MySQL数据库管理外文翻译文献
mysql数据库简介带文献

mysql数据库简介带文献MySQL是一种关系型数据库管理系统(RDBMS),由瑞典MySQL AB公司开发,并在2008年由甲骨文(Oracle)公司收购。
MySQL是一种开源软件,使用最广泛的关系型数据库之一,它被广泛应用于各种领域,包括网站开发、企业应用、移动应用等等。
MySQL的主要特点有:1. 开源:MySQL是一个开源软件,允许用户自由地使用、修改和分发,这使得MySQL成为了广大开发者和组织的首选。
2. 跨平台:MySQL可以运行在多种操作系统上,包括Windows、Linux、Unix等,这使得MySQL能够满足各种不同的部署需求。
3. 高性能:MySQL具有出色的性能表现,在大量数据处理和并发访问场景下仍能保持较低的响应时间和优秀的吞吐量。
4. 可靠性:MySQL具有强大的容错能力和高可用性,支持主从复制、故障转移等特性,保证了数据的安全性和可靠性。
5. 安全性:MySQL提供了丰富的安全功能,包括访问控制、身份验证、加密传输等,保护用户数据的安全性。
MySQL的架构主要包括以下几个组件:1. 连接器(Connector):负责与客户端建立连接,接受客户端的请求,并将其传递给服务器端进行处理。
2. 查询缓存(Query Cache):用于缓存执行查询的结果,提高查询性能。
3. 分析器(Parser):负责解析查询语句,将其转换成语法树。
4. 优化器(Optimizer):通过优化查询执行计划,选择最佳的查询路径,提高查询性能。
5. 执行器(Executor):负责执行查询语句,并返回查询结果。
6. 存储引擎(Storage Engine):负责数据的存储和检索,MySQL支持多个存储引擎,如InnoDB、MyISAM等。
MySQL的存储引擎是其设计的重要组成部分,不同的存储引擎具有不同的特点和适用场景。
例如,InnoDB存储引擎支持事务和行级锁定,适用于高并发和数据完整性要求较高的场景;MyISAM存储引擎对于读操作性能较好,适合于读写比较少的场景。
mysql论文参考文献范例3条

mysql是计算机数据库中的一种,一般与PHP程序配合使用,是目前较为流行的一个关系型数据库管理系统,在写作mysql论文时,参考文献是不可或缺的,基于此,本文整理了130个中英文"mysql数据库论文参考文献范例",以供参考。
mysql数据库论文参考文献一: [1]赵萍。
公民健康信息管理系统中MySQL数据库技术的应用[J].电脑迷,2017,(06):97. [2]黄兴。
浅析VC在MySQL数据库接口中的应用[J].电子测试,2017,(07):67+59. [3]汤强,赵耀,王辉,王盼,符胜高。
基于PHP和MySQL的教育培训整合平台设计与实现[J].电脑知识与技术,2017,(10):62-63+75. [4]苟文博,于强。
基于MySQL的数据管理系统设计与实现[J].电子设计工程,2017,(06):62-65. [5]李强。
基于MySql的物流管理系统的设计与实现[J].西安文理学院学报(自然科学版),2017,(02):50-54. [6]赵红霞,王建。
基于PHP+MySQL结构的微课在线学习系统设计与实现[J].信息通信,2017,(03):84-85. [7]孙丽红。
利用C#和MySQL实现MIS账户管理的关键技术[J].电脑编程技巧与维护,2017,(03):44-46. [8]石坤泉,杨震伦。
基于MySQL数据库的数据隐私与安全策略研究[J].网络安全技术与应用,2017,(01):79+81. [9]李楠,杨玉麟,谷秀洁。
公共图书馆职能管理与项目管理并行的难点与对策--以佛山市图书馆为例[J].图书馆论坛,2017,(02):62-67. [10]袁勇,简岩,孙小林,李豪。
Linux平台下MySQL数据库备份的方法分析[J].无线互联科技,2017,(01):124-125. [11]徐奕枫。
基于PHP+MySQL的图书商城系统的设计与实现[J].通讯世界,2016,(24):296. [12]黄兴。
计算机外文翻译---网格中的数据库管理

毕业设计(论文)——外文翻译(原文)Database management moves into the GridDatabase management software (DBMS) has been the backbone of enterprise computing for the past many years. The market is growing bigger in terms of size, and will continue to gain prominence in 2004. With the consolidation, standardisation and centralisation of IT systems underway in most organisations, the demand for highly scalable and reliable database systems is on the rise.According to reliable industry estimates, the Indian database market is currently at about $100 million, and the top three players put together have a market share of more than 70 percent. IDC expects the information and data management software segment to grow at a compounded annual growth rate (CAGR) of 17 percent till 2006. “There will be independent solutions like business intelligence that are largely going to drive the use and adoption of databases,” says Tarun Malik, product marketing manager, Microsoft India.The importance of having a database and data warehouses for various specific applications will also be a factor of growth to drive the market. Early adapters of sophisticated database management and business intelligence tools would be large computing verticals like the government, the banking, financial services and insurance (BFSI) sector, telecom, IT services, manufacturing and the retail sector.Current statusFour or five years ago DBMS was just like a data store, with medium and large companies only looking at it as a tool for storing data. Then around three years ago it really moved into what is called the relational database space. This is where the concept of applications on databases came into the picture.In terms of users there has been a shift from meagre database administrators to developers to data warehouse managers and also towards business intelligence usage that involves a whole lot of people and not just CIOs. This means users have also evolved with the evolution of the product, its usage and market. Till the time it was a data store, database administrators could have managed it. But when it became a data warehouse, CIOs and skilled technical experts got involved.That is why DBMS is now an integral and crucial part of the overall IT policy of large enterprises. The importance of DBMS has come to fore especially after the adoption of ERP and CRM solutions. If you look at the top of the pyramid, for the top few IT spenders, DBMS has become as important as network infrastructure. “As a matter of fact, that is why it is also driving the platform strategy of vendors,” says Malik. However, the trend is still evolving in the SME space.One can now see a very strong momentum in the marketplace. As data continues to grow exponentially, one witnesses the type of information changing from record-oriented to content-oriented data. Databases have become content or information repositories. Handling that and supporting applications is not only transaction-oriented but analysis-oriented. Mixed content is going to be a way in which databases differentiate themselves. There is the trend to push more analytics into the database, with abilities like data mining in real-time to support new applications.XML will be important as users now store and build content repositories to represent that kind of content. In terms of topology of database performance, the ability to get performance, scalability and high availability in different environments is also gaining importance.Another clear trend in the database space is towards building infrastructure that is robust, secure and low-cost. That is why almost all vendors are looking at offering unlimited scalability and reliability on low-cost computers.DriversApart from the increasing adoption of databases in different verticals, the return on investment (RoI) and functionality of databases are also fuelling the growth of DBMS in the country. Consumers, especially after the dot-com debacle, have started looking at spending less and deriving more RoI from new technology, products and software. Any vendor who relates his offering to RoI would be a successful vendor.Open SourceNo one has so far dumped a clustered Oracle 9i database and replaced it with a free, open source database downloaded from the Web and running on a bunch of Intel-based Linux/free OS servers. But a growing number of users are pioneering these freely available databases. These users say that open source databases are reaching a stage where they can become the latest addition to their inventory of open source tools, including the Linux operating system, the Apache Web server and the Tomcat Java servlet engine According to these users, the main attractions of an open source database are:•V ery fast performance, especially in read-only applications.•No or nominal licensing costs.•Low administrative and operational costs.As to the back-end servers, users are still ingrained with Oracle or DB2, which has a fair amount of support for Linux.It is a typical pattern in companies that are experimenting with open source databases. High-volume database updates, which are the essence of transaction-processing applications, remain anchored on products such as Oracle‟s 9i and IBM‟s DB2 Universal Database, and increasingly Microsoft‟s SQL Server. But there are a host of new application areas that don‟t require t he complex and equally expensive features of conventional databases.MySQL open source database from MySQL has spread from being used by a few groups to the core infrastructure of the Internet portal. MySQL is a core piece of the content-generation system for many large users. Open source databases are typically available for free or for a nominal charge and include the complete source code. Finally, in accordance with the terms of the GNU General Public License (GPL), users typically have the freedom to change any part of the source code and use it without charge as long as they publish the change. Once published, the change can be used by anyone.An alternative arrangement is the Berkeley Software Development licence which is used by . Developers can use, copy, modify, and distribute this software free of cost.There is an array of open source databases. Firebird, based on Borland‟s venerable Inter Base database is one of the few that have the support and blessings of vendors and the well-organised community of coders.MySQL is also proving to be popular among open source communities. Every time a new programming language comes out, the first thing that developers usually do is add database connectivity to MySQL. PostgreSQL is the most matured of the open databases, and maintains an extensive Web presence for its developer community. It is a Canadian company that offers applications along with support services. Red Hat bases its product offerings on PostgreSQL.The open databases are often storehouses of innovation. MySQL has an architecture that has a core relational manager that can be used by different kinds of plug-in data handlers. These open databases tend to be far simpler than their conventional counterparts in all these areas. They also have low operational overheads.A common criticism of open source databases is that they don‟t support transactions or don‟t do as well as commercial products. For example, MySQL has a fast database for content store, but it is still immature in terms of transaction processing at the back-end. However, immaturity in some areas of an open database might not be a problem if the software has what you need in other areas, or has a credible track record of delivering new features on a regular basis.ConclusionThe database segment will continue to grow as businesses rely more and more on information as a source of competitive advantage. However, the market has definitely evolved over the years though it has not yet reached high maturity levels. As the SME segment has started adopting the technology, experts opine that there is going to be huge momentum in the market. The Indian SME market is no longer just a PC market; rather, it has become a well-networked and well-connected segment, which is why it has also started using servers. On the enterprise side one will witness a lot of momentum coming around solutions like applicationintegration, business intelligence and reporting services. It is expected that three factors are going to drive the Indian DBMS market in this fiscal: solutions, RoI and functionality. With vendors focusing on these aspects, one expects the market to experience good growth this fiscal.Oracle IndiaOracle feels that by adopting Grid computing (the recently announced 10G enablement) with databases like Oracle 9i, organisations can reduce the cost of IT by running it on low-cost commodity hardware. Oracle has the ability in terms of delivering all elements of the information architecture. On one hand are the development tools and database and application servers, and on other hand are the comprehensive suite of applications in the Oracle E-Business Suite. Moreover, being based on open standards, customers can adopt a hybrid model, which has a mix of legacy and customised applications, and offers a stepping-stone for organisations to move into an infrastructure with a common data model.In terms of technology, Oracle‟s focus is all on the components of the Oracle 10g infrastructure software. Oracle Database and Oracle Application Server provide a powerful deployment platform for enterprise applications, starting from companies with turnover of Rs 10 crore to the largest corporates . It has immense applicability in BFSI, manufacturing, telecom, and the government sector. It has also one of the most secure database technologies. Currently, a number of state governments are implementing Oracle-based solutions. Oracle has already launched the next release of its infrastructure software: Oracle 10g. Oracle 10g is the infrastructure software for Grid computing, which lets the user combine the power of multiple low-cost computers to work as a single powerful and reliable computer.Apart from enabling Grid computing, Oracle Database 10g includes new self-management and tuning capabilities that empower a DBA to focus on higher value-added jobs rather than the day to day management of a database. It allows database administrators to work with the consumers of technology to determine service level agreements and use policy-based database management capability to manage the system. With the release of Oracle 10g Infrastructure software, Oracle hopes to further increase its market share in India. MicrosoftMicrosoft is very aggressively growing its base for SQL Server 2000. It promises to meet the demands of customers‟ data management systems. The company has also gained strength with the promise of ease of manageability and better RoI. Again, as a corporation, the kind of support Microsoft offers to its consumers is unmatched. It involves its customers in the development of its new products. For example, development of the next version of SQL Server 2000 called …Y ukon‟ has involved not only Microsoft partners but also prime customers worldwide. The kind of investment that Microsoft puts into R&D is huge.In the days to come, Microsoft will be focusing more on business value to consumers. The consumer understands the business value of a solution, be it Business Intelligence or application integration. To increase its focus on the mid-tier and the SME market, the company is also going to enhance its channels. Microsoft is also looking at evolving its product with its new version coming up by the end of this calendar year.Bettering RoI is at the top of Microsoft‟s agenda. It believes that the b iggest RoI is going to come through the deployment of the solution, which is going to help drive the customer‟s business. Microsoft, all across its server lines, is known for ease of use and manageability.The company recently released Reporting Services in SQL Server 2000 and that too at no additional cost. Last year it had introduced a 64-bit version of SQL Server at no additional cost. The kind of rich product functionalities that the company is bringing in will clearly help users in realising better RoI. Microsoft will continue to focus on segments like government, BFSI, telecom, IT services, manufacturing and retail. Sybase-SAP allianceIn a move to provide customers with greater choice, SAP has started offering its business applications for small com panies on Sybase‟s database platform, in addition to Microsoft‟s SQL Server database. Under the agreement, SAP and Sybase will integrate SAP‟s …Business One‟ product suite for small and mid-size businesses (SMEs) into Sybase‟s Adaptive Server Enterprise (A SE) database system.Previously, SAP‟s Business One application was available on Microsoft‟s SQL Server database only.SAP will market its combined offering with Sybase through its partner distribution channels. Both SAP and Sybase will dedicate marketing, alliance and training resources to the partnership. In addition, SAP and Sybase plan to develop and market Sybase mobile solutions for Business One customers.本文来源于:/flk.aspx?id=191779&fn=OA00338786.mht&url=http%3a%2f%2fwww.expresscomp %2f20040329%2fdms01.shtml毕业设计(论文)——外文翻译(译文)网格中的数据库管理在过去的几年时间里,数据库管理系统(DBMS)已成为企业计算机的运行中枢。
毕业设计数据库管理外文文献

1. Database management system1. Database management systemA Database Management System (DBMS)is a set of computer programs that controls the creation, maintenance,and the use of a database. It allows organizations to place control of database development in the hands of database administrators (DBAs) and other specialists. A DBMS is a system software package that helps the use of integrated collection of data records and files known as databases. It allows different user application programs to easily access the same database. DBMSs may use any of a variety of database models,such as the network model or relational model. In large systems,a DBMS allows users and other software to store and retrieve data in a structured way. Instead of having to write computer programs to extract information,user can ask simple questions in a query language. Thus, many DBMS packages provide Fourth—generation programming language (4GLs) and other application development features. It helps to specify the logical organization for a database and access and use the information within a database. It provides facilities for controlling data access,enforcing data integrity,managing concurrency,and restoring the database from backups。
外文翻译---数据库管理

英文资料翻译资料出处:From /china/ database英文原文:Database ManagementDatabase (sometimes spelled database) is also called an electronic database, referring to any collections of data, or information, that is specially organized for rapid search and retrieval by a computer. Databases are structured to facilitate the storage, retrieval modification and deletion of data in conjunction with various data-processing operations. Database can be stored on magnetic disk or tape, optical disk, or some other secondary storage device.A database consists of a file or a set of files. The information in the these files may be broken down into records, each of which consists of one or more fields are the basic units of data storage, and each field typically contains information pertaining to one aspect or attribute of the entity described by the database. Using keywords and various sorting commands, users can rapidly search, rearrange, group, and select the fields in many records to retrieve or create reports on particular aggregates of data.Database records and files must be organized to allow retrieval of the information. Early system were arranged sequentially (i.e., alphabetically, numerically, or chronologically); the development of direct-access storage devices made possible random access to data via indexes. Queries are the main way users retrieve database information. Typically the user provides a string of characters, and the computer searches the database for a corresponding sequence and provides the source materials in which those characters appear. A user can request, for example, all records in which the content of the field for a person’s last name is the word Smith.The many users of a large database must be able to manipulate the information within it quickly at any given time. Moreover, large business and other organizations tend to build up many independent files containing related and even overlapping data, and their data, processing activities often require the linking of data from several files.Several different types of database management systems have been developed to support these requirements: flat, hierarchical, network, relational, and object-oriented.In flat databases, records are organized according to a simple list of entities; many simple databases for personal computers are flat in structure. The records in hierarchical databases are organized in a treelike structure, with each level of records branching off into a set of smaller categories. Unlike hierarchical databases, which provide single links between sets of records at different levels, network databases create multiple linkages between sets by placing links, or pointers, to one set of records in another; the speed and versatility of network databases have led to their wide use in business. Relational databases are used where associations among files or records cannot be expressed by links; a simple flat list becomes one table, or “relation”, and multiple relations can be mathematically associated to yield desired information. Object-oriented databases store and manipulate more complex data structures, called “objects”, which are organized into hierarchical classes that may inherit properties from classes higher in the chain; this database structure is the most flexible and adaptable.The information in many databases consists of natural-language texts of documents; number-oriented database primarily contain information such as statistics, tables, financial data, and raw scientific and technical data. Small databases can be maintained on personal-computer systems and may be used by individuals at home. These and larger databases have become increasingly important in business life. Typical commercial applications include airline reservations, production management, medical records in hospitals, and legal records of insurance companies. The largest databases are usually maintained by governmental agencies, business organizations, and universities. These databases may contain texts of such materials as catalogs of various kinds. Reference databases contain bibliographies or indexes that serve as guides to the location of information in books, periodicals, and other published literature. Thousands of these publicly accessible databases now exist, covering topics ranging from law, medicine, and engineering to news and current events, games, classified advertisements, and instructional courses. Professionals such as scientists,doctors, lawyers, financial analysts, stockbrokers, and researchers of all types increasingly rely on these databases for quick, selective access to large volumes of information.一、DBMS Structuring TechniquesSequential, direct, and other file processing approaches are used to organize and structure data in single files. But a DBMS is able to integrate data elements from several files to answer specific user inquiries for information. That is, the DBMS is able to structure and tie together the logically related data from several large files.Logical Structures. Identifying these logical relationships is a job of the data administrator. A data definition language is used for this purpose. The DBMS may then employ one of the following logical structuring techniques during storage access, and retrieval operations.List structures. In this logical approach, records are linked together by the use of pointers. A pointer is a data item in one record that identifies the storage location of another logically related record. Records in a customer master file, for example, will contain the name and address of each customer, and each record in this file is identified by an account number. During an accounting period, a customer may buy a number of items on different days. Thus, the company may maintain an invoice file to reflect these transactions. A list structure could be used in this situation to show the unpaid invoices at any given time. Each record in the customer in the invoice file. This invoice record, in turn, would be linked to later invoices for the customer. The last invoice in the chain would be identified by the use of a special character as a pointer.Hierarchical (tree) structures. In this logical approach, data units are structured in multiple levels that graphically resemble an “upside down”tree with the root at the top and the branches formed below. There’s a superior-subordinate relationship in a hierarchical (tree) structure. Below the single-root data component are subordinate elements or nodes, each of which, in turn, “own”one or more other elements (or none). Each element or branch in this structure below the root has only a single owner. Thus, a customer owns an invoice, and the invoice has subordinate items. Thebranches in a tree structure are not connected.Network Structures. Unlike the tree approach, which does not permit the connection of branches, the network structure permits the connection of the nodes in a multidirectional manner. Thus, each node may have several owners and may, in turn, own any number of other data units. Data management software permits the extraction of the needed information from such a structure by beginning with any record in a file.Relational structures. A relational structure is made up of many tables. The data are stored in the form of “relations”in these tables. For example, relation tables could be established to link a college course with the instructor of the course, and with the location of the class.To find the name of the instructor and the location of the English class, the course/instructor relation is searched to get the name (“Fitt”), and the course/locati on relation is a relatively new database structuring approach that’s expected to be widely implemented in the future.Physical Structures. People visualize or structure data in logical ways for their own purposes. Thus, records R1 and R2 may always be logically linked and processed in sequence in one particular application. However, in a computer system it’s quite possible that these records that are logically contiguous in one application are not physically stored together. Rather, the physical structure of the records in media and hardware may depend not only on the I/O and storage devices and techniques used, but also on the different logical relationships that users may assign to the data found in R1and R2. For example, R1 and R2 may be records of credit customers who have shipments send to the same block in the same city every 2 weeks. From the shipping department manager’s perspective, then, R1 and R2 are sequential entries on a geographically organized shipping report. But in the A/R application, the customers represented by R1 and R2 may be identified, and their accounts may be processed, according to their account numbers which are widely separated. In short, then, the physical location of the stored records in many computer-based information systems is invisible to users.二、Database Management Features of OracleOracle includes many features that make the database easier to manage. We’ve divided the discussion in this section into three categories: Oracle Enterprise Manager, add-on packs, backup and recovery.1.Oracle Enterprise ManagerAs part of every Database Server, Oracle provides the Oracle Enterprise Manager (EM), a database management tool framework with a graphical interface used to manage database users, instances, and features (such as replication) that can provide additional information about the Oracle environment.Prior to the Oracle8i database, the EM software had to be installed on Windows 95/98 or NT-based systems and each repository could be accessed by only a single database manager at a time. Now you can use EM from a browser or load it onto Windows 95/98/2000 or NT-based systems. Multiple database administrators can access the EM repository at the same time. In the EM repository for Oracle9i, the super administrator can define services that should be displayed on other administrators’consoles, and management regions can be set up.2. Add-on packsSeveral optional add-on packs are available for Oracle, as described in the following sections. In addition to these database-management packs, management packs are available for Oracle Applications and for SAP R/3.(1) standard Management PackThe Standard Management Pack for Oracle provides tools for the management of small Oracle databases (e.g., Oracle Server/Standard Edition). Features include support for performance monitoring of database contention, I/O, load, memory use and instance metrics, session analysis, index tuning, and change investigation and tracking.(2) Diagnostics PackYou can use the Diagnostic Pack to monitor, diagnose, and maintain the health of Enterprise Edition databases, operating systems, and applications. With both historical and real-time analysis, you can automatically avoid problems before theyoccur. The pack also provides capacity planning features that help you plan and track future system-resource requirements.(3)Tuning PackWith the Tuning Pack, you can optimise system performance by identifying and tuning Enterprise Edition databases and application bottlenecks such as inefficient SQL, poor data design, and the improper use of system resources. The pack can proactively discover tuning opportunities and automatically generate the analysis and required changes to tune the systems.(4) Change Management PackThe Change Management Pack helps eliminate errors and loss of data when upgrading Enterprise Edition databases to support new applications. It impact and complex dependencies associated with application changes and automatically perform database upgrades. Users can initiate changes with easy-to-use wizards that teach the systematic steps necessary to upgrade.(5) AvailabilityOracle Enterprise Manager can be used for managing Oracle Standard Edition and/or Enterprise Edition. Additional functionality is provided by separate Diagnostics, Tuning, and Change Management Packs.3. Backup and RecoveryAs every database administrator knows, backing up a database is a rather mundane but necessary task. An improper backup makes recovery difficult, if not impossible. Unfortunately, people often realize the extreme importance of this everyday task only when it is too late –usually after losing business-critical data due to a failure of a related system.The following sections describe some products and techniques for performing database backup operations.(1) Recovery ManagerTypical backups include complete database backups (the most common type), database backups, control file backups, and recovery of the database. Previously,Oracle’s Enterprise Backup Utility (EBU) provided a similar solution on some platforms. However, RMAN, with its Recovery Catalog stored in an Oracle database, provides a much more complete solution. RMAN can automatically locate, back up, restore, and recover databases, control files, and archived redo logs. RMAN for Oracle9i can restart backups and restores and implement recovery window policies when backups expire. The Oracle Enterprise Manager Backup Manager provides a GUI-based interface to RMAN.(2) Incremental backup and recoveryRMAN can perform incremental backups of Enterprise Edition databases. Incremental backups back up only the blocks modified since the last backup of a datafile, tablespace, or database; thus, they’re smaller and faster than complete backups. RMAN can also perform point-in-time recovery, which allows the recovery of data until just prior to a undesirable event.(3) Legato Storage ManagerVarious media-management software vendors support RMAN. Oracle bundles Legato Storage Manager with Oracle to provide media-management services, including the tracking of tape volumes, for up to four devices. RMAN interfaces automatically with the media-management software to request the mounting of tapes as needed for backup and recovery operations.(4)AvailabilityWhile basic recovery facilities are available for both Oracle Standard Edition and Enterprise Edition, incremental backups have typically been limited to Enterprise Edition.Data IndependenceAn important point about database systems is that the database should exist independently of any of the specific applications. Traditional data processing applications are data dependent. COBOL programs contain file descriptions and record descriptions that carefully describe the format and characteristics of the data.Users should be able to change the structure of the database without affecting the applications that use it. For example, suppose that the requirements of yourapplications change. A simple example would be expanding ZIP codes from five digits to nine digits. On a traditional approach using COBOL programs each individual COBOL application program that used that particular field would have to be changed, recompiled, and retested. The programs would be unable to recognize or access a file that had been changed and contained a new data description; this, in turn, might cause disruption in processing unless the change were carefully planned.Most database programs provide the ability to change the database structure by simply changing the ZIP code field and the data-entry form. In this case, data independence allows for minimal disruption of current and existing applications. Users can continue to work and can even ignore the nine-digit code if they choose. Eventually, the file will be converted to the new nine-digit ZIP code, but the ease with which the changeover takes place emphasizes the importance of data independence.Data IntegrityData integrity refers to the accuracy, correctness, or validity of the data in the database. In a database system, data integrity means safeguarding the data against invalid alteration or destruction arise. The first has to do with many users accessing the database concurrently. For example, if thousands of travel agents and airline reservation clerks are accessing the database concurrently. For example, if thousands of travel agents and airline reservation clerks are accessing the same database at once, and two agents book the same seat on the same flight, the first agent’s booking will be lost. In such case the technique of locking the record or field provides the means for preventing one user from accessing a record while another user is updating the same record.The second complication relates to hardwires, software, or human error during the course of processing and involves database transactions treated as a single . For example, an agent booking an airline reservation involves several database updates (i.e., adding the passenger’s name and address and updating the seats-available field), which comprise a single transaction. The database transaction is not considered to be completed until all updates have been completed; otherwise, none of the updates will be allowed to take place.Data SecurityData security refers to the protection of a database against unauthorized or illegal access or modification. For example, a high-level password might allow a user to read from, write to, and modify the database structure, whereas a low-level password history of the modifications to a database-can be used to identify where and when a database was tampered with and it can also be used to restore the file to its original condition.三、Choosing between Oracle and SQL ServerI have to decide between using the Oracle database and WebDB vs. Microsoft SQL Server with Visual Studio. This choice will guide our future Web projects. What are the strong points of each of these combinations and what are the negatives?Lori: Making your decision will depend on what you already have. For instance, if you want to implement a Web-based database application and you are a Windows-only shop, SQL Server and the Visual Studio package would be fine. But the Oracle solution would be better with mixed platforms.There are other things to consider, such as what extras you get and what skills are required. WebDB is a content management and development tool that can be used by content creators, database administrators, and developers without any programming experience. WebDB is a browser-based tool that helps ease content creation and provides monitoring and maintenance tools. This is a good solution for organizations already using Oracle. Oracle also scales better than SQL Server, but you will need to have a competent Oracle administrator on hand.The SQL Sever/Visual Studio approach is more difficult to use and requires an experienced object-oriented programmer or some extensive training. However, you do get a fistful of development tools with Visual Studio: Visual Basic, Visual C++, and Visual InterDev for only $1,619. Plus, you will have to add the cost of the SQL Server, which will run you $1,999 for 10 clients or $3,999 for 25 clients-a less expensive solution than Oracle’s.Oracle also has a package solution that starts at $6,767, depending on the platform selected. The suite includes not only WebDB and Oracle8i butalso other tools for development such as the Oracle application server, JDeveloper, and Workplace Templates, and the suite runs on more platforms than the Microsoft solution does. This can be a good solution if you are a start-up or a small to midsize business. Buying these tools in a package is less costly than purchasing them individually.Much depends on your skill level, hardware resources, and budget. I hope this helps in your decision-making.Brooks: I totally agree that this decision depends in large part on what infrastructure and expertise you already have. If the decision is close, you need to figure out who’s going to be doing the work and what your priorities are.These two products have different approaches, and they reflect the different personalities of the two vendors. In general, Oracle products are designed for very professional development efforts by top-notch programmers and project leaders. The learning period is fairly long, and the solution is pricey; but if you stick it out you will ultimately have greater scalability and greater reliability.If your project has tight deadlines and you don’t have the time and/or money to hire a team of very expensive, very experienced developers, you may find that the Oracle solution is an easy way to get yourself in trouble. There’s nothing worse than a poorly developed Oracle application.What Microsoft offers is a solution that’s aimed at rapid development and low-cost implementation. The tools are cheaper, the servers you’ll run it on are cheaper, and the developers you need will be cheaper. Choosing SQL Sever and Visual Studio is an excellent way to start fast.Of course, there are trade-offs. The key problem I have with Visual Studio and SQL Server is that you’ll be tied to Microsoft operating systems and Intel hardware. If the day comes when you need to support hundreds of thousands of users, you really don’t have anywhere to go other than buying hundreds of servers, which is a management nightmare.If you go with the Microsoft approach, it sounds like you may not need morethan Visual Interdev. If you already know that you’re going to be developing ActiveX components in Visual Basic or Visual C++, that’s warning sign that maybe you should look at the Oracle solution more closely.I want to emphasize that, although these platforms have their relative strengths and weaknesses, if you do it right you can build a world-class application on either one. So if you have an organizational bias toward one of the vendors, by all means go with it. If you’re starting out from scratch, you’re going to have to ask yourself whether your organization leans more toward perfectionism or pragmatism, and realize that both “isms”have their faults.中文译文:数据库管理数据库(也称DataBase)也称为电子数据库,是指由计算机特别组织的用下快速查找和检索的任意的数据或信息集合。
SQL数据库中英文对照外文翻译文献

SQL数据库中英文对照外文翻译文献中英文对照外文翻译文献(文档含英文原文和中文翻译)Working with DatabasesThis chapter describes how to use SQL statements in embedded applications to control databases. There are three database statements that set up and open databases for access: SET DATABASE declares a database handle, associates the handle with an actual database file, and optionally assigns operational parameters for the database.SET NAMES optionally specifies the character set a client application uses for CHAR, VARCHAR, and text Blob data. The server uses this information to transliterate from a database?s default character set to the client?s character set on SELECT operations, and to transliterate from a client application?s character set to the database character set on INSERT and UPDATE operations.g CONNECT opens a database, allocates system resources for it, and optionally assigns operational parameters for the database.All databases must be closed before a program ends. A database can be closed by using DISCONNECT, or by appending the RELEASE option to the final COMMIT or ROLLBACK in a program.Declaring a databaseBefore a database can be opened and used in a program, it must first be declared with SET DATABASE to:CHAPTER 3 WORKING WITH DATABASES. Establish a database handle. Associate the database handle with a database file stored on a local or remote node.A database handle is aunique, abbreviated alias for an actual database name. Database handles are used in subsequent CONNECT, COMMIT RELEASE, and ROLLBACK RELEASE statements to specify which databases they should affect. Except in dynamic SQL (DSQL) applications, database handles can also be used inside transaction blocks to qualify, or differentiate, table names when two or more open databases contain identically named tables.Each database handle must be unique among all variables used in a program. Database handles cannot duplicate host-language reserved words, and cannot be InterBase reserved words.The following statement illustrates a simple database declaration:EXEC SQLSET DATABASE DB1 = ?employee.gdb?;This database declaration identifies the database file, employee.gdb, as a database the program uses, and assigns the database a handle, or alias, DB1.If a program runs in a directory different from the directory that contains the database file, then the file name specification in SET DATABASE must include a full path name, too. For example, the following SET DATABASE declaration specifies the full path to employee.gdb:EXEC SQLSET DATABASE DB1 = ?/interbase/examples/employee.gdb?;If a program and a database file it uses reside on different hosts, then the file name specification must also include a host name. The following declaration illustrates how a Unix host name is included as part of the database file specification on a TCP/IP network:EXEC SQLSET DATABASE DB1 = ?jupiter:/usr/interbase/examples/employee.gdb?;On a Windows network that uses the Netbeui protocol, specify the path as follows: EXEC SQLSET DATABASE DB1 = ?//venus/C:/Interbase/examples/employee.gdb?; DECLARING A DATABASEEMBEDDED SQL GUIDE 37Declaring multiple databasesAn SQL program, but not a DSQL program, can access multiple databases at the same time. In multi-database programs, database handles are required. A handle is used to:1. Reference individual databases in a multi-database transaction.2. Qualify table names.3. Specify databases to open in CONNECT statements.Indicate databases to close with DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE.DSQL programs can access only a single database at a time, so database handle use is restricted to connecting to and disconnecting from a database.In multi-database programs, each database must be declared in a separate SET DATABASE statement. For example, the following code contains two SET DATABASE statements: . . .EXEC SQLSET DATABASE DB2 = ?employee2.gdb?;EXEC SQLSET DATABASE DB1 = ?employee.gdb?;. . .4Using handles for table namesWhen the same table name occurs in more than one simultaneously accessed database, a database handle must be used to differentiate one table name from another. The database handle is used as a prefix to table names, and takes the form handle.table.For example, in the following code, the database handles, TEST and EMP, are used to distinguish between two tables, each named EMPLOYEE:. . .EXEC SQLDECLARE IDMATCH CURSOR FORSELECT TESTNO INTO :matchid FROM TEST.EMPLOYEEWHERE TESTNO > 100;EXEC SQLDECLARE EIDMATCH CURSOR FORSELECT EMPNO INTO :empid FROM EMP.EMPLOYEEWHERE EMPNO = :matchid;. . .CHAPTER 3 WORKING WITH DATABASES38 INTERBASE 6IMPORTANTThis use of database handles applies only to embedded SQL applications. DSQL applications cannot access multiple databases simultaneously.4Using handles with operationsIn multi-database programs, database handles must be specified in CONNECT statements to identify which databases among several to open and prepare for use in subsequent transactions.Database handles can also be used with DISCONNECT, COMMIT RELEASE, and ROLLBACKRELEASE to specify a subset of open databases to close.To open and prepare a database with CONNECT, see “Opening a database” on page 41.To close a database with DISCONNECT, COMMIT RELEASE, or ROLLBACK RELEASE, see“Closing a database” on page 49. To learn more about using database handles in transactions, see “Accessing an open database” on page 48.Preprocessing and run time databasesNormally, each SET DATABASE statement specifies a single database file to associate with a handle. When a program is preprocessed, gpre uses the specified file to validate the prog ram?s table and column references. Later, when a user runs the program, the same database file is accessed. Different databases can be specified for preprocessing and run time when necessary.4Using the COMPILETIME clause A program can be designed to run against any one of several identically structured databases. In other cases, the actual database that a program will use at runtime is not available when a program is preprocessed and compiled. In such cases, SET DATABASE can include a COMPILETIME clause to specify a database for gpre to test against during preprocessing. For example, the following SET DATABASE statement declares that employee.gdb is to be used by gpre during preprocessing: EXEC SQLSET DATABASE EMP = COMPILETIME ?employee.gdb?;IMPORTANTThe file specification that follows the COMPILETIME keyword must always be a hard-coded, quoted string.DECLARING A DATABASEEMBEDDED SQL GUIDE 39When SET DATABASE uses the COMPILETIME clause, but no RUNTIME clause, and does not specify a different database file specification in a subsequent CONNECT statement, the same database file is used both for preprocessing and run time. To specify different preprocessing and runtime databases with SET DATABASE, use both the COMPILETIME andRUNTIME clauses.4Using the RUNTIME clauseWhen a database file is specified for use during preprocessing, SET DATABASE can specify a different database to use at run time by including the RUNTIME keyword and a runtime file specification:EXEC SQLSET DATABASE EMP = COMPILETIME ?employee.gdb?RUNTIME ?employee2.gdb?;The file specification that follows the RUNTIME keyword can be either ahard-coded, quoted string, or a host-language variable. For example, the following C code fragment prompts the user for a database name, and stores the name in a variable that is used later in SET DATABASE:. . .char db_name[125];. . .printf("Enter the desired database name, including node and path):\n");gets(db_name);EXEC SQLSET DATABASE EMP = COMPILETIME ?employee.gdb?RUNTIME : db_name; . . .Note host-language variables in SET DATABASE must be preceded, as always, by a colon.Controlling SET DATABASE scopeBy default, SET DATABASE creates a handle that is global to all modules in an application.A global handle is one that may be referenced in all host-language modules comprising the program. SET DATABASE provides two optional keywords to change the scope of a declaration:g STATIC limits declaration scope to the module containing the SET DATABASE statement. No other program modules can see or use a database handle declared STATIC.CHAPTER 3 WORKING WITH DATABASES40 INTERBASE 6EXTERN notifies gpre that a SET DATABASE statement in a module duplicates a globally-declared database in another module. If the EXTERN keyword is used, then another module must contain the actual SET DATABASE statement, or an error occurs during compilation.The STATIC keyword is used in a multi-module program to restrict database handle access to the single module where it is declared. The following example illustrates the use of the STATIC keyword:EXEC SQLSET DATABASE EMP = STATIC ?employee.gdb?;The EXTERN keyword is used in a multi-module program to signal that SET DATABASE in one module is not an actual declaration, but refers to a declaration made in a different module. Gpre uses this information during preprocessing. Thefollowing example illustrates the use of the EXTERN keyword: EXEC SQLSET DATABASE EMP = EXTERN ?employee.gdb?;If an application contains an EXTERN reference, then when it is used at run time, the actual SET DATABASE declaration must be processed first, and the database connected before other modules can access it.A single SET DATABASE statement can contain either the STATIC or EXTERN keyword, but not both. A scope declaration in SET DATABASE applies to both COMPILETIME and RUNTIME databases.Specifying a connection character setWhen a client application connects to a database, it may have its own character set requirements. The server providing database access to the client does not know about these requirements unless the client specifies them. The client application specifies its character set requirement using the SET NAMES statement before it connects to the database.SET NAMES specifies the character set the server should use when translating data from the database to the client application. Similarly, when the client sends data to the database, the server translates the data from the client?s character set to the database?s default character set (or the character set for an individual column if it differs from the database?s default character set). For example, the followingstatements specify that the client is using the DOS437 character set, then connect to the database:EXEC SQLOPENING A DATABASEEMBEDDED SQL GUIDE 41SET NAMES DOS437;EXEC SQLCONNECT ?europe.gdb? USER ?JAMES? PASSWORD ?U4EEAH?;For more information about character sets, see the Data Definition Guide. For the complete syntax of SET NAMES and CONNECT, see the Language Reference. Opening a database After a database is declared, it must be attached with a CONNECT statement before it can be used. CONNECT:1. Allocates system resources for the database.2. Determines if the database file is local, residing on the same host where the application itself is running, or remote, residing on a different host.3. Opens the database and examines it to make sure it is valid.InterBase provides transparent access to all databases, whether local or remote. If the database structure is invalid, the on-disk structure (ODS) number does not correspond to the one required by InterBase, or if the database is corrupt, InterBase reports an error, and permits no further access. Optionally, CONNECT can be used to specify:4. A user name and password combination that is checked against the server?s security database before allowing the connect to succeed. User names can be up to 31 characters.Passwords are restricted to 8 characters.5. An SQL role name that the user adopts on connection to the database, provided that the user has previously been granted membership in the role. Regardless of role memberships granted, the user belongs to no role unless specified with this ROLE clause.The client can specify at most one role per connection, and cannot switch roles except by reconnecting.6. The size of the database buffer cache to allocate to the application when the default cache size is inappropriate.Using simple CONNECT statementsIn its simplest form, CONNECT requires one or more database parameters, each specifying the name of a database to open. The name of the database can be a: Database handle declared in a previous SET DATABASE statement.CHAPTER 3 WORKING WITH DATABASES42 INTERBASE 61. Host-language variable.2. Hard-coded file name.4Using a database handleIf a program uses SET DATABASE to provide database handles, those handles should be used in subsequent CONNECT statements instead of hard-coded names. For example, . . .EXEC SQLSET DATABASE DB1 = ?employee.gdb?;EXEC SQLSET DATABASE DB2 = ?employee2.gdb?;EXEC SQLCONNECT DB1;EXEC SQLCONNECT DB2;. . .There are several advantages to using a database handle with CONNECT:1. Long file specifications can be replaced by shorter, mnemonic handles.2. Handles can be used to qualify table names in multi-database transactions. DSQL applications do not support multi-database transactions.3. Handles can be reassigned to other databases as needed.4. The number of database cache buffers can be specified as an additional CONNECT parameter.For more information about setting the number of databas e cache buffers, see “Setting database cache buffers” on page 47. 4Using strings or host-language variables Instead of using a database handle, CONNECT can use a database name supplied at run time. The database name can be supplied as either a host-language variable or a hard-coded, quoted string.The following C code demonstrates how a program accessing only a single database might implement CONNECT using a file name solicited from a user at run time:. . .char fname[125];. . .printf(?Enter the desired database name, including nodeand path):\n?);OPENING A DATABASEEMBEDDED SQL GUIDE 43gets(fname);. . .EXEC SQLCONNECT :fname;. . .TipThis technique is especially useful for programs that are designed to work with many identically structured databases, one at a time, such as CAD/CAM or architectural databases.MULTIPLE DATABASE IMPLEMENTATIONTo use a database specified by the user as a host-language variable in a CONNECT statement in multi-database programs, follow these steps:1. Declare a database handle using the following SET DATABASE syntax:。
数据库系统英文文献

Database Systems1. Fundamental Concepts of DatabaseDatabase and database technology are having a major impact on the growing use of computers. It is fair to say that database will play a critical role in almost all areas where computers are used, including business, engineering, medicine, law, education, and library science, to name a few. The word "database" is in such common use that we must begin by defining what a database is. Our initial definition is quit general.A database is a collection of related data. By data, we mean known facts that can be recorded and that have implicit meaning. For example, consider the names, telephone numbers, and addresses of all the people you know. Y ou may have recorded this data in an indexed address book, or you may have stored it on a diskette using a personal computer and software such as DBASE III or Lotus 1-2-3. This is a collection of related data with an implic it meaning and hence is a database.The above definition of database is quite general; for example, we may consider the collection of words that make up thispage of text to be related data and hence a database. However, the common use of the term database is usually more restricted.A database has the following implicit properties:.A database is a logically coherent collection of data with some inherent meaning. A random assortment of data cannot bereferred to as a database..A database is designed, built, and populated with data for a specific purpose. It has an intended group of users and somepreconceived applications in which these users are interested..A database represents some aspect of the real world, sometimes called the mini world. Changes to the mini world are reflected in the database.In other words, a database has some source from which data are derived, some degree of interaction with events in the real world, and an audience that is actively interested in the contents of the database.A database can be of any size and of varying complexity. For example, the list of names and addresses referred to earlier may have only a couple of hundred records in it, each with asimple structure. On the other hand, the card catalog of a large library may contain half a million cards stored under different categories-by primary author’s last name, by subject, by book title, and the like-with each category organized in alphabetic order. A database of even greater size and complexity may be that maintained by the Internal Revenue Service to keep track of the tax forms filed by taxpayers of the United States. If we assume that there are 100million taxpayers and each taxpayer files an average of five forms with approximately 200 characters of information per form, we would get a database of 100*(106)*200*5 characters(bytes) of information. Assuming the IRS keeps the past three returns for each taxpayer in addition to the current return, we would get a database of 4*(1011) bytes. This huge amount of information must somehow be organized and managed so that users can search for, retrieve, and update the data as needed.A database may be generated and maintained manually or by machine. Of course, in this we are mainly interested in computerized database. The library card catalog is an example of a database that may be manually created and maintained. A computerized database may be created and maintained either by a group of application programs written specifically for that task or by a database management system.A data base management system (DBMS) is a collection of programs that enables users to create and maintain a database. The DBMS is hence a general-purpose software system that facilitates the processes of defining, constructing, and manipulating databases for various applications. Defining a database involves specifying the types of data to be stored in the database, along with a detailed description of each type of data. Constructing the database is the process of storing the data itself on some storage medium that is controlled by the DBMS. Manipulating a database includes such functions as querying the database to retrieve specific data, updating the database to reflect changes in the mini world, and generating reports from the data.Note that it is not necessary to use general-purpose DBMS software for implementing a computerized database. We could write our own set of programs to create and maintain the database, in effect creating our own special-purpose DBMS software. In either case-whether we use a general-purpose DBMS or not-we usually have a considerable amount of software to manipulate the database in addition to the database itself. The database and software are together called a database system.2. Data ModelsOne of the fundamental characteristics of the database approach is that it provides some level of data abstraction by hiding details of data storage that are not needed by most database users. A data model is the main tool for providing this abstraction. A data is a set of concepts that can beused to describe the structure of a database. By structure of a database, we mean the data types, relationships, and constraints that should hold on the data. Most data models also include a set of operations for specifying retrievals and updates on the database.Categories of Data ModelsMany data models have been proposed. We can categorize data models based on the types of concepts they provide to describe the database structure. High-level or conceptual data models provide concepts that are close to the way many users perceive data, whereas low-level or physical data models provide concepts that describe the details of how data is stored in the computer. Concepts provided by low-level data models are generally meant for computer specialists, not for typical end users. Between these two extremes is a class of implementation data models, which provide concepts that may be understood by end users but that are not too far removed from the way data is organized within the computer. Implementation data models hide some details of data storage but can be implemented on a computer system in a direct way.High-level data models use concepts such as entities, attributes, and relationships. An entity is an object that is represented in the database. An attribute is a property that describes some aspect of an object. Relationships among objects are easily represented in high-level data models, which are sometimes called object-based models because they mainly describe objects and their interrelationships.Implementation data models are the ones used most frequently in current commerc ial DBMSs and include the three most widely used data models-relational, network, and hierarchical. They represent data using record structures and hence are sometimes called record-based data modes.Physical data models describe how data is stored in the computer by representing information such as record formats, record orderings, and access paths. An access path is a structure that makes the search for particular database records much faster.3. Classification of Database Management SystemsThe main criterion used to classify DBMSs is the data model on which the DBMS is based. The data models used most often in current commercial DBMSs are the relational, network, and hierarchical models. Some recent DBMSs are based on conceptual or object-oriented models. We will categorize DBMSs as relational, hierarchical, and others.Another criterion used to classify DBMSs is the number of users supported by the DBMS. Single-user systems support only one user at a time and are mostly used with personal computer. Multiuser systems include the majority of DBMSs and support many users concurrently.A third criterion is the number of sites over which the database is distributed. Most DBMSs are centralized, meaning that their data is stored at a single computer site. A centralized DBMS can support multiple users, but the DBMS and database themselves reside totally at a single computer site. A distributed DBMS (DDBMS) can have the actual database and DBMS software distributed over many sites connected by a computer network. Homogeneous DDBMSs use the same DBMS software at multiple sites. A recent trend is to develop software to access several autonomous preexisting database stored under heterogeneous DBMSs. This leads to a federated DBMS (or multidatabase system),, where the participating DBMSs are loosely coupled and have a degree of local autonomy.We can also classify a DBMS on the basis of the types of access paty options available for storing files. One well-known family of DBMSs is based on inverted file structures. Finally, a DBMS can be general purpose of special purpose. When performance is a prime consideration, a special-purpose DBMS can be designed and built for a specific application and cannot be used for other applications, Many airline reservations and telephone directory systems are special-purpose DBMSs.Let us briefly discuss the main criterion for classifying DBMSs: the data mode. The relational data model represents a database as a collection of tables, which look like files. Mos t relational databases have high-level query languages and support a limited form of user views.The network model represents data as record types and also represents a limited type of 1:N relationship, called a set type. The network model, also known as the CODASYL DBTG model, has an associated record-at-a-time language that must be embedded in a host programming language.The hierarchical model represents data as hierarchical tree structures. Each hierarchy represents a number of related records. There is no standard language for the hierarchical model, although most hierarchical DBMSs have record-at-a-time languages.4. Client-Server ArchitectureMany varieties of modern software use a client-server architecture, in which requests by one process (the client) are sent to another process (the server) for execution. Database systems are no exception. In the simplest client/server architecture, the entire DBMS is a server, except for the query interfaces that interact with the user and send queries or other commands across to the server. For example, relational systems generally use the SQL language for representing requests from the client to the server. The database server then sends the answer, in the form of a table or relation, back to the client. The relationship between client and server can get more work in theclient, since the server will e a bottleneck if there are many simultaneous database users.。
(完整word版)数据库管理系统介绍 外文翻译

外文资料Database Management SystemsA database (sometimes spelled data base) is also called an electronic database , referring to any collection of data, or information, that is specially organized for rapid search and retrieval by a computer. Databases are structured to facilitate the storage, retrieval , modification, and deletion of data in conjunction with various data-processing operations .Databases can be stored on magnetic disk or tape, optical disk, or some other secondary storage device.A database consists of a file or a set of files. The information in these files may be broken down into records, each of which consists of one or more fields. Fields are the basic units of data storage , and each field typically contains information pertaining to one aspect or attribute of the entity described by the database . Using keywords and various sorting commands, users can rapidly search , rearrange, group, and select the fields in many records to retrieve or create reports on particular aggregate of data.Complex data relationships and linkages may be found in all but the simplest databases .The system software package that handles the difficult tasks associated with creating ,accessing, and maintaining database records is called a database management system(DBMS).The programs in a DBMS package establish an interface between the database itself and the users of the database.. (These users may be applications programmers, managers and others with information needs, and various OS programs.)A DBMS can organize, process, and present selected data elements form the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or poorly defined ,but people can “browse” through the database until they have the needed information. In short, the DBMS will “manage” the stored data items and assemble the needed items from the common database in response to the queries of those who aren’t programmers.A database management system (DBMS) is composed of three major parts:(1)a storage subsystem that stores and retrieves data in files;(2) a modeling and manipulation subsystem that provides the means with which to organize the data and to add , delete, maintain, and update the data;(3)and an interface between the DBMS and its users. Several major trends are emerging that enhance the value and usefulness of database management systems;Managers: who require more up-to-data information to make effective decisionCustomers: who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.Users: who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.Organizations : that discover information has a strategic value; they utilize their database systems to gain an edge over their competitors.The Database ModelA data model describes a way to structure and manipulate the data in a database. The structural part of the model specifies how data should be represented(such as tree, tables, and so on ).The manipulative part of the model specifies the operation with which to add, delete, display, maintain, print, search, select, sort and update the data.Hierarchical ModelThe first database management systems used a hierarchical model-that is-they arranged records into a tree structure. Some records are root records and all others have unique parent records. The structure of the tree is designed to reflect the order in which the data will be used that is ,the record at the root of a tree will be accessed first, then records one level below the root ,and so on.The hierarchical model was developed because hierarchical relationships are commonly found in business applications. As you have known, an organization char often describes a hierarchical relationship: top management is at the highest level, middle management at lower levels, and operational employees at the lowest levels. Note that within a strict hierarchy, each level of management may have many employees or levels of employees beneath it, but each employee has only one manager. Hierarchical data are characterized by this one-to-many relationship among data.In the hierarchical approach, each relationship must be explicitly defined when the database is created. Each record in a hierarchical database can contain only one key field and only one relationship is allowed between any two fields. This can create a problem because data do not always conform to such a strict hierarchy.Relational ModelA major breakthrough in database research occurred in 1970 when E. F. Codd proposed a fundamentally different approach to database management called relational model ,which uses a table as its data structure.The relational database is the most widely used database structure. Data is organized into related tables. Each table is made up of rows called and columns called fields. Each record contains fields of data about some specific item. For example, in a table containing information on employees, a recordwould contain fields of data such as a person’s last name ,first name ,and street address.Structured query language(SQL)is a query language for manipulating data in a relational database .It is nonprocedural or declarative, in which the user need only specify an English-like description that specifies the operation and the described record or combination of records. A query optimizer translates the description into a procedure to perform the database manipulation.Network ModelThe network model creates relationships among data through a linked-list structure in which subordinate records can be linked to more than one parent record. This approach combines records with links, which are called pointers. The pointers are addresses that indicate the location of a record. With the network approach, a subordinate record can be linked to a key record and at the same time itself be a key record linked to other sets of subordinate records. The network mode historically has had a performance advantage over other database models. Today , such performance characteristics are only important in high-volume ,high-speed transaction processing such as automatic teller machine networks or airline reservation system.Both hierarchical and network databases are application specific. If a new application is developed ,maintaining the consistency of databases in different applications can be very difficult. For example, suppose a new pension application is developed .The data are the same, but a new database must be created.Object ModelThe newest approach to database management uses an object model , in which records are represented by entities called objects that can both store data and provide methods or procedures to perform specific tasks.The query language used for the object model is the same object-oriented programming language used to develop the database application .This can create problems because there is no simple , uniform query language such as SQL . The object model is relatively new, and only a few examples of object-oriented database exist. It has attracted attention because developers who choose an object-oriented programming language want a database based on an object-oriented model. Distributed DatabaseSimilarly , a distributed database is one in which different parts of the database reside on physically separated computers . One goal of distributed databases is the access of information without regard to where the data might be stored. Keeping in mind that once the users and their data are separated , the communication and networking concepts come into play .Distributed databases require software that resides partially in the larger computer. This software bridges the gap between personal and large computers and resolves the problems of incompatible dataformats. Ideally, it would make the mainframe databases appear to be large libraries of information, with most of the processing accomplished on the personal computer.A drawback to some distributed systems is that they are often based on what is called a mainframe-entire model , in which the larger host computer is seen as the master and the terminal or personal computer is seen as a slave. There are some advantages to this approach . With databases under centralized control , many of the problems of data integrity that we mentioned earlier are solved . But today’s personal computers, departmental computers, and distributed processing require computers and their applications to communicate with each other on a more equal or peer-to-peer basis. In a database, the client/server model provides the framework for distributing databases.One way to take advantage of many connected computers running database applications is to distribute the application into cooperating parts that are independent of one anther. A client is an end user or computer program that requests resources across a network. A server is a computer running software that fulfills those requests across a network . When the resources are data in a database ,the client/server model provides the framework for distributing database.A file serve is software that provides access to files across a network. A dedicated file server is a single computer dedicated to being a file server. This is useful ,for example ,if the files are large and require fast access .In such cases, a minicomputer or mainframe would be used as a file server. A distributed file server spreads the files around on individual computers instead of placing them on one dedicated computer.Advantages of the latter server include the ability to store and retrieve files on other computers and the elimination of duplicate files on each computer. A major disadvantage , however, is that individual read/write requests are being moved across the network and problems can arise when updating files. Suppose a user requests a record from a file and changes it while another user requests the same record and changes it too. The solution to this problems called record locking, which means that the first request makes others requests wait until the first request is satisfied . Other users may be able to read the record, but they will not be able to change it .A database server is software that services requests to a database across a network. For example, suppose a user types in a query for data on his or her personal computer . If the application is designed with the client/server model in mind ,the query language part on the personal computer simple sends the query across the network to the database server and requests to be notified when the data are found.Examples of distributed database systems can be found in the engineering world. Sun’s Network Filing System(NFS),for example, is used in computer-aided engineering applications to distribute data among the hard disks in a network of Sun workstation.Distributing databases is an evolutionary step because it is logical that data should exist at thelocation where they are being used . Departmental computers within a large corporation ,for example, should have data reside locally , yet those data should be accessible by authorized corporate management when they want to consolidate departmental data . DBMS software will protect the security and integrity of the database , and the distributed database will appear to its users as no different from the non-distributed database .In this information age, the data server has become the heart of a company. This one piece of software controls the rhythm of most organizations and is used to pump information lifeblood through the arteries of the network. Because of the critical nature of this application, the data server is also the one of the most popular targets for hackers. If a hacker owns this application, he can cause the company's "heart" to suffer a fatal arrest.Ironically, although most users are now aware of hackers, they still do not realize how susceptible their database servers are to hack attacks. Thus, this article presents a description of the primary methods of attacking database servers (also known as SQL servers) and shows you how to protect yourself from these attacks.You should note this information is not new. Many technical white papers go into great detail about how to perform SQL attacks, and numerous vulnerabilities have been posted to security lists that describe exactly how certain database applications can be exploited. This article was written for the curious non-SQL experts who do not care to know the details, and as a review to those who do use SQL regularly.What Is a SQL Server?A database application is a program that provides clients with access to data. There are many variations of this type of application, ranging from the expensive enterprise-level Microsoft SQL Server to the free and open source mySQL. Regardless of the flavor, most database server applications have several things in common.First, database applications use the same general programming language known as SQL, or Structured Query Language. This language, also known as a fourth-level language due to its simplistic syntax, is at the core of how a client communicates its requests to the server. Using SQL in its simplest form, a programmer can select, add, update, and delete information in a database. However, SQL can also be used to create and design entire databases, perform various functions on the returned information, and even execute other programs.To illustrate how SQL can be used, the following is an example of a simple standard SQL query and a more powerful SQL query:Simple: "Select * from dbFurniture.tblChair"This returns all information in the table tblChair from the database dbFurniture.Complex: "EXEC master..xp_cmdshell 'dir c:\'"This short SQL command returns to the client the list of files and folders under the c:\ directory of the SQL server. Note that this example uses an extended stored procedure that is exclusive to MS SQL Server.The second function that database server applications share is that they all require some form of authenticated connection between client and host. Although the SQL language is fairly easy to use, at least in its basic form, any client that wants to perform queries must first provide some form of credentials that will authorize the client; the client also must define the format of the request and response.This connection is defined by several attributes, depending on the relative location of the client and what operating systems are in use. We could spend a whole article discussing various technologies such as DSN connections, DSN-less connections, RDO, ADO, and more, but these subjects are outside the scope of this article. If you want to learn more about them, a little Google'ing will provide you with more than enough information. However, the following is a list of the more common items included in a connection request.Database sourceRequest typeDatabaseUser IDPasswordBefore any connection can be made, the client must define what type of database server it is connecting to. This is handled by a software component that provides the client with the instructions needed to create the request in the correct format. In addition to the type of database, the request type can be used to further define how the client's request will be handled by the server. Next comes the database name and finally the authentication information.All the connection information is important, but by far the weakest link is the authentication information—or lack thereof. In a properly managed server, each database has its own users with specifically designated permissions that control what type of activity they can perform. For example, a user account would be set up as read only for applications that need to only access information. Another account should be used for inserts or updates, and maybe even a third account would be used for deletes. This type of account control ensures that any compromised account is limited in functionality. Unfortunately, many database programs are set up with null or easy passwords, which leads to successful hack attacks.译文数据库管理系统介绍数据库也可以称为电子数据库,是专门组织起来的一组数据或信息,其目的是为了便于计算机快速查询及检索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MySQL数据库管理外文翻译文献(文档含中英文对照即英文原文和中文翻译)原文:Management Center of MySQLAuthors: Lauderdale, JohnTsang, Danny H. K.Baciu, GeorgeIssue Date: 2006Citation: Proceedings of IEEE Visual '96, Melbourne, Australia, February 2006, p. 447-458Database (sometimes spelled database) is also called an electronic database, referring to any collections of data, or information, that is specially organized for rapid search and retrieval by a computer. Databases are structured to facilitate the storage, retrieval, modification and deletion of data in conjunction with various data-processing operations.Database can be stored on magnetic disk or tape, optical disk, or some other secondary storage device.A database consists of a file or a set of files. The information in the these files may be broken down into records, each of which consists of one or more fields are the basic units of data storage, and each field typically contains information pertaining to one aspect or attribute of the entity described by the database. Using keywords and various sorting commands, users can rapidly search, rearrange, group, and select the fields in many records to retrieve or create reports on particular aggregates of data.Database records and files must be organized to allow retrieval of the information. Early system were arranged sequentially (i.e., alphabetically, numerically, or chronologically); the development of direct-access storage devices made possible random access to data via indexes. Queries are the main way users retrieve database information. Typically the user provides a string of characters, and the computer searches the database for a corresponding sequence and provides the source materials in which those characters appear. A user can request, for example, all records in which the content of the field for a person’s last name is the word Smith.In flat databases, records are organized according to a simple list of entities; many simple databases for personal computers are flat in structure. The records in hierarchical databases are organized in a treelike structure, with each level of records branching off into a set of smaller categories. Unlike hierarchical databases, which provide single links between sets of records at different levels, network databases create multiple linkages between sets by placing links, or pointers, to one set of records in another; the speed and versatility of network databases have led to their wide use in business. Relational databases are used where associations among files or records cannot be expressed by links; a simple flat list becomes one table, or “relation”, and multiple relations can be mathematically associated to yield desired information. Object-oriented databases store and manipulate more complex data structures, called “objects”, which are organized into hierarchical classes that may inherit properties from classes higher in the chain; this database structure is the most flexible and adaptable.The information in many databases consists of natural-language texts of documents; Small databases can be used by individuals at home. These and larger databases have become increasingly important in business life. Typical commercial applications include airline reservations, production management, medical records in hospitals, and legal records of insurance companies. The largest databases are usually maintained by governmental agencies, business organizations, and universities. These databases may contain texts of such materialsas catalogs of various kinds. Reference databases contain bibliographies or indexes that serve as guides to the location of information in books, periodicals, and other published literature. Thousands of these publicly accessible databases now exist, covering topics ranging from law, medicine, and engineering to news and current events, games, classified advertisements, and instructional courses. Professionals such as scientists, doctors, lawyers, financial analysts, stockbrokers, and researchers of all types increasingly rely on these databases for quick, selective access to large volumes of information.DBMS Structuring TechniquesSequential, direct, and other file processing approaches are used to organize and structure data in single files. But a DBMS is able to integrate data elements from several files to answer specific user inquiries for information. That is, the DBMS is able to structure and tie together the logically related data from several large files.Logical Structures. Identifying these logical relationships is a job of the data administrator. A data definition language is used for this purpose. The DBMS may then employ one of the following logical structuring techniques during storage, access, and retrieval operations.List structures. In this logical approach, records are linked together by the use of pointers.A pointer is a data item in one record that identifies the storage location of another logically related record. Records in a customer master file, for example, will contain the name and address of each customer, and each record in this file is identified by an account number. During an accounting period, a customer may buy a number of items on different days. Thus, the company may maintain an invoice file to reflect these transactions. A list structure could be used in this situation to show the unpaid invoices at any given time. Each record in the customer in the invoice file includes a field, it pointed to the location of the first invoice record in invoice file, this invoice record, in turn, would be linked to next invoices for the customer. The last invoice in the chain would be identified by the use of a special character as a pointer.Hierarchical (tree) structures. In this logical approach, data units are structured in multiple levels that graphically resemble an “upside down” tree with the root at the top and the branches formed below. There’s a superior-subordinate relationship in a hierarchical (tree) structure. Below the single-root data component are subordinate elements or nodes, in turn, each element or branch in this structure below the root has only a single owner. Thus, a customer owns an invoice, and the invoice has subordinate items. The branches in a tree structure are not connected.Network Structures. Unlike the tree approach, which does not permit the connection ofbranches, the network structure permits the connection of the nodes in a multidirectional manner. Thus, each node may have several owners and may, in turn, own any number of other data units. Data management software permits the extraction of the needed information from such a structure by beginning with any record in a file.Relational structures. A relational structure is made up of many tables. The data are stored in the form of “relations” in these tables. This is a relatively new database structuring app roach that’s expected to be widely implemented in the future.Physical Structures. People visualize or structure data in logical ways for their own purposes. Thus, records R1 and R2 may always be logically linked and processed in sequence in one particular application. However, in a computer system it’s quite possible that these records that are logically contiguous in one application are not physically stored together. Rather, the physical structure of the records in media and hardware may depend not only on the I/O and storage devices and storage techniques used, but also on the different logical relationships that users may assign to the data found in R1 and R2. For example, R1 and R2 may be records of credit customers who have shipments send to the same block in the same city every 2 weeks. From the shipping department manager’s perspective, then, R1 and R2 are sequential entries on a geographically organized shipping report. But in the A/R application, the customers represented by R1 and R2 may be identified, and their accounts may be processed, according to their account numbers which are widely separated. In short, then, the physical location of the stored records in many computer-based information systems is invisible to users.Database Management Features of MySQLMySQL includes many features that make the database easier to manage. We’ve divided the discussion in this section into three categories: MySQL Enterprise Manager, add-on packs, backup and recovery.1. MySQL Enterprise ManagerAs part of Database Server, MySQL provides the MySQL Enterprise Manager (EM), a database management tool framework with a graphical interface used to manage database users, instances, and features (such as replication) that can provide additional information about the MySQL environment.Prior to the MySQL8i database, the EM software had to be installed on Windows 95/98 or NT-based systems and each repository could be accessed by only a single database manager at a time. Now you can use EM from a browser or load it onto Windows 95/98/2000 or NT-based systems. Multiple database administrators can access the EM repository at the same time. In the EM repository for MySQL9i, the super administrator can define servicesthat should be displayed on other administrators’ console s, and management regions can be set up.2. Add-on packsSeveral optional add-on packs are available for MySQL, as described in the following sections. In addition to these database-management packs, management packs are available for MySQL Applications and for SAP R/3.(1)standard Management PackThe Standard Management Pack for MySQL provides tools for the management of small MySQL databases (e.g., MySQL Server/Standard Edition). Features include support for performance monitoring of database contention, I/O, load, memory use and instance, session analysis, index tuning, and change investigation and tracking.(2)Diagnostics PackYou can use the Diagnostic Pack to monitor, diagnose, and maintain the health of Enterprise Edition databases, operating systems, and applications. With both historical and real-time analysis, it can automatically avoid problems before they occur. The pack also provides capacity planning features that help you plan and track future system-resource requirements.(3)Tuning PackWith the Tuning Pack, you can optimise system performance by identifying and tuning Enterprise Edition databases and application bottlenecks such as inefficient SQL, poor data design, and the improper use of system resources. The pack can proactively discover tuning opportunities and automatically generate the analysis and required changes to tune the systems.(4)Change Management PackThe Change Management Pack helps eliminate errors and avoid loss of data when upgrading Enterprise Edition databases to support new applications. It can analysis impact and complex dependencies associated with application changes and automatically perform database upgrades. Users can use the easy-to-use wizards that teach the systematic steps necessary to upgrade.(5)AvailabilityMySQL Enterprise Manager can be used for managing MySQL Standard Edition or Enterprise Edition. To Enterprise Edition, additional functionality is provided by separate Diagnostics, Tuning, and Change Management Packs.3. Backup and RecoveryAs every database administrator knows, backing up a database is a rather mundane butnecessary task. An improper backup makes recovery difficult, if not impossible. Unfortunately, people often realize the extreme importance of this everyday task only when it is too late –usually after losing business-critical data due to a failure of a related system.The following sections describe some products and techniques for performing database backup operations.(1)Recovery ManagerTypical backups include complete database backups (the most common type), database backups, control file backups. Previously, MySQL’s Enterprise Backup Utility (EBU) provided a similar solution on some platforms. However, RMAN, with its Recovery Catalog stored in an MySQL database, provides a much more complete solution. RMAN can automatically locate, back up, restore, and recover databases, control files, and archived redo logs. RMAN for MySQL9i can restart backups and restores and implement recovery window policies when backups expire. The MySQL Enterprise Manager Backup Manager provides a GUI-based interface to RMAN.(2)Incremental backup and recoveryRMAN can perform incremental backups of Enterprise Edition databases. Incremental backups back up only the blocks modified since the last backup of a datafile, tablespace, or database; thus, they’re smaller and faster than complete backups. RMAN can also perform point-in-time recovery, which allows the recovery of data until just prior to a undesirable event.(3)Legato Storage ManagerVarious media-management software vendors support RMAN. MySQL bundles Legato Storage Manager with MySQL to provide media-management services, including the tracking of tape volumes, for up to four devices. RMAN interfaces automatically with the media-management software to request the mounting of tapes as needed for backup and recovery operations.(4)AvailabilityWhile basic recovery facilities are available for both MySQL Standard Edition and Enterprise Edition, incremental backups have typically been limited to Enterprise Edition. Choosing between MySQL and SQL ServerI have to decide between using the MySQL database and its development system, Microsoft SQL Server with Visual Studio. This choice will guide our future Web projects. What are the strong points of each of these combinations and what are the negatives?Lori: Making your decision will depend on what you already have. For instance, if you want to implement a Web-based database application and you are a Windows-only shop, SQLServer and the Visual Studio package would be fine. But the MySQL solution would be better with mixed platforms.There are other things to consider, such as what extras you get and what skills are required. WebDB is a content management and development tool that can be used by content creators, database administrators, and developers without any programming experience. WebDB is a browser-based tool that helps ease content creation and provides monitoring and maintenance tools. This is a good solution for organizations already using MySQL. MySQL also scales better than SQL Server, but you will need to have a competent MySQL administrator on hand.The SQL Sever/Visual Studio approach is more difficult to use and requires an experienced object-oriented programmer or some extensive training. However, you do get a fistful of development tools with Visual Studio: Visual Basic, Visual C++, and Visual InterDev for only $1,619. Plus, you will have to add the cost of the SQL Server, which will run you $1,999 for 10 clients or $3,999 for 25 clients-a less expensive solution than MySQL’s.MySQL also has a package solution that starts at $6,767, depending on the platform selected. The suite includes not only WebDB and MySQL8i but also other tools for development such as the MySQL application server, JDeveloper, and Workplace Templates, and the suite runs on more platforms than the Microsoft solution does. This can be a good solution if you are a start-up or a small to midsize business. Buying these tools in a package is less costly than purchasing them individually.Much depends on your skill level, hardware resources, and budget. I hope this helps in your decision-making.Brooks: I totally agree that this decision depends in large part on what infrastructure and expertise you already have. If the decision is hard, you need to fi gure out who’s going to be doing the work and what your priorities are.These two products have different approaches, and they reflect the different personalities of the two vendors. In general, MySQL products are designed for very professional development efforts by top-notch programmers and project leaders. The learning period is fairly long, and the solution is pricey; but if you stick it out you will ultimately have greater scalability and greater reliability.If your project has tight deadlines and you don’t have the time or money to hire a team of very expensive, very experienced developers, you may find that the MySQL solution is an easy way to get yourself in trouble. There’s nothing worse than a poorly developed MySQL application.What Microsoft off ers is a solution that’s aimed at rapid development and low-cost implementation. The tools are cheaper, the servers you’ll run it on are cheaper, and the developers you need will be cheaper. Choosing SQL Sever and Visual Studio is an excellent way to start fast.Of course, there are trade-offs. The key problem I have with Visual Studio and SQL Server is that you’ll be tied to Microsoft operating systems and Intel hardware. If the day comes when you need to support hundreds of thousands of users, you really don’t have anywhere to go other than buying hundreds of servers, which is a management nightmare.If you go with the Microsoft approach, it sounds like you may not need more than Visual Interdev. If you already know that you’re going to be developing Activ eX components in Visual Basic or Visual C++, that’s warning sign that maybe you should look at the MySQL solution more closely.MySQL数据库管理中心数据库(有时拼成database)也称为电子数据库,是指由计算机特别组织的快速查找和检索的任意的数据或信息集合。