中考数学第一轮复习专题训练一

合集下载

2023年中考数学一轮复习专题训练:一次函数的定义(含答案)

2023年中考数学一轮复习专题训练:一次函数的定义(含答案)

2023年中考数学专题训练:一次函数的定义一、单选题1.下列函数中,属于一次函数的是( )A .1y x =B .12x y +=C .21y x =+D .y kx b =+(k 、b 是常数)2.对于一次函数y kx b =+(k ,b 为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是( )A .14-B .12-C .8-D .5- 3.已知正比例函数12y x =-的图象经过点()6,m ,则m 的值为( ) A .1- B .2- C .3- D .-12 4.下列各点在直线112y x =-+上的是( ) A .(0,1)- B .(2,0)- C .11(,)24 D .(4,)1- 5.若点()2A a -,在函数3y x =-+的图象上,则a 的值为( )A .1B .1-C .5D .5- 6.关于函数21y x =+,下列结论正确的是( )A .函数必经过点()21-,B .y 随x 的值增大而增大C .当12x <时,0y < D .图象经过第一、三、四象限 7.已知()124m y m x-=-+是一次函数,则m 的值为( ) A .1 B .2C .2-D .2± 8.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程S (千米)与行驶时间t (时)的函数关系及自变量的取值范围是( ) A .()1203004S t t =-≤≤B .()3004S t t =≤≤C .()120300S t t =->D .()304S t t ==二、填空题9.将点(2,3)P --向右平移3个长度单位,再向上平移a 个长度单位得到点Q ,点Q 恰好在直线23y x =-上,则a 的值为_____.10.如果点()2,A a -在函数114y x =-+的图象上,那么a 的值等于______. 11.当一次函数()2533y m x m =-+-的图像与y 轴的交点在x 轴的上方时,m 满足的条件是___________.12.若点()P a b ,在一次函数34y x =+的图像上,则代数式162a b -+=___________.13.若点3(2)A -,,(43)B ,,(1,)C a -在同一条直线上,则a 的值__________. 14.若点()2,a 在一次函数31y x 的图像上,则a 的值为______. 15.函数()212n y m xm n +-=-+,当m =__,n = __时为正比例函数;当m __,n = __时为一次函数. 16.若一次函数126y k x k =()()的图象经过第一,三,四象限,则k 的取值范围是________.三、解答题17.已知:y 与2x +成正比例,且1x =时,y =-6.(1)求y 与x 之间的函数关系式.(2)判断点()34M -,是否在这个函数的图象上.18.已知2y -与x 成正比例,且当2x =-时,4y =-.(1)写出y 与x 之间的函数关系式;(2)当4x =时,求y 的值;(3)求函数图像与x 轴的交点坐标.19.为提高学生的身体素质,某中学计划购买篮球和排球共50个,已知篮球每个80元,排球每个60元,设购买篮球x 个,购买篮球和排球的总费用为y 元.(1)求y 与x 之间的表达式;(2)如果购买篮球的个数是排球个数的32倍,则购买篮球和排球的总费用是多少?20.小明从阳山往广州邮寄一件包裹,邮资收费标准为每千克0.9元,并每件另加收手续费3.5元.(1)求总邮资y(元)与包裹重量x(千克)之间的函数关系式;(2)若小明所付总邮资为12.5元,则小明的包裹重量为多少?参考答案:1.B2.B3.C4.D5.C6.B7.C8.A9.210.3211.1m >且52m ≠ 12.913.12-14.715. 0 0 2≠ 0 16.13k << 17.(1)y x =--24 (2)()34M -,不在这个函数的图象上18.(1)32y x =+(2)14 (3)203⎛⎫- ⎪⎝⎭,19.(1)203000y x =+(2)3600元20.(1)0935y .x .=+(2)10千克。

2021年九年级中考数学 一轮专题训练:三角形的面积(一)

2021年九年级中考数学 一轮专题训练:三角形的面积(一)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2021年中考数学一轮专题训练:三角形的面积(一)1.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC =4cm2,则S△DEF等于()A.2cm2B.1cm2C.2D.22.如图,AD是△ABC中BC边上的中线,E、F分别是AD、BE的中点,若△BFD的面积为1,则△ABC的面积为()A.3 B.8 C.4 D.63.如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=4,△ABC的面积为12,则CD的长为()A.2 B.3 C.4 D.54.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以5.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若每一小正方形的边长均为1,则灰色三角形的面积为()A.7 B.7.5 C.8 D.8.56.如图,将三角形ABC沿直线AB向右平移后得到三角形BDE,连接CD,CE,若三角形ACD的面积为10,则三角形BCE的面积为()A.4 B.5 C.6 D.107.如图,在△ABC中,点D、E分别为BC、AD的中点,EF=2FC,若△ABC的面积为12cm2,则△BEF的面积为()A.2cm2B.3cm2C.4cm2D.5cm28.如图,△ABC中,AD是BC边上的中线,CE是△ACD中AD边上的中线,如果△ABC的面积是20,那么△ACE的面积是()A.10 B.6 C.5 D.49.如图,△ABC中,点D,E分别是边BC,BA的中点,△ABC的面积为32,则△DEB 的面积为()A.条件不足,无法确定B.4C.8 D.1610.已知AD是△ABC的中线,BE是△ABD的中线,若△ACD的面积为20,则△ABE 的面积为()A.5 B.10 C.15 D.1811.如图,D、E分别是△ABC的边AB、BC上的点,AD═2BD,BE=CE,设△ADF 的面积为S1,△CEF的面积为S2,若S△ABC=12,则S1﹣S2=()A.1.5 B.2 C.3 D.0.512.如图,△ABC的中线AD、BE相交于点P,四边形与△ABP的面积分别记为S1、S2,则S1与S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.以上都有可能13.如图,△ABC的面积为10,点D为线段BC的中点,将△ABD沿着射线BC的方向平移使得点B与点D重合,得到△EDC,则△EDC的面积为()A.2.5 B.4 C.5 D.1014.如图在8×5的正方形网格中,AB、AC是经过格点的线段,如果能找到这样的格点M,使得S=S△ABM,这样的点M的个数是()△ACMA.1 B.2 C.3 D.415.如图,在四边形ABCD中,AD∥BC,AB=AD,BC=6,△BCD的面积为9,则点D到AB的距离为()A.3 B.4.5 C.6 D.916.如图所示,在△ABC中,点D、E分别在AB、AC边上,且AD:BD=3:4,AE:CE=2:1.连接DE,那么S:S四边形BCED=()△ADEA.B.C.D.17.如图,△ABC的面积是1,AD是△ABC的中线,AF=FD,CE=EF,则△DEF 的面积为()A.B.C.D.18.如图,在△ABC中,E是BC上一点,BC=3BE,点F是AC的中点,若S△ABC=a,则S△ADF﹣S△BDE=()A.a B.a C.a D.a19.如图,A、B、C的坐标分别为:A(﹣4,0)、B(2,0),C(0,6),在线段AB 或线段BC上找一点P,使△ACP面积为整数且S△ACP≤S△ABC,则满足条件的点P 的个数是()A.4 B.6 C.8 D.1020.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(3,5)C.(3,﹣5)D.(﹣4,0)或(6,0)参考答案1.解:∵点D是BC的中点,∴S△ADC=S△ABC,∵点E是AD的中点,∴S△DCE=S△ADC=S△ABC,∵点F是CE的中点,∴S△DEF=S△DCE=S△ABC=×4=(cm2),故选:C.2.解:∵F是BE的中点,∴BF=EF,∴S△EFD=S△BFD,又∵S△BDE=S△EFD+S△BFD,∴S△BDE=2S△BFD=2×1=2.同理,S△ABC=2S△ABD=2×2S△BDE=4×2=8.故选:B.3.解:∵△ABC的面积为12,∴×AE×BC=12,∴BC==6,∵AD是边BC上的中线,∴CD=BC=3.故选:B.4.解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:B.5.解:灰色三角形的面积为:4×4﹣﹣﹣=7,故选:A.6.解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE,∴S△ABC=S△BCD=S△ACD=×10=5,∵DE∥BC,∴S△BCE=S△BCD=5.故选:B.7.解:∵D是BC的中点,∴S△ABD=S△ADC(等底等高的三角形面积相等),∵E是AD的中点,∴S△ABE=S△BDE,S△ACE=S△CDE(等底等高的三角形面积相等),∴S△ABE=S△DBE=S△DCE=S△AEC,∴S△BEC=S△ABC=6cm2.∵EF=2FC,∴S△BEF=S△BCE,∴S△BEF=S△BEC=4cm2.故选:C.8.解:∵AD是BC上的中线,△ABC的面积是20,∴S△ACD=S△ABD=S△ABC=10,∵CE是△ACD中AD边上的中线,∴S△ACE=S△CED=S△ACD=5.故选:C.9.解:∵D、E分别是BC,AB的中点,∴S△DEB=S△ABD,S△ABD=S△ABC,∴S△DEB=S△ABC=×32=8.故选:C.10.解:∵AD是△ABC的中线,△ACD的面积为20,∴S△ABD=S△ACD,=20,∵BE是△ABD的中线,∴S△ABE=S△DBE,而S△ABE=20÷2=10.故选:B.11.解:∵BE=CE,∴BE=BC,∵S△ABC=12,∴S△ABE=S△ABC=×12=6.∵AD=2BD,S△ABC=12,∴S△BCD=S△ABC=4,∵S△ABE﹣S△BCD=(S△ADF+S四边形BEFD)﹣(S△CEF+S四边形BEFD)=S△ADF﹣S△CEF,即S△ADF﹣S△CEF=S△ABE﹣S△BCD=6﹣4=2.故选:B.12.解:连接DE,∵△ABC的中线AD、BE相交于点P,∴DE∥AB,∴S△ABD=S△ABE,∴S△PBD=S△PAE,∵S△ABE=S2+S△PAE=S△BCE=S△PBD+S1,∴S1=S2,∴S1与S2的大小关系为相等,故选:B.13.解:∵△ABC的面积为10,点D为线段BC的中点,∴△ABD的面积=△ABC的面积=5,∵将△ABD沿着射线BC的方向平移使得点B与点D重合,得到△EDC,∴△EDC的面积=△ABD的面积=5,故选:C.14.解:如图所示:故使得S△ACM=S△ABM的格点M的个数是3个.故选:C.15.解:作DH⊥BC于H,DE⊥BA交BA的延长线于E.∵AB=AD,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠DBC,∵DE⊥BE,DH⊥BC,∴DE=DH,∵S△DBC=•BC•DH=6,∴×6×DH=9,∴DH=3,∴DE=3,故选:A.16.解:连接BE,设△ABC的面积为S,∵AE:CE=2:1.∴S△ABE=S,∵AD:BD=3:4,∴S△ADE=S△ABE=×S=S,∴S△ADE:S四边形BCED=2:5,故选:B.17.解:∵△ABC的面积是1,AD是△ABC的中线,∴S△ACD=S△ABC=,∵AF=FD,∴DF=AD,∴S△CDF=S△ACD=×=,∵CE=EF,∴S△DEF=S△CDF=×=,故选:D.18.解:∵BC=3BE,∴S△AEC=S△ABC=a,∵点F是AC的中点,∴S△BCF=S△ABC=,∴S△AEC﹣S△BCF=a,即S△ADF+S四边形CEDF﹣(S△BDE+S四边形CEDF)=a,∴S△ADF﹣S△BDE=a,故选:C.19.解:∵A(﹣4,0)、B(2,0),C(0,6),∴AB=6,OC=6,∴,∵S△ACP≤S△ABC,∴S△ACP≤,当P点在AB边上时,设P(x,0),则AP=x+4,∴,∴x≤﹣,∵△ACP面积为整数,∴为整数,又∵x+4≤∴x+4=或或1或,即x=﹣或﹣或﹣3或﹣,故在AB上存在4个点,使得△ACP面积为整数且S△ACP≤S△ABC,过点4个点作AC的平行线与BC有四个交点,所得四个交点为P点,也满足△ACP面积为整数且S△ACP≤S△ABC,∴满足条件的点P的个数有8个,故选:C.20.解:如图,设P(m,0).由题意:•|1﹣m|•2=5,解得m=﹣4或6,∴P(﹣4,0)或(6,0).故选:D.一天,毕达哥拉斯应邀到朋友家做客。

中考数学一轮复习专题突破训练—相似三角形

中考数学一轮复习专题突破训练—相似三角形

中考数学一轮复习专题突破训练—相似三角形一、单选题1.(2022·北京市第十三中学九年级期中)如图,点D,E分别在△ABC的AB,AC边上,且DE△BC,如果AD:AB=2:3,那么DE:BC等于()A.3:2B.2:5C.2:3D.3:5【答案】C【分析】根据相似三角形的判定与性质即可得出结果.【详解】解:△DE∥BC,△△ADE△△ABC,△DE:BC=AD:AB=2:3;故选:C.2.(2022·辽宁鞍山市·九年级期末)如图,在平行四边形ABCD中,点E是AB 的中点,CE和BD交于点O,若S△EOB=1,则四边形AEOD的面积为()A.4B.5C.6D.7【答案】B根据平行四边形的性质和相似的判定和性质,可以得到△BOC和△COD的面积,从而可以得到△BCD的面积,再根据△ABD和△BCD的面积一样,即可得到四边形AEOD的面积.【详解】解:△在平行四边形ABCD中,点E是AB的中点,△CD△AB,CD=AB=2BE△△DOC△△BOE,△OC CDOE BE=2,△S△EOB=1,△S△BOC=2,S△DOC=4,△S△BCD=6,△S△DAB=6,△四边形AEOD的面积为:S△DAB-S△EOB=6-1=5,故选:B.3.(2022·全国九年级专题练习)如图,已知AB△CD△EF,AD:AF=3:5,BE=12,那么CE的长等于()A.2B.4C.245D.365【分析】根据平行线分线段成比例得到3125BC =,然后利用比例性质计算出BC ,从而求出CE 即可. 【详解】解:△AB △CD △EF , △BC AD BE AF =,即3125BC =, △BC =365, △CE =BE -BC =12-365=245, 故选C .4.(2022·全国九年级专题练习)下列四条线段中,不能成比例的是( ) A.a =2,b =4,c =3,d =6 B .a ,b c =1,d C .a=6,b =4,c =10,d =5 D .a b =c d =2【答案】C 【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案. 【详解】解:A 、2×6=3×4,能成比例; B1 C 、4×10≠5×6,不能成比例;D 、523152⨯=⨯,能成比例. 故选:C .5.(2022·四川省成都市石室联合中学)如图,在ABC 中,点E 和点F 分别在边AB ,AC 上,且//EF BC ,若3AE =,6EB =,9BC =,则EF 的长为( )A .1B .92C .12D .3【答案】D 【分析】证明△AEF △△ABC ,根据相似三角形的性质列出比例式,代入计算得到答案. 【详解】 △//EF BC , △AEF ABC ∽, △EF AEBCAB, △3AE =,6EB =, 9BC =, △399EF =, △3EF =. 故选D .6.(2022·全国九年级课时练习)将三角形纸片(ABC )按如图所示的方式折叠,使点C 落在AB 边上的点D ,折痕为EF .已知3,4AB AC BC ===,若以点B 、D 、F 为顶点的三角形与ABC 相似,那么CF 的长度是( )A .2B .127或2 C .127D .125或2 【答案】B 【分析】分两种情况:若BFD C ∠=∠或若BFD A ∠=∠,再根据相似三角形的性质解题 【详解】△ABC 沿EF 折叠后点C 和点D 重合, △FD CF =,设CF x =,则,4FD CF x BF x ===-,以点B 、D 、F 为顶点的三角形与ABC 相似,分两种情况: △若BFD C ∠=∠,则BF FDBC AC =,即443x x -=,解得127x =; △若BFD A ∠=∠,则BF FD AB AC =,即433x x -=,解得2x =. 综上,CF 的长为127或2, 故选:B .7.(2022·全国九年级课时练习)已知线段a 、b 、c 、d 满足ab cd =,把它改写成比例式,错误的是( ) A .::a d c b = B .::a b c d =C .::d a b c =D .::a c d b =【答案】B【分析】根据比例的基本性质:外项之积等于内项之积,对选项一一分析,选出正确答案即可.【详解】解:A、a:d=c:b△ab=cd,故正确;B、a:b=c:d△ad=bc,故错误;C、d:a=b:c△dc=ab,故正确;D、a:c=d:b△ab=cd,故正确.故选:B.8.(2022·全国九年级课时练习)下列结论不正确的是()A.所有的矩形都相似B.所有的正三角形都相似C.所有的等腰直角三角形都相似D.所有的正八边形都相似【答案】A【分析】根据相似图形的判定判断即可;【详解】所有的矩形不一定都相似,故A错误,符合题意;因为正三角形的每个角都等于60︒,满足两个角对应相等,所有的正三角形都相似,故B正确;︒︒︒,满足两个角对应相等,因为等腰直角三角形的三个角分别为,45,45,90所有的等腰直角三角形都相似,故C正确;因为正八边形的每个角都相等,每条边都相等,所有的正八边形都相似,故D 正确; 故选A .9.(2022·全国)如果23a b =,那么2a bb-的结果是( ) A .12- B .43-C .43D .12【答案】B 【分析】根据比例的性质即可得到结论. 【详解】 △a b=23,△可设a =2k ,b =3k , △2a bb -=2k-6k 3k =-43. 故选B .10.(2022·沙坪坝·重庆一中)下列命题正确的是( ) A .位似图形一定是相似图形 B .任意两个菱形一定相似CD .23、24、25能作为直角三角形的三边长 【答案】A 【分析】根据位似图形,相似图形的定义可判断A 、B ,根据平方根的定义和勾股定理的逆定理,可判断C 、D . 【详解】解:A. 位似图形一定是相似图形,故原命题正确,符合题意; B. 任意两个菱形不一定相似,故原命题错误,不符合题意;C.±D. 23、24、25不能作为直角三角形的三边长,故原命题错误,不符合题意, 故选A . 二、填空题11.(2022·山东省青岛第二十六中学九年级期中)如果2x =3y ,那么x yy +=___. 【答案】52【分析】直接利用已知得出x =32y ,进而代入得出答案. 【详解】 解:△2x =3y , △x =32y ,△3522y yx y y y ++==.故答案为:52.12.(2022·全国九年级专题练习)ABC 中,D 、E 分别在AB 、AC 上,DE △BC ,ADE 是ABC 缩小后的图形,若DE 把ABC 的面积分成相等的两部分,则AD :AB =_____【分析】如图根据BC △DE ,可以得到△ADE △△ABC ,则21=2AED ABC S AD S AB ⎛⎫= ⎪⎝⎭△△ ,由此即可求解. 【详解】 解:△BC △DE , △△ADE △△ABC ,△DE 把△ABC 的面积分成相等的两部分,△21()2AED ABCS AD SAB ∆∆==, △22AD AB =, 故答案为:22.13.(2022·全国)如图,AC 与BD 相交于点O ,在△AOB 和△DOC 中,已知OA OBOD OC=,又因为________,可证明△AOB △△DOC .【答案】△AOB=△DOC【分析】根据相似三角形的判定,两边对应成比例,夹角相等,两三角形相似解答.【详解】解:△OA OBOD OC=,△AOB=△DOC,△△AOB△△DOC(两边对应成比例,夹角相等,两三角形相似).故答案为:△AOB=△DOC.14.(2022·全国九年级专题练习)如图:梯形ADFE相似于梯形EFCB,若AD=3,BC=4,则AEBE=__.3【分析】根据相似的性质,列出比例式,根据已知条件即可求得.【详解】因为梯形ADFE相似于梯形EFCB,所以AD EFEF BC=,即EF=23所以323AE ADBE EF===315.(2022·合肥市第四十五中学九年级)如图,正方形ABCD中,点E是BC的中点,点F是CD上一点,分别以AE、AF为对称轴,折叠△ABE、△ADF,使得AB和AD与AG重合,连接BG交AE于点H,连接CG.(1)HE:AH=______;(2)S△AFE:S正方形ABCD=______.【答案】1:4 5:12【分析】(1)根据翻折的性质得到△GHE=△BHE=90°,再根据△HEB=△BEA,从而证明△HEB△△BEA,得出HE BEBE AE=,设正方形边长为2x,则BE=x,AB=2x,由勾股定理求出AE,从而求出HE和AH,得出结论;(2)由S△AFE=12(S正方形ABCD﹣S△FCE),正方形ABCD的边长为2x,FG=DF=m,则EF =x + m,CF=2 x﹣m,,由勾股定理求出m即可.【详解】解:(1)△AE为对称轴,△△AEG△△AEB,BG△AE,△△GHE=△BHE=90°,又△△HEB=△BEA,△△HEB△△BEA,△HE BEBE AE=,在正方形ABCD 中,设边长为2x ,△点E 是BC 的中点,则BE =x ,AB =2x ,△AE=,△HE =225BE x AE ==,△AH =AE ﹣HE=,△HE :AH x =1:4. 故答案为:1:4;(2)设正方形ABCD 的边长为2x ,则S 正方形ABCD =4x 2,△S △AFE =12(S 正方形ABCD ﹣S △FCE ),CE =BE =GE =x ,设FG =DF =m ,则EF =x + m ,CF =2 x ﹣m ,在△EFC 中,△EF 2=CE 2+CF 2,△(m +x )2=(2 x ﹣m )2+ x 2,解得:m =23x ,△CE =2 x ﹣m =43x ,△S △CFE =12×CE ×CF =12×24233x x x ⨯=, △S △AFE =12×(4 x 2﹣223x )=253x , △S △AFE :S 正方形ABCD =225:43x x =5:12.故答案为:5:12.三、解答题16.(2022·辽宁鞍山市·九年级期末)如图,将△ABC绕点A旋转得到△ADE,连接BD,CE.求证:△ADB△△AEC.【答案】见解析.【分析】由题知,将△ABC绕点A旋转得到△ADE,可得到AC=AE,AB=AD,△CAE=△BAD,即可证明.【详解】△将△ABC绕点A旋转得到△ADE,△AC=AE,AB=AD,△CAE=△BAD,△AE AC,AD AB△△ADB△△AEC.17.(2022·广西贺州市·九年级期中)如图,已知在△ABC中,DE△BC,EF△AB,AE=2CE,AB=6,BC=9.求:(1)求BD的长度;(2)求DE的长度.【答案】(1)2;(2)6【分析】(1)由平行线分线段成比例得出比例式,即可得出结果;(2)由平行线分线段成比例得出比例式,即可得出结果.【详解】解:(1)△AE =2CE , △12CE AE =, △DE △BC , △13BD CE AB AC ==, △AB =6,△BD =2;(2)△EF △AB , △23AE BF AC BC ==, △BC =9,△BF =6,又△DE △BC ,△四边形BDEF 是平行四边形,△DE =BF =6.18.(2022·全国九年级专题练习)已知:如图,△ABC =△CDB =90°,AC =a ,BC =b ,当BD 与a 、b 之间满足怎样的关系时,这两个三角形相似?【答案】2b BD a =或22b a b BD -=【分析】由AB △BC ,BD △CD 得到△ABC =△BDC =90°,再利用勾股定理计算出22AB a b -根据直角三角形相似的判定方法,当AB BD AC BC =,Rt △ABC △Rt △BDC ;当=BC AC BD BC时然后分别利用比例性质可表示出BD 与a 和b 的关系. 【详解】解:△AC =a ,BC =b ,△ABC =△CDB =90°,△AB 22a b -△当BD BC AB AC=时, 即22b a b BD -=Rt △ABC △Rt △BDC ; △当BD BC CB AC=时, 即2b BD a=时,Rt △ABC △Rt △CDB ,. 19.(2020·北京市第六十六中学九年级期中)如图,在Rt△ABC 中,△C =90°,D 是AB 上一点,E 是BC 上一点,AC =6,BC =8,BD =4,BE =5.求证:DE △AB .【答案】见解析【分析】利用勾股定理可求得AB =10,则有12BE AB =,12BD BC =,结合△B =△B ,可证得△BDE △△BCA ,从而有△BDE =△C =90°,即可得证.【详解】证明:△△C =90°,AC =6,BC =8,△AB 2210AC BC +=,△BD =4,BE =5, △12BE AB =,12BD BC =, △△B =△B ,△△BDE △△BCA ,△△BDE =△C =90°,即DE △AB .20.(2022·全国九年级专题练习)如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m ,已知小明的身高是1.6 m ,他的影长是2 m .(1)图中△ABC 与△ADE 是否相似?为什么?(2)求古塔的高度.【答案】(1)相似,见解析;(2)16m【分析】(1)根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似;(2)利用相似三角形的性质求得相应线段的长即可.【详解】解:(1)△ABC△△ADE.△BC△AE,DE△AE,△△ACB=△AED=90°.△△A=△A,△△ABC△△ADE;(2)由(1)得△ABC△△ADE,△AC BC=AE DE△AC=2m,AE=2+18=20m,BC=1.6m,△2 1.6=,20DE△DE=16m,即古塔的高度为16m.21.(2022·全国九年级专题练习)在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC 和△BDE 的面积分别等于18和2,DE =2,求AC 边上的高.【答案】6【分析】由已知条件得到△CEB =△ADB =90°,推出△ADB △△CEB ,根据相似三角形的性质得到BD :AB =BE :BC ,证得△BDE △△BAC ,得到S △BDE :S △ABC =(DE :AC )2,于是求得AC =6,然后根据三角形的面积公式即可得到结果.【详解】过点B 做BF △AC ,垂足为点F ,△AD ,CE 分别为BC ,AB 边上的高,△△ADB =△CEB =90°,又△△B =△B ,△Rt △ADB △Rt △CEB , △BD AB BE CB =,即BD BE AB CB=, 且△B =△B ,△△EBD △△CBA , △221189BED BCA S DE S AC ⎛⎫=== ⎪⎝⎭, △13DE AC =, 又△DE =2,△AC =6,△1182ABCS AC BF =⋅=, 6BF ∴=.22.(2022·湖南师大附中博才实验中学)如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG CG =;(2)若9GE GF ⋅=,求CG 的长.【答案】(1)见解析;(2)CG =3【分析】(1)根据正方形的性质得到△ADB =△CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG △△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD △CB ,推出△FCB =△F ,由(1)可知△ADG △△CDG ,利用全等三角形的性质得到△DAG =△DCG ,结合图形根据角之间的和差关系△DAB -△DAG =△DCB -△DCG ,推出△BCF =△BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG △△F AG ,进而根据相似三角形的性质进行求解即可.【详解】解:(1)证明:△BD 是正方形ABCD 的对角线,△△ADB =△CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CD ADG CDG DG DG =⎧⎪∠=∠⎨⎪=⎩, △△ADG △△CDG (SAS ),△AG =CG ;(2)解:△四边形ABCD 是正方形,△AD △CB ,△△FCB =△F ,由(1)可知△ADG △△CDG ,△△DAG =△DCG ,△△DAB -△DAG =△DCB -△DCG ,即△BCF =△BAG ,△△EAG =△F ,又△EGA =△AGF ,△△AEG △△F AG ,△GE GA GA GF =,即GA 2=GE •GF ,△GA =3或GA =-3(舍去),根据(1)中的结论AG =CG ,△CG =3.23.(2022·浙江杭州·翠苑中学九年级)如图,在矩形ABCD 中,E 是CD 上一点,AE AB =,作BF AE ⊥.(1)求证:ADE BFA ≅△△;(2)连结BE ,若BCE 与ADE 相似,求AD AB . 【答案】(1)见解析;(23【分析】(1)根据矩形的性质得出90D DAB ∠=∠=︒,求出90DAE FAB ∠+∠=︒,90FBA FAB ∠+∠=︒,求出D AFB ∠=∠,DAE FBA ∠=∠,再根据全等三角形的判定推出即可;(2)根据矩形的性质得出90C D ∠=∠=︒,//DC AB ,根据平行线的性质得出CEB ABE ∠=∠,设CEB ABE x ∠=∠=︒,根据等腰三角形的性质求出AEB EBA x ∠=∠=︒,根据相似三角形的性质得出两种情况:△DEA CEB x ∠=∠=︒,根据180DEA AEB CEB ∠+∠+∠=︒得出180x x x ++=,求出x ,再解直角三角形求出AE 和AD ,再求出答案即可;△DEA EBC ∠=∠,设DEA EBC y ∠=∠=︒,求出(2)180DEA AEB CEB y x ∠+∠+∠=+︒=︒,()90EBC CEB y x ∠+∠=+︒=︒,求出x ,再得出答案即可.【详解】解:(1)证明:四边形ABCD 是矩形,90D DAB ∴∠=∠=︒,90DAE FAB ∴∠+∠=︒,BF AE ⊥,90AFB ∴∠=︒,D AFB ∴∠=∠,90FBA FAB ∠+∠=︒,DAE FBA ∴∠=∠,在ADE ∆和BFA ∆中DAE FBA D AFB AE AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE BFA AAS ∴∆≅∆;(2)四边形ABCD 是矩形,90C D ∴∠=∠=︒,//DC AB ,CEB ABE ∴∠=∠,设CEB ABE x ∠=∠=︒,AE AB =,AEB EBA x ∴∠=∠=︒,当BCE ∆与ADE ∆相似时,有两种情况:△DEA CEB x ∠=∠=︒,180DEA AEB CEB ∠+∠+∠=︒,180x x x ∴++=,解得:60x =,即60DEA ∠=︒,906030DAE ∴∠=︒-︒=︒,2AE DE ∴=,由勾股定理得:AD , AE AB =,∴AD AD AB AE = △DEA EBC ∠=∠,设DEA EBC y ∠=∠=︒,CEB EBA AEB x ∠=∠=∠=︒,则(2)180DEA AEB CEB y x x y x ∠+∠+∠=︒+︒+︒=+︒=︒, 在Rt BCE ∆中,()90EBC CEB y x y x ∠+∠=︒+︒=+︒=︒, 即218090y x y x +=⎧⎨+=⎩, 解得:90x =︒,即90CEB ∠=︒,此时点E 和点C 重合,BEC ∆不存在,舍去;△AD AB =。

2021年 中考一轮复习数学专题突破训练:《圆综合性压轴题》(一)

2021年 中考一轮复习数学专题突破训练:《圆综合性压轴题》(一)

2021年中考一轮复习数学专题突破训练:《圆综合性压轴题》(一)1.如图1,△ABC内接于⊙O,∠ACB=60°,D,E分别是,的中点,连结DE分别交AC,BC于点F,G.(1)求证:△DFC∽△CGE;(2)若DF=3,tan∠GCE=,求FG的长;(3)如图2,连结AD,BE,若=x,=y,求y关于x的函数表达式.2.如图,已知△ABC,以BC为直径的⊙O交AB于点D,点E为的中点,连结CE交AB 于点F,且AF=AC.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,sin A=,求CE的长.3.如图,在Rt△ABC中,∠C=90°,点O在斜边AB上,以O为圆心,OB为半径作⊙O,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若∠B=30°,AO=,求的长;(3)若AC=2,BD=3,求AE的长.4.如图1,CD是⊙O的直径,弦AB⊥CD,垂足为点E,连结CA.(1)若∠ACD=30°,求劣弧AB的度数;(2)如图2,连结BO并延长交⊙O于点G,BG交AC于点F,连结AG.①若tan∠CAE=2,AE=1,求AG的长;②设tan∠CAE=x,=y,求y关于x的函数关系式.5.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP 交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求PA•AE的最大值.6.已知AB为⊙O的直径,C为⊙O上一动点,连接AC,BC,在BA的延长线上取一点D,连接CD,使CD=CB.(1)如图1,若AC=AD,求证:CD是⊙O的切线;(2)如图2,延长DC交⊙O于点E,连接AE.i)若⊙O的直径为,sin B=,求AD的长;ii)若CD=2CE,求cos B的值.7.已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°;①直接写出的值为;②当⊙O的半径为4时,直接写出图中阴影部分的面积为;(2)如图2.若α<60°,,DE=6,求DC的长.8.定义:有一个内角等于与其相邻的两个内角之差的四边形称为幸福四边形.(1)已知∠A=120°,∠B=50°,∠C=α,请直接写出一个α的值,使四边形ABCD为幸福四边形;(2)如图1,△ABC中,D、E分别是边AB,AC上的点,AE=DE.求证:四边形DBCE为幸福四边形;(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于另一点F,与边BC 交于点G,且BF=FC.①求证:EG是⊙O的直径;②连结FG,若AE=1,BG=7,∠BGF﹣∠B=45°,求EG的长和幸福四边形DBCE的周长.9.如图,AB和CD为⊙O的直径,AB⊥CD,点E为CD上一点,CE=CA,延长AE交⊙O于点F,连接CF交AB于点G.(1)求证:CE2=AE•AF;(2)求证:∠ACF=3∠BAF;(3)若FG=2,求AE的长.10.如图,AB为⊙O的直径,点C为⊙O上一点,点D为AB延长线上一点,连接CD,作CE ⊥AB于点E,∠OCE=∠D.(1)求证:CD是⊙O的切线;(2)点F为CD上一点,连接OF交CE于点G,G为OF中点,求证:OC2=CD•CF;(3)在(2)的条件下,CF=DF,若OC=2,求CG.参考答案1.解:(1)∵点D是的中点,∴,∴∠ACD=∠CED,∵点E是的中点,∴,∴∠CDE=∠BCG,∴△DFC∽△CGE;(2)由(1)知,∠ACD=∠CED,∠CDE=∠BCG,∴∠ACD+∠CDE=∠CED+∠BCG,∴∠CFG=∠CGF,∵CF=CG,∵∠ACB=60°,∴△CFG是等边三角形,如图1,过点C作CH⊥FG于H,∴∠DHC=90°,设FH=a,∴∠FCH=30°,∴FG=CF=2a,CH=a,∵DF=3,∴DH=DF+FH=3+a,∵∠GCE=∠CDE,tan∠GCE=,∴tan∠CDE=,在Rt△CHD中,tan∠CDE==,∴=,∴a=1,∴FG=2a=2;(3)如图2,连接AE,则∠AEB=∠ACB=60°,∠DAE=∠CAD+∠CAE=∠ACD+∠CDF=∠CFG=60°,∴∠AEB=∠DAE,∴BE∥AD,设BE与AD的距离为h,∴=,∴S△ABE =•S△ADE,∵D ,E 分别是,的中点,∴CD =AD ,BE =CE ,∴S △ABE =•S △ADE ,过点D 作DM ⊥AC 于M ,∵,∴AD =CD ,∴AC =2CM ,由(2)知,△CFG 是等边三角形,∴∠CFG =60°,∴∠DFM =60°,∴∠MDF =30°,设MF =m ,则DM =m ,DF =2m ,∵=x , ∴CF =x •DF =2mx ,∴CG =CF =2mx ,由(1)知,△DFC ∽△CGE ,∴, ∴=, ∴S △ABE =•S △ADE =S △ADE ,∴S 四边形ABED =S △ADE +S △ABE =S △ADE , ∵MF =m ,CF =x •DF =2mx ,∴CM =MF +CF =m +2mx =(2x +1)m ,∴AC =2CM =2(2x +1)m ,∴AF=AC﹣CF=2(2x+1)m﹣2mx=2(x+1)m,过点A作AN⊥DF于N,=AF•DM=DF•AN,∴S△ADF∴AN===(x+1)m,过点C作CP⊥FG,由(2)知,PF=CF=mx,CP=mx,∴y===•=•=•=•=.2.(1)AC与⊙O相切,证明:连接BE,∵BC是⊙O的直径,∴∠E=90°,∴∠EBD+∠BFE=90°,∵AF=AC,∴∠ACE=∠AFC,∵E为弧BD中点,∴∠EBD=∠BCE,∴∠ACE+∠BCE=90°,∴AC⊥BC,∵BC为直径,∴AC是⊙O的切线.(2)解:∵⊙O的半为2∴BC=4,在Rt△ABC中,sin A==,∴AB=5,∴AC==3,∵AF=AC,∴AF=3,BF=5﹣3=2,∵∠EBD=∠BCE,∠E=∠E,∴△BEF∽△CEB,∴==,∴EC=2EB,设EB=x,EC=2x,由勾股定理得:x2+4x2=16,∴x=(负数舍去),即CE=.3.解:(1)如图1,连接OD,∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵OB=OD,∴∠B=∠ODB,∵∠CAD=∠B,∴∠CAD=∠ODB,∴∠ODB+∠ADC=90°,∴∠ADO=90°,又∵OD是半径,∴AD是⊙O的切线;(2)∵∠B=30°,∠ACB=90°,∴∠CAD=30°,∠CAB=60°,∴∠DAB=30°,∴OD=AO,∴OD=,∵OD=OB,∠B=30°,∴∠B=∠ODB=30°,∴∠DOB=120°,∴劣弧BD的长==π;(3)如图2,连接DE,∵BE是直径,∴∠BDE=90°,∴∠ACB=∠EDB=90°,∴AC∥DE,∵∠B=∠CAD,∠ACD=∠EDB,∴△ACD∽△BDE,∴,∴设CD=2x,DE=3x,∵AC∥DE,∴,∴,∴x=,∴CD=1,BC=BD+CD=4,∴AB===2,∵DE∥AC,∴,∴AE=×2=.4.解:(1)如图1,连接OA,OB,∵CD是⊙O的直径,弦AB⊥CD,∴=,∴∠AOD=∠BOD,∵∠ACD=30°,∴∠AOD=60°,∴∠AOB=120°,∴劣弧AB的度数是120°;(2)①∵CD⊥AB,∴AE=BE=1,∠AEC=90°,在Rt△AEC中,tan∠CAE==2,∴CE=2,设OE=x,则OC=2﹣x=OB,在Rt△OEB中,由勾股定理得:OB2=OE2+BE2,即(2﹣x)2=x2+1,解得:x=,∴OE=,∵OG=OB,AE=BE,∴OE是△AGB的中位线,∴AG=2OE=;②∵BG是⊙O的直径,∴∠BAG=90°,∵∠BAG=∠BEO=90°,∴OC∥AG,∴∠C=∠GAC,∵∠GFA=∠OFC,∴△GAF∽△OCF,∴,∵,且GF+BF=2OG,∴OG=•GF,∵OF=OG﹣GF,∴OF=,∴=,如图3,连接OA,∵OA=OC,AG=2OE,∴==,∵tan∠CAE==x,∴CE=x•AE=OA+OE,∴AE=,Rt△AOE中,OA2=OE2+AE2,∴OA2=OE2+()2,即OA2=OE2+(OA2+2OA•OE+OE2),两边同时除以OA2,得:1=()2+(+1)2,设=a,则原方程变形为:a2+(a2+2a+1)﹣1=0,(1+)a2++﹣1=0,(a+1)[(1+)a+(﹣1)]=0,∴a1=﹣1(舍),a2=,∴=,∴=,∴y=﹣.5.(1)①证明:如图1,连接PC,∵A、P、B、C四点内接于⊙O,∴∠PAF=∠PBC,∵AP平分∠BAF,∴∠PAF=∠BAP,∵∠BAP=∠PCB,∴∠PCB=∠PBC,∴PB=PC,∴=,∴点P为的中点;②解:如图2,过P作PG⊥BC于G,交BC于G,交⊙O于H,连接OB,∴,∴PH是直径,∵∠BPC=∠BAC,∠BOG=∠BPG=∠BPC,∵OG⊥BC,∴BG=BC=3,Rt△BOG中,∵OB=5,∴sin∠BAC=sin∠BOG==;(2)解:如图3,过P作PG⊥BC于G,连接OC,由(1)知:PG过圆心O,且CG=3,OC=OP=5,∴OG=4,∴PG=4+5=9,∴PC===3,设∠APC=x,∵A是的中点,∴=,∴∠ABC=∠ABP=x,∵PB=PC,∴∠PCB=∠PBC=2x,△PCE中,∠PCB=∠CPE+∠E,∴∠E=2x﹣x=x=∠CPE,∴CE=PC=3;(3)解:如图4,过点C作CQ⊥AB于Q,∵∠ACE=∠P,∠CAE=∠PAF=∠PAB,∴△ACE∽△APB,∴,∴PA•AE=AC•AB,∵sin∠BAC=,∴CQ=AC•sin∠BAC=AC,=AB•CQ=,∴S△ABC,∴PA•AE=S△ABC∵△ABC为非锐角三角形,∴点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,Rt△ABC中,AB=10,BC=6,∴AC=8,此时PA•AE=×=80.6.(1)证明:连接OC,∵CD=BC,∴∠B=∠D,∵AC=AD,∴∠D=∠ACD,∴∠B=∠ACD,∵OA=OC,∴∠BAC=∠OCA,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∴∠ACD+∠OCA=90°,∴∠DCO=90°,∴OC⊥CD,∴CD是⊙O的切线;解:(2)i)连接OC,∵∠ACB=90°,AB=,sin B=,在Rt△ACB中,AC=AB•sin B,∴AC==1,在Rt△ACB中,BC===3,∵OB=CO,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D,∵∠CBO=∠DBC,∴△COB∽△DCB,∴,∴CB2=OB•BD,∵AB=,∴OA=OB=,∴BD=32×=,∴AD=BD﹣AB=;ii)连接CO,∵CD=2CE,设CE=k,∴CD=BC=2k,∴DE=3k,∵∠E=∠B,∠OCB=∠B=∠D,∴△DAE∽△COB,∴,设⊙O的半径为r,∴AD=r,∴BD=AD+AB=r+2r=r,∵△COB∽△DCB,∴,∴BC2=OB•BD,∴(2k)2=r×r,∴k=r,∴BC=2k=r,∴cos B=.7.解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°﹣60°﹣60°=60°=∠OAD,∴OA∥DF,∴∠F=180°﹣∠OAF=90°,∵∠DAF=30°,∴tan30°==,故答案为:;②∵⊙O的半径为4,∴AD=OA=4,DF=AD=2,∵∠AOD=60°,∴阴影部分的面积为:S梯形AODF ﹣S扇形OAD=•AF•(DF+OA)﹣=×(2+4)﹣π=6﹣π;故答案为:6﹣π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠FAO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵=,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中,∴△ADF≌△ADE(ASA),∴DF=DE=6,∵=,∴DC=9.8.(1)解:∵∠A=120°,∠B=50°,∠C=α,∴∠D=360°﹣120°﹣50°﹣α=190°﹣α,若∠A=∠B﹣∠D,则120°=50°﹣(190°﹣α),解得:α=260°(舍),若∠A=∠D﹣∠B,则120°=(190°﹣α)﹣50°,解得:a=20°,若∠B=∠A﹣∠C,则50°=120°﹣α,解得:α=70°,若∠B=∠C﹣∠A,则50°=α﹣120°,解得:α=170°,若∠C=∠B﹣∠D,则α=50°﹣(190°﹣α),无解,若∠C=∠D﹣∠B,则α=(190°﹣α)﹣50°,解得:α=70°,若∠D=∠A﹣∠C,则190°﹣α=120°﹣α,无解,若∠D=∠C﹣∠A,则190°﹣α=α﹣120°,解得:α=155°,综上,α的值是20°或70°或170°或155°(写一个即可),故答案为:20°或70°或170°或155°(写一个即可);(2)证明:如图1,设∠A=x,∠C=y,则∠B=180°﹣x﹣y,∵AE=DE,∴∠ADE=∠A=x,∴∠BDE=180°﹣x,在四边形DBCE中,∠B=180°﹣x﹣y=∠BDE﹣∠C,∴四边形DBCE为幸福四边形;(3)①证明:如图2,∵D、F、G、E四点都在⊙O上,∴∠ADE=∠FGE,∵∠ADE=∠A,∴∠FGE=∠A,∵∠FGE=∠ACF,∴∠A=∠ACF,∵BF=CF,∴∠B=∠BCF,∵∠A+∠B+∠BCA=180°,∴∠ACF+∠BCF=90°,即∠ACB=90°,∴EG是⊙O的直径;②如图3,过E作EH⊥AB于H,连接DG,∵BF=CF,∴∠B=∠BCF=∠BDG,∴BG=DG=7,∵EG是⊙O的直径,∴∠GDE=90°,∵DE=AE=1,∴EG==5,∵∠BGF﹣∠B=45°,∠BGF﹣∠BCF=∠CFG,∴∠CFG=∠CEG=45°,∴△ECG是等腰直角三角形,∴CE=CG=5,∴BC=7+5=12,AC=5+1=6,∴AB===6,∵∠AHE=∠ACB=90°,∠A=∠A,∴△AHE∽△ACB,∴,即,∴AH=,∵AE=DE,EH⊥AD,∴AD=2AH=,∴幸福四边形DBCE的周长=BD+ED+CE+BC=6﹣+1+5+12=18+.9.解:(1)∵AB和CD为⊙O的直径,AB⊥CD,∴,∴∠ACE=∠AFC,∵∠CAE=∠FAC,∴△ACE∽△AFC,∴,∴AC2=AE•AF,∵AC=CE,∴CE2=AE•AF;(2)∵AB⊥CD,∴∠AOC=90°,∵OA=OC,∴∠ACE=∠OAC=45°,∴∠AFC=∠AOC=45°,∵AC=CE,∴∠CAE=∠AEC=(180°﹣∠ACO)=67.5°,∴∠BAF=∠CAF﹣∠OAC=22.5°,∵∠AEC=∠AFC+∠DAF=45°+∠DCF=67.5°,∴∠DCF=22.5°,∴∠ACF=∠OCA+∠DAF=67.5°=3×22.5°=3∠BAF;(3)如图,过点G作GH⊥CF交AF于H,∴∠FGH=90°,∵∠AFC=45°,∴∠FHG=45°,∴HG=FG=2,∴FH=2,∵∠BAF=22.5°,∠FHG=45°,∴∠AGH=∠FHG﹣∠BAF=22.5°=∠BAF,∴AH=HG=2,∴AF=AH+FH=2+2,由(2)知,∠OAE=∠OCG,∵∠AOE=∠COG=90°,OA=OC,∴△AOE≌△COG(SAS),∴OE=OG,∠AEO=∠CGO,∴∠OEF=∠OGF,连接EG,∵OE=OG,∴∠OEG=∠OGE=45°,∴∠FEG=∠FGE,∴EF=FG=2,∴AE=AF﹣EF=2+2﹣2=2.10.证明:(1)∵CE⊥AB,∴∠D+∠DCE=90°,∵∠OCE=∠D,∴∠OCE+∠DCE=90°,∴∠OCD=90°,又∵OC是半径,∴CD是⊙O的切线;(2)∵∠OCF=90°,G为OF中点,∴CG=GF=OF,∴∠GCF=∠GFC,∵∠D+∠COD=90°=∠D+∠DCE,∴∠DCE=∠COE=∠CFG,又∵∠OCF=∠OCD=90°,∴△OCF∽△DCO,∴,∴OC2=CF•CD;(3)∵CF=DF,∴CD=2CF,∵OC2=CF•CD,∴4=CF×2CF,∴CF=,∴OF===,∴CG=.。

中考数学一轮复习 专题01 有理数(基础训练)(原卷版)

中考数学一轮复习 专题01 有理数(基础训练)(原卷版)

专题01 有理数【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-2.(2021·山东滨州市·中考真题)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .4 3.(2021·广西百色市·中考真题)﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .2021 4.(2021·广西桂林市·中考真题)有理数3,1,﹣2,4中,小于0的数是( ) A .3 B .1 C .﹣2 D .4 5.(2021·湖北荆门市·中考真题)2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 6.(2021·内蒙古呼和浩特市·中考真题)几种气体的液化温度(标准大气压)如表:A .氦气B .氮气C .氢气D .氧气 7.(2021·湖北襄阳市·中考真题)下列各数中最大的是( )A .3-B .2-C .0D .18.(2021·山东济宁市·中考真题)若盈余2万元记作2+万元,则2-万元表示( ) A .盈余2万元 B .亏损2万元 C .亏损2-万元 D .不盈余也不亏损 9.(2021·广东深圳市·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1 10.(2021·湖北鄂州市·中考真题)实数6的相反数等于( )A .6-B .6C .6±D .1611.(2021·湖北恩施土家族苗族自治州·中考真题)-6的相反数是( )A .-6B .6C .6±D .1612.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-,115 5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .4513.(2021·广东广州市·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-14.(2021·广东广州市·中考真题)下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-415.(2021·贵州安顺市·中考真题)如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --16.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)-- D17.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-18.(2021·河北中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<19.(2021·湖南邵阳市·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-20.(2021·河北中考真题)能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 21.(2021·四川达州市·中考真题)﹣23的相反数是( ) A .﹣32 B .﹣23 C .23 D .3222.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .223.(2021·安徽中考真题)9-的绝对值是( )A .9B .9-C .19D .19- 24.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-25.(2021·山东枣庄市·中考真题)如图,数轴上有三个点A﹣B﹣C ,若点A﹣B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4二、填空题 26.(2021·辽宁盘锦市·2________27.(2021·江苏常州市·中考真题)数轴上的点A 、B 分别表示3-、2,则点__________离原点的距离较近(填“A ”或“B ”).28.(2021·湖北随州市·()012021π+-=______.29.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 30.(2021·甘肃兰州市·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .三、解答题31.(2021·广西桂林市·中考真题)计算:|﹣3|+(﹣2)2.32.(2021·河北中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.33.(2021·西宁市教育科学研究院中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 34.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:﹣以上解题过程中,第二步是依据______________(运算律)进行变形的;﹣第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.35.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.。

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习圆的有关概念及性质知识精练基础题1. (2023江西)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A. 3B. 4C. 5D. 6第1题图2. (2023广东省卷)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()第2题图A. 20°B. 40°C. 50°D. 80°3. (2023广元)如图,AB是⊙O的直径,点C,D在⊙O上,连接CD,OD,A C.若∠BOD=124°,则∠ACD的度数是()A. 56°B. 33°C. 28°D. 23°第3题图4. (2023山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC =40°,则∠DBC的度数为()第4题图A. 40°B. 50°C. 60°D. 70°5. (2023安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A. 60°B. 54°C. 48°D. 36°第5题图6. (2023赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC =2∠COD,则∠CBD的度数是()第6题图A. 25°B. 30°C. 35°D. 40°7. [新考法—数学文化](2023岳阳)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合下图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是() A. 674寸 B. 25寸C. 24寸D. 7寸第7题图8. (2023杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()第8题图A. 23°B. 24°C. 25°D. 26°9. (2023广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37 m,拱高约为7 m,则赵州桥主桥拱半径R约为()第9题图A. 20 mB. 28 mC. 35 mD. 40 m10. (2023凉山州)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=()A. 1B. 2C. 2 3D. 4第10题图11. 如图,点A,B,D在⊙O上,CD垂直平分AB于点C.现测得AB=CD=16,则圆形宣传图标的半径为()第11题图A. 12B. 10C. 8D. 612. 如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是________;⊙O内一点D的坐标为(-2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是________.第12题图13. (2023武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BA C.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=5,求⊙O的半径.第13题图拔高题14. (2023吉林省卷)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A. 70°B. 105°C. 125°D. 155°第14题图15. 如图,正方形ABCD 内接于⊙O ,点E 为弧AB 的中点,连接DE 与AB 交于点F .若AB=1,记△ADF 的面积为S 1,△AEF 的面积为S 2,则S 1S 2的值为________.第15题图16. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C ,且点A 的坐标为(-2,0),D 为第一象限内⊙O 上的一点,若∠OCD =75°,则AD 的长为________.第16题图参考答案与解析1. D 【解析】本题考查了确定圆的条件及圆的有关定义及性质.∵过不在同一直线上的三个点一定能作一个圆,∴要经过题中所给的3个点画圆,除选定直线l 外的点P 外,再在直线l 上的A ,B ,C ,D 四个点中任选其中2个即可画圆.∵从A ,B ,C ,D 四个点中任选其中2个点的方法可以是AB ,AC ,AD ,BC ,BD ,CD ,共6种,∴最多可以画出圆的个数为6.2. B 【解析】∵AB 是⊙O 的直径,∠BAC =50°,∴∠ACB =90°,∠B =180°-50°-90°=40°.∵AC =AC ,∴∠D =∠B =40°.3. C 【解析】∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°. 4. B 【解析】∵BD 经过圆心O ,∴∠BCD =90°.∵∠BDC =∠BAC =40°,∴∠DBC =90°-∠BDC =50°.5. D 【解析】∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°5=108°,∠COD =360°5=72°,∴∠BAE -∠COD =108°-72°=36°. 6. A 【解析】∵∠BCD =105°,∴∠BAD =180°-105°=75°,∴∠BOD =150°.∵∠BOC=2∠COD ,∴∠COD =13 ∠BOD =50°,∴∠CBD =12∠COD =25°. 7. C 【解析】∵BD 是圆的直径,∴∠BCD =90°.∵BD =25,CD =7,∴在Rt △BCD 中,由勾股定理得,BC =252-72 =24(寸).8. D 【解析】如解图,连接OC ,∵∠ABC =19°,∴∠AOC =2∠ABC =38°.∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴∠BOC =90°-38°=52°,∴∠BAC =12∠BOC =26°.第8题解图9. B 【解析】如解图,在Rt △OAB 中,由勾股定理,得AO 2+AB 2=OB 2,即(R -7)2+(372)2=R 2,解得R ≈28(m).第9题解图10. B 【解析】如解图,连接OB ,设OA 交BC 于点E ,∵∠ADB =30°,∴∠AOB =60°.∵OA ⊥BC ,BC =23 ,∴BE =12 BC =3 .在Rt △BOE 中,sin ∠AOB =BE OB,∴sin 60°=3OB =32,∴OB =2,∴OC =2.第10题解图11. B 【解析】如解图,连接OA ,设圆形宣传图标的半径为R ,∵CD 垂直平分AB ,AB=CD =16,∴CD 过点O ,AC =BC =12 AB =12×16=8,∠DCA =90°.∵AO =OD =R ,∴在Rt △AOC 中,由勾股定理,得OC 2+AC 2=OA 2,即(16-R )2+82=R 2,解得R =10,即圆形宣传图标的半径为10.第11题解图 12. 552 ;552 -5 【解析】如解图,连接OB ,∵OC ⊥AB ,∴BC =12 AB =32.由勾股定理,得OC =OB 2-BC 2 =552.当OD ⊥AB 时,点D 到AB 的距离最小,由勾股定理,得OD =22+12 =5 ,∴点D 到AB 的距离的最小值为552 -5 .第12题解图13. (1)证明:由圆周角定理,得∠ACB =12 ∠AOB ,∠BAC =12∠BOC . ∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC ;(2)解:如解图,过点O 作半径OD ⊥AB 于点E ,连接BD .则∠DOB =12∠AOB ,AE =BE . ∵∠AOB =2∠BOC ,∴∠DOB =∠BOC .∴BD =BC .∵AB =4,BC =5 ,∴BE =2,DB =5 .在Rt △BDE 中,∵∠DEB =90°,∴DE =BD 2-BE 2 =1.在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52, 即⊙O 的半径是 52.第13题解图14. D 【解析】如解图,连接BC ,∵∠BAC =70°,∴∠BOC =2∠BAC =140°.∵OB =OC ,∴∠OBC =∠OCB =180°-140°2=20°.∵点P 为OB 上任意一点(点P 不与点B 重合),∴0°<∠OCP <20°.∵∠BPC =∠BOC +∠OCP =140°+∠OCP ,∴140°<∠BPC <160°,故选D.第14题解图15. 2(2 +1) 【解析】如解图,连接OE 交AB 于点G ,连接AC .根据垂径定理的推论,得OE ⊥AB ,AG =BG .由题意可得,AC 为⊙O 的直径,AC =2 ,则圆的半径是22.根据正方形的性质,得∠OAF =45°,∴OG =12 ,EG =2-12.∵OE ∥AD ,∴△ADF ∽△GEF ,∴FE FD =EG DA =2-12 .∵△ADF 与△AEF 等高,∴S 1S 2 =S △ADF S △AEF=DF EF =2(2 +1).第15题解图16. 23 【解析】如解图,连接OD ,BD .∵A (-2,0),∴OA =OB =2,∴AB =4.∵OC =OD ,∴∠OCD =∠ODC =75°,∴∠DOC =180°-2×75°=30°,∴∠DOB =90°-30°=60°,∴∠DAB =12∠DOB =30°.∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD =AB ·cos 30°=23 .第16题解图。

九年级数学中考复习第一轮复习基础训练三角函数(一)三角函数与解直角三角形 课时作业同步练习含答案解析

九年级数学中考复习第一轮复习基础训练三角函数(一)三角函数与解直角三角形 课时作业同步练习含答案解析

微专题8 三角函数(一)三角函数与解直角三角形考点1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED = .3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为 . 考点2 特殊角的三角函数值4.(1) sin 30°= ; cos 60°= ;tan 45"= ;(2)3sin 60"—2cos 30°—tan 60°= .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C = 度. 考点3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为 .7.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程队员乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则B,C 两地间的距离为 m .8.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A,C 两港之间的距离为 km.DOB AECAC ABCB第1题图第2题图第3题图30°30°B CC A CAB AB 第6题图 第7题图 第8题图9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. :C BC微专题8 三角函数(一)三角函数与解直角三角形考点精练精练1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( A ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED =255. 3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为104.精练2 特殊角的三角函数值4.(1) sin 30°=12; cos 60°=12;tan 45"= 1 ;(2)3sin 60"—2cos 30°—tan 60°= 32 .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C =105度. 精练3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为165.DOB AECAC ABCB第1题图第2题图第3题图30°30°BC CACABAB第6题图第7题图第8题图7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程队员乘坐热气球从C地出发垂直上升100m到达A处,在A处观察B地的俯角为30°,则B,C两地间的距离为.8.如图,一艘船由A港沿北偏东65°方向航行至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为(30+km.9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.解:设AD=x米,则BDx米.CD=AD=xx-x=100.解得:x=50.答:山高为(50)米.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. 解:(1)30°:(2)过点C作CD⊥AB于点D.则BD=CD=6.AD∴AB=AD-BD一6<8∴文化培PM不需要拆除.C B。

中考数学一轮复习专题训练:一元一次方程(附答案)

中考数学一轮复习专题训练:一元一次方程(附答案)

2020 年中考数学一轮复习专题训练:一元一次方程一.选择题(共 8 小题)1.以下四个式子中,是方程的是()A .3+2=5B .x= 1C. 2x﹣ 3< 022 D. a +2ab+b2.若对于 x 的方程 2x﹣( 2a﹣1) x+3=0 的解是 x=3,则 a=()A .1B .0C. 2D. 33.解是 x=2 的方程是()A .2( x﹣ 1)= 6B .C.D.4.以下等式变形正确的选项是()A .若﹣ 3x= 5,则 x=﹣B .若,则2x+3(x﹣1)=1C.若 5x﹣ 6=2x+8,则 5x+2x= 8+6D .若 3( x+1)﹣ 2x= 1,则 3x+3 ﹣2x= 15.在解方程 3x+5=﹣ 2x﹣ 1 的过程中,移项正确的选项是()A .3x﹣ 2x=﹣ 1+5B.﹣ 3x﹣ 2x= 5﹣ 1C. 3x+2x=﹣ 1﹣ 5D.﹣ 3x﹣ 2x=﹣ 1﹣ 56.解方程: 2﹣=﹣,去分母得()A .2﹣ 2 (2x﹣ 4)=﹣( x﹣ 7)B. 12﹣ 2 ( 2x﹣ 4)=﹣ x﹣7C. 2﹣( 2x﹣4)=﹣( x﹣ 7)D. 12﹣ 2 ( 2x﹣ 4)=﹣( x﹣ 7)7.有以下结论:①若 a+b+c= 0,则 abc≠ 0;②若 a( x﹣ 1)= b( x﹣ 1)有独一的解,则a≠b;③若 b=2a,则对于 x 的方程 ax+b= 0( a≠ 0)的解为 x=﹣;④若 a+b+c= 1,且 a≠ 0,则 x= 1 必定是方程 ax+b+c= 1 的解;此中结论正确的个数有()A.4 个B.3 个C.2 个D.1 个8.若对于x 的方程 |2x﹣3|+m= 0 无解, |3x﹣ 4|+n= 0 只有一个解, |4x﹣ 5|+k= 0 有两个解,A .m >n > kB .n > k > mC . k > m > nD . m > k > n二.填空题(共8 小题)9.比 a 的 3 倍大 5 的数等于 a 的 4 倍用等式表示为. 10.已知等式 5x m+2m =.+3= 0 是对于 x 的一元一次方程,则11.在 ① 2x ﹣ 1; ② 2x+1= 3x ; ③ |π﹣ 3|= π﹣ 3 ; ④ t+1 = 3 中,等式有,方程有.(填入式子的序号)12.已知 x =5 是方程 ax ﹣ 8= 20+a 的解,则 a = .13.小强在解方程时,不当心把一个数字用墨水污染成了x =1﹣ ,他翻阅了答案知道这个方程的解为 x = 1,于是他判断●应当是.14.已知代数式 与 互为相反数,则 x 的值是 .15.已知方程的解也是方程 |3x ﹣ 2|= b 的解,则b = .16.已知 x ﹣3y = 3,则 7+6y ﹣ 2x =.三.解答题(共 6 小题)17.解方程:( 1) 3x ﹣ 9= 6x ﹣1;( 2) x ﹣= 1﹣.18.若方程 3(x+1 )= 2+x 的解与对于 x 的方程 = 2( x+3)的解互为倒数,求 k 的值.19.已知对于 x 的方程( m+5) x|m|﹣4+18= 0 是一元一次方程.试求:( 1)m 的值;( 2)代数式 的值.20.依据题意设未知数,并列出方程(不用求解).( 1)有两个工程队,甲队人数30 名,乙队人数10 名,问如何调整两队的人数,才能使甲队的人数是乙队人数的7 倍.( 2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,假如比原计划多租1 条船,那么正好每条船坐 6 人;假如比原计划少租 1 条船,那么正好每条船坐9 人.问这个班共有多少名同学?21.我们规定:若对于 x 的一元一次方程ax= b 的解为 b+a,则称该方程为“和解方程” .比如:方程 2x=﹣ 4 的解为 x=﹣ 2,而﹣ 2=﹣ 4+2,则方程 2x=﹣ 4 为“和解方程”.请依据上述规定解答以下问题:( 1)已知对于x 的一元一次方程3x= m 是“和解方程” ,求 m 的值;( 2)已知对于x 的一元一次方程﹣2x= mn+n 是“和解方程” ,而且它的解是x=n,求 m,n 的值.22.先阅读以下解题过程,而后解答问题(1)、( 2)、( 3).例:解绝对值方程:|2x|= 1.解:议论:①当 x≥ 0 时,原方程可化为2x= 1,它的解是x=.②当 x<0 时,原方程可化为﹣2x= 1,它的解是x=﹣.∴原方程的解为x=和﹣.问题( 1):依例题的解法,方程|的解是;问题( 2):试试解绝对值方程:2|x﹣2|= 6;问题( 3):在理解绝对值方程解法的基础上,解方程:|x﹣ 2|+|x﹣ 1|= 5.参照答案一.选择题(共8 小题)1.【解答】解:A、不是方程,由于不含有未知数,故本选项错误;B、是方程, x 是未知数,式子又是等式,故本选项正确;C、不是方程,由于它是不等式而非等式,故本选项错误;D、不是方程,由于它不是等式,故本选项错误;应选: B.2.【解答】解:把x=3 代入方程获得:6﹣ 3( 2a﹣ 1) +3= 0解得: a= 2.应选: C.3.【解答】解:将x=2 分别代入题目中的四个选项得:A、 2( x﹣ 1)= 2( 2﹣ 1)= 2≠ 6,因此, A 错误;B.= +1=2= X=2,因此, B 正确;C.==,因此,C错误;D .==≠1﹣x=1﹣2=﹣1,因此D错误;应选: B.4.【解答】解: A、若﹣ 3x=5,则 x=﹣,错误,故本选项不切合题意;B、若,则2x+3(x﹣1)=6,错误,故本选项不切合题意;C、若 5x﹣ 6=2x+8,则 5x﹣ 2x= 8+6,错误,故本选项不切合题意;D 、若 3( x+1)﹣ 2x= 1,则 3x+3 ﹣2x= 1,正确,故本选项切合题意;应选: D.5.【解答】解:方程3x+5=﹣ 2x﹣ 1 移项得: 3x+2 x=﹣ 1﹣ 5.应选: C.6.【解答】解:去分母得:12﹣2( 2x﹣ 4)=﹣( x﹣ 7),应选: D.7.【解答】解:① 错误,当a=0, b= 1, c=﹣ 1 时, a+b+c=0+1 ﹣ 1=0,可是 abc= 0;②正确,方程整理得:( a﹣ b) x= a﹣b,③ 错误,由 a ≠ 0, b = 2a ,方程解得: x =﹣ =﹣ 2;④ 正确,把 x = 1,a+b+c = 1 代入方程左侧得: a+b+c = 1,右侧= 1,故若 a+b+c = 1,且 a ≠ 0,则 x = 1 必定是方程 ax+b+c = 1 的解,应选: C .8.【解答】解: ( 1)∵ |2x ﹣ 3|+m = 0 无解,∴ m > 0.( 2)∵ |3x ﹣ 4|+n = 0 有一个解,∴ n = 0.( 3)∵ |4x ﹣ 5|+k = 0 有两个解,∴ k < 0.∴ m > n > k .应选: A .二.填空题(共 8 小题)9.【解答】解:依据题意得: 3a+5 = 4a .故答案为: 3a+5= 4.10.【解答】解:由于 5x m+2+3= 0 是对于 x 的一元一次方程,因此 m+2= 1,解得 m =﹣ 1.故填:﹣ 1.11.【解答】解:等式有 ②③④ ,方程有 ②④ .故答案为: ②③④ ,②④ .12.【解答】解:把 x = 5 代入方程 ax ﹣ 8= 20+a得: 5a ﹣ 8= 20+a ,解得: a = 7.故答案为: 7.13.【解答】解:●用 a 表示,把 x = 1 代入方程得 1= 1﹣,解得: a = 1.故答案是: 1.514.【解答】解:∵代数式与x﹣3 互为相反数,∴﹣=x﹣3,解得 x=.故答案为:.15.【解答】解:2(x﹣ 2)= 20﹣ 5( x+3),2x﹣ 4=20﹣ 5x﹣ 15,7x= 9,解得: x=.把 x=代入方程|3x﹣2|=b得:|3×﹣2|=b,解得: b=.故答案为:.16.【解答】解:x﹣ 3y= 3,方程两边都乘以﹣2,得6y﹣ 2x=﹣ 6,方程两边都加7,得7+6y﹣ 2x=﹣ 6+7= 1,故答案为: 1.三.解答题(共 6 小题)17.【解答】解:( 1)移项归并得:3x=﹣ 8,解得: x=﹣;(2)去分母得: 4x﹣ x+1=4﹣ 6+2x,移项归并得: x=﹣ 3.18.【解答】解:解3( x+1)= 2+x,得 x=﹣,∵双方程的解互为倒数,∴将 x=﹣ 2 代入=2(x+3)得=2,解得 k=0.19.【解答】解:( 1)由题意得,|m|﹣ 4= 1, m+5≠ 0,解得, m= 5;(2)当 m=5 时,原方程化为 10x+18 =0,解得, x=﹣,∴==﹣.20.【解答】解:(1)设从乙队调x 人去甲队,则乙队此刻有10﹣ x 人,甲队有30+x 人,由题意得30+x= 7( 10﹣ x);(2)设这个班共有 x 名同学,由题意得﹣1= +1.21.【解答】解:( 1)∵方程3x= m 是和解方程,∴= m+3,解得: m=﹣.(2)∵对于 x 的一元一次方程﹣ 2x= mn+n 是“和解方程” ,而且它的解是 x= n,∴﹣ 2n= mn+n,且 mn+n﹣2= n,解得 m=﹣ 3, n=﹣.22.【解答】解:( 1) |x|= 2,①当 x≥0 时,原方程可化为x= 2,它的解是x= 4;②当 x<0 时,原方程可化为﹣x=2,它的解是x=﹣ 4;∴原方程的解为x= 4 和﹣ 4,故答案为: x= 4 和﹣ 4.(2) 2|x﹣ 2|= 6,①当 x﹣ 2≥ 0 时,原方程可化为2(x﹣ 2)= 6,它的解是x= 5;②当 x﹣ 2< 0 时,原方程可化为﹣2(x﹣ 2)= 6,它的解是x=﹣ 1;∴原方程的解为x= 5 和﹣ 1.( 3) |x﹣ 2|+|x﹣ 1|= 5,①当 x﹣ 2≥ 0,即 x≥ 2 时,原方程可化为x﹣ 2+x﹣ 1= 5,它的解是x= 4;②当 x﹣ 1≤ 0,即 x≤ 1 时,原方程可化为2﹣ x+1﹣ x= 5,它的解是x=﹣ 1;③当 1< x< 2 时,原方程可化为2﹣x+x﹣ 1= 5,此时方程无解;∴原方程的解为x= 4 和﹣ 1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

闫家河镇中学20XX 年中考数学第一轮复习专题训练一方程 (2010.10.14)知识点提要(一)1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式.⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1. 4.易错知识辨析:(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.(二)1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组.3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解. 5. 解二元一次方程的方法步骤: 二元一次方程组 方程.消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种. 6.易错知识辨析:消元转化(1)二元一次方程有无数个解,它的解是一组未知数的值;(2)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值; (3)利用加减法消元时,一定注意要各项系数的符号.(三)1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)x b ac =-≥.(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.易错知识辨析: (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.训练题一.填空题:1.22___)(_____6+=++x x x ⒎ 22____)(_____3-=+-x x x 22____)(_____+=++x x x ⒐ 22____)(_____-=+-x px x2.在选择方程082,0105,1,5)2)(1(42222=+=-=+=+-x x x y x x x ,12121,0432242+=+=+-x x x x x 中,应选一元二次方程的个数为-------------------( )A 3 个B 4 个C 5 个D 6 个 3、如果二次三项式226m x x +-是一个完全平方式,那么m 的值是_______________. 4、关于x 的方程03)3(7=+---x xm m 是一元二次方程,那么m =_______________.5、当n __________时,方程0)(2=+-n p x 有解,其解为_________________. 6、已知7532=++x x ,则代数式2932-+x x 的值为________________.7、解方程).51)(23()4)(32(x x x x --=+- 则它的根是 ; 8.如图,是一个正方形算法图,□里缺的数是____,并总结出规律:________________。

9、如图,四个一样大的小矩形拼成一个大矩形,如果大矩形的周长为 12cm ,那么小矩形的周长为____cm 。

10、一轮船从重庆到上海要 5 昼夜,而从上海到重庆要 7 昼夜,那么一个竹排从重庆顺流漂到上海要___昼夜。

11.如果方程2130m x-+=是一元一次方程,则m = .12.若5x -5的值与2x -9的值互为相反数,则x =_____. 13. 在方程yx 413-=5中,用含x 的代数式表示y 为y = ;当x =3时,y = . 14.如果x =3,y =2是方程326=+by x 的解,则b = . 15. 请写出一个适合方程13=-y x 的一组解: .16.若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a .17. 在方程3x +4y =16中,当x =3时,y =___;若x 、y 都是正整数,这个方程的解为_____. 方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 . 18.关于x 的一元二次方程1(3)(1)30n n xn x n +++-+=中,则一次项系数是 .19.一元二次方程2230x x --=的根是 .20.某地20XX 年外贸收入为2.5亿元,20XX 年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为 .21. 方程 (5x -2) (x -7)=9 (x -7)的解是_________. 22.已知2是关于x 的方程23x 2-2 a =0的一个解,则2a -1的值是_________. 23.关于y 的方程22320y py p +-=有一个根是2y =,则关于x 的方程23x p -=的解为_____.二.选择题1.下列方程中,属于一元一次方程的是( )A 、x =y +1B 、1x=1 C 、x 2=x -1 D 、x =12、已知 3-x +2y =0,则 2x -4y -3 的值为( )A 、-3B 、3C 、1D 、03、若方程02=++n mx x 中有一个根为零,另一个根非零,则n m ,的值为---------( )(A ) 0,0==n m (B ) 0,0≠=n m (C ) 0,0=≠n m (D ) 0≠mn 4、方程0232=+-x x 的最小一个根的负倒数是-------------------------------( )(A ) 1 (B ) 2 (C ) 21 (D ) 45.下列方程中是一元二次方程的有( )①9 x 2=7 x ②32y=8 ③ 3y(y-1)=y(3y+1) ④ x 2-2y+6=0⑤ 2( x 2+1)=10 ⑥24x-x-1=0 A . ①②③ B. ①③⑤ C. ①②⑤ D. ⑥①⑤6. 一元二次方程(4x +1)(2x -3)=5x 2+1化成一般形式ax 2+bx +c =0(a ≠0)后a,b,c 的值为A .3,-10,-4 B. 3,-12,-2 C. 8,-10,-2 D. 8,-12,4 7.一元二次方程2x 2-(m +1)x +1=x (x -1) 化成一般形式后二次项的系数为1,一次项的系数为-1,则m 的值为( )A. -1B. 1C. -2D. 2 8. 如果x y y x b a b a 2427773-+-和是同类项,则x 、y 的值是( )A.x =-3,y =2B.x =2,y =-3C.x =-2,y =3D.x =3,y =-29. 下列方程组中,是二元一次方程组的是( )A .⎪⎩⎪⎨⎧=+=+9114y x y x B .⎩⎨⎧=+=+75z y y x C .⎩⎨⎧=-=6231y x x D .⎩⎨⎧=-=-1y x xy y x10. 关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m =( )A .2B .-1C .1D .-211.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p =( ) A .4 B .0或2C .1D .1-三.解答题1.解方程(1)()()() 3175301x x x --+=+; (2)21101136x x ++-=.2 当m 取什么整数时,关于x 的方程1514()2323mx x -=-的解是正整数?3.苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租; ②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益; ④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益; (1) 若租用水面 亩,则年租金共需__________元; (2) 水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本); (3) 李大爷现在奖金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合养殖.已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元?4. 解下列方程组:(1){4519323a b a b +=--= (2){2207441x y x y ++=-=-5.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? (2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?6. 若方程组{31x y x y +=-=与方程组{84mx ny mx ny +=-=的解相同,求m 、n 的值.7.解方程组:①⎩⎨⎧=-=+1392x y y x ②⎪⎩⎪⎨⎧=---=+1213343144y x y x8. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?9. 某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元. ① 求该同学看中的随身听和书包单价各是多少元?② 某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?10. 已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.12.用22长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?13. 如果方程①062=--bx ax 与方程②01522=-+bx ax 有一个公共根是3,求a ,b 的值,并求方程的另一个根.14、已知053)23(6522=+++-+-x x m m m m ,是关于x 的二次方程,求m 的值.17、已知方程06854234=+--+x x x x 有两根和为零,解这个方程.。

相关文档
最新文档