和斜渐近线等。
下面举例说明:例子1:绘制函数y=x^2-2x+1首先,确定定义域和函数的类型:该函数为一元二次函数,定义域为实数集。
然后,求导:y'=2x-2接着,确定增减、凹凸和拐点:当x<1时,y'<0,函数递减;当x>1时,y'>0,函数递增;令y'=0,则x=1,该点为拐点。
继续求二阶导数:y''=2可以确定函数为凹函数。
然后,确定函数的特殊点:与x轴的交点为y=0,即x=1;与y轴的交点为x=0。
最后,确定函数的渐近线:无垂直渐近线;当x趋于无穷大时,y趋于无穷大,可以确定y轴为水平渐近线。
综上所述,根据以上步骤,我们可以描绘出函数y=x^2-2x+1的图像。
例子2:绘制函数 y = sin(x) / x首先,确定定义域和函数的类型:该函数为一元函数,定义域为实数集,但要注意x≠0。
然后,求导:y' = (x*cos(x) - sin(x)) / x^2接着,确定增减、凹凸和拐点:当x<0时,y'>0,函数递增;当x>0时,y'<0,函数递减;令 y' = 0,则 x = tan(x),求解该方程需要使用数值逼近法得到近似解。
《高等数学(上册)》课件 第三章

高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
例7
求
ln x
lim
x
xn
(n 0).
解 此题属于“ ”型未定式,应用洛必达法则有
1
xl im ln xnxxl im nxxn1
1 lim
xnxn
0
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
在使用洛必达法则时,应注意如下几点:
0
0
lim f ( x ) g ( x )
lim f ( x ) g (x)
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
高等数学
推论2 如果对(a,b)内的任意x,均有f ’(x)= g ’(x) ,那么 在(a,b)内f(x)与g(x)之间只差一个常数,即f(x)= g(x) +C〔 C 为 常数〕.
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
例1 函数f(x)=1-x2在区间[-1,2]上是否满足拉格朗日 中值定理条件?假设满足,找出点.
解 函数f(x)=1-x2在区间[-1,2]上连续,在(-1,2)上可
导,因此,满足拉格朗日定理的条件,即至少存在一点
ξ ,使
35曲线的凹向及函数图形描绘

注意: 若 f ( x0 ) 不存在,点 ( x0 , f ( x0 )) 也可能 是连续曲线 y f ( x)的拐点.
例3 求曲线 y 3 x 的拐点.
解
当x 0时,
y
1
2
x 3,
y
2
x
5 3
,
3
9
x 0是不可导点, y, y均不存在.
但在(,0)内, y 0, 曲线在(,0]上是凹的•;
因为f ( x) 0,所以f ( x)递增,
因此,不论 (x,c),还是 (c,x), [ f (c) f ()]与( x c)都为异号,故
返回
g( x) f ( x) 0, 即g( x ) f ( x )
这表明切线y g(x)在曲线 y
y f(x)的下方,因此该曲
y f (x)
线是凹的。
x
x
则直线y b 为曲线 y f ( x) 的水平渐近线.
••• 例如,对于曲线y 1 x 1
y
来说,因为lim 1 0. 所以 x x 1
直线y 0是曲线•y 1 的水平 o
x 1 渐近线。
y f (x)
1
x
返回
又如曲线•y arctgx,因为
lim arctgx •••••••• lim arctgx ••.•••
y f ( x )在该区间内的凹凸分界点,叫做该曲线的拐点.
y y f (x)
M ( x , f ( x ))
0
0
o
x
定理2(拐点的必要条件)若函数f(x)在x0
处的二阶导数f ( x)存在,且点( x0,f ( x0 ))为曲线 y f(x)的拐点。则f ( x) 0。
注意: f ( x) 0所确定的点( x0,f ( x0 ))不一定是 拐点,即f (x0) 0是点(x0,f (x0)为拐点的必要 而非充分条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、曲线的渐近线
【例5】
求曲线 解 因为
的渐近线.
所以y=0为曲线的水平渐近线,x=1及x=-1为两条垂直渐 近线.
一、曲线的渐近线
3. 斜渐近线
y=f(x)以直线y=kx+b为斜渐近线的充要条件是
一、曲线的渐近线
【例6】
求曲线 解 因为
的渐近线.
所以x=0是垂直渐近线,没有水平渐近线.由于
所以y=x是曲线的斜渐近线.
(2) y′=3x2-6x=3x(x-2),令y′=0,得x=0,x=2; y″=6x-6,令y″=0,得x=1.
(3)列表
二、函数图形的描绘
函数y=x3-3x2的图形如图3-15所示
二、函数图形的描绘
【例9】
描绘函数y=
的图形.
解(1)函数定义域为(-∞,+∞).由于
所以函数f(x)是偶函数,它的图形关于y轴对称.因此,可 以只讨论[0,+∞)上该函数的性态,然后利用对称性画出函 数的图形.求出函数的一、二阶导数.
函数图形的 描绘
一、曲线的渐近线
定义
如果动点P沿曲线C无限地远离原点时, 动点P到定直线L的距离趋于零,那么称定 直线L为曲线C的渐近线.
一、曲线的渐近线
1. 水平渐近线
如果 则称曲线y=f(x)有水平渐近线 y=A.
一、曲线的渐近线
【例1】
求y=arctanx的水平渐近线. 解 因为
所以
都是y=arctanx的水平渐近线.
【例2】
求曲线 解 因为
的水平渐近线.
所以y=0是
的水平渐近线.
一、曲线的渐近线
2. 垂直渐近线
如果 则
称曲线y=f(x)有垂直渐近线 x=a.
一、曲线的渐近线
【例3】
求曲线 解 因为
的渐近线.
所以y=0为曲线的水平渐近线,x=1为垂直渐近线.
【例4】
求曲线 解 因为
的渐近线.
所以y=0为曲线的水平渐近线,x=1及x=-1为两条垂直渐近线
二、函数图形的描绘
现将描绘函数y=f(x)的图形的一般步骤归纳如下: (1)确定函数的定义域及函数所具有的某些特性(如奇偶性、 周期性等),并求出函数的一阶导数和二阶导数; (2)利用f′(x)=0及其不存在的点将定义域划分为若干区间,判断 每个区间上f(x)的单调性并求出极值,利用f″(x)=0及其不存在的点将 定义域划分为若干区间,判断每个区间上曲线的凹凸性并求出拐点; (3)列表; (4)求出曲线的水平渐近线、垂直渐近线和斜渐近线; (5)取辅助点; (6)作图.
二、函数图形的描绘
上述的这些结果,可以列成下表:
(4)由于
=0,所以图形有一条水平渐近线y=0.
二、函数图形的描绘
结合(3)、(4)的讨论,利用描点法即可画出函数 在[0,+∞)上的图形.最后,利用图形的对称性,
便可得到函数在(-∞,0]上的图形(见图3-16).
思考
描绘函数图形时,要取一些辅助点,你认为取哪些点作为辅 助点较好?
二、函数图形的描绘
【例7】
描绘函数
的图形.
解 (1)函数定义域为(-∞,-1)∪(-1,+∞).
(2)求函数的一、二阶导数.
二、函数图形的描绘
二、函数图形的描绘
(5)取辅助点(-2,2),(0,0),(1,1/2). (6)描点作图(见图3-14)
二、函数图形的描绘
【例8】
画出y=x3-3x2的图形. 解 (1)函数的定义域为(-∞,+∞).
二、函数图形的描绘
(2)在[0,+∞)上,f′(x)的零点为x=0;f″(x)的零点为x=1 .用点x=1把[0,+∞)划分成两个区间[0,1]和[1,+∞).
(3)在(0,1)内,f′(x)<0,f″(x)<0,所以在[0,1]上的曲线 弧下降而且是凸的.结合f′(0)=0以及图形关于y轴对称可知, x=0处函数f(x)有极大值;在(1,+∞)内,f′(x)<0,f″(x)>0,所以 在[1,+∞)上的曲线弧下降而且是凹的.
谢谢聆听