3室内声场与音质

合集下载

室内声场的组成

室内声场的组成

室内声场的组成1. 引言室内声场是指在室内环境中的声音分布和声音品质等特征。

一个好的室内声场可以提供良好的听觉享受,对于音乐会厅、剧院、会议厅、录音棚等场所尤为重要。

本文将介绍室内声场的组成,并深入探讨各种因素对室内声场的影响。

2. 室内声学基础知识在了解室内声场的组成之前,我们首先需要了解一些室内声学基础知识。

声音是通过空气中的震动传播的,而室内空间的结构、形状和材质会对声音的传播产生影响。

以下是一些基本的概念:2.1 回声回声指的是声音在空间中反射多次后形成的重复声音。

回声会导致声音混响时间增加,影响声音的清晰度和可听性。

2.2 吸声吸声是指材料吸收声波能量的能力。

吸声材料可以减少回声,提高声音的清晰度。

2.3 演化声音在室内空间中传播时会经历多次反射、漫射和衰减,这些过程被称为声场的演化。

不同的演化过程会对声音的品质产生影响。

3. 室内声场的组成室内声场的组成涉及多个因素,包括空间形状、尺寸、材料、声源位置等。

以下是各个因素的详细介绍:3.1 空间形状和尺寸空间形状和尺寸对声场的分布和反射产生显著影响。

不同的形状和尺寸会导致不同的声学效果。

例如,狭长的空间会产生严重的回声,而高大的空间则可能导致声音分散。

3.2 声学材料室内的墙壁、地板、天花板和家具等材料会影响声音的传播和吸收。

吸声材料可以减少回声,提高声音的清晰度和可听性。

常见的吸声材料包括吸声板、吸声瓷砖等。

3.3 声源位置声源的位置会对声场产生显著影响。

声源离听众越近,声音越直接、清晰,而声源离听众越远,声音则会衰减和分散。

3.4 演讲台设计在一些会议厅和讲堂等场所,演讲台的设计也是室内声场的重要组成部分。

演讲台的位置应该合理,以便演讲者的声音能够传播到整个场所,并保持清晰和高可听性。

3.5 音频系统音频系统包括扬声器、放大器和混音器等设备。

合适的音频系统可以增强声音的质量和可听性。

不同类型的场所需要使用不同类型的音频系统来满足其特定的声音需求。

室内音质的评价标准

室内音质的评价标准

雏绿头野鸭副伤寒继发白色念珠菌病诊治发病情况 2019年6月26日,黑龙江省伊春市境内某林业局一林业经营所,王某从外地购入雏绿头野鸭1000只。

已接种小鸭瘟疫苗,采取地面上铺垫草平养。

到7月11日,即雏鸭15日龄时开始发病,当天死亡18只,次日死亡54只,而后死亡逐日增多,到第5天死亡125只,死亡率为12.5%。

病雏鸭表现下痢、脐部肿大、呼吸困难、气喘等,发病急,死亡率高。

养鸭户王某将死亡雏鸭送往兽医诊所,诊断为腹泻,购买了一些抗菌药物如氟哌酸、土霉素、环丙沙星等,治疗3d仍然不见效。

随后前来我处就诊,根据发病情况、临床症状、病理解剖及实验室检查,诊断为雏绿头野鸭副伤寒继发白色念珠菌病。

经过采取综合治疗,病情很快得到控制。

临床症状病雏鸭精神萎顿,羽毛松乱无光泽,两翅下垂,缩颈呆立,食欲减少或不食,饮欲增加,眼、鼻流有清水样分泌物。

下痢,排出有腥臭味的稀便,泄殖腔周围绒毛有尿酸盐附着,腹部膨大,触诊较硬,卵黄吸收不全,脐部红肿。

不愿活动,常群集一起。

呼吸急促,频频伸颈张口,呈喘气状,时而发出咕噜声,叫声嘶哑,震颤,角弓反张,濒死时抽搐。

病理变化病死雏鸭卵黄吸收不全,脐炎,卵黄粘稠、色深;肝有淤血、肿胀,有的表面有针尖大小灰白色坏死灶,呈青铜色;口、鼻腔有分泌物,口、咽、食道粘膜增厚,形成白色或灰白色伪膜或溃疡状斑并常波及腺胃;胸、腹气囊浑浊,常有粟粒状结节;盲肠肿胀,呈斑驳状,内有干酪样的团块;直肠和小肠后段亦有肿胀呈斑驳状;气囊常附有黄色纤维素团块;也有的出现心包炎、心肌炎;脾脏肿大显著,色暗淡,呈斑驳状;皮下、胸肌、心内外膜、肾脏广泛出血;胆囊肿大,胆汁浓稠呈黑绿色。

沙门氏菌检查①涂片镜检:无菌采取病死雏鸭的血液、肝、脾涂片、染色、镜检,可见到散在、革兰氏阴性短杆菌;②细菌培养与分离:无菌采取濒死雏鸭和死亡雏鸭心血、肝组织,直接划线于普通平板、鲜血平板和S.S.琼脂培养基上,另将心血接种于普通肉汤,均置于37℃恒温箱中培养24h,再取肉汤培养物划线于S.S.琼脂培养,观察其菌落生长形态。

3室内声场与音质

3室内声场与音质
室内驻波不仅可以发生在矩形房间的X、Y、Z三个轴向(如图
4-2中的“1”,即为X向驻波),还可以发生在X-Y、X-Z或Y-Z 三个平面内(如图4-2中的“2”),也可以发生在空间的其它 方向(如图4-2中“3”)。“l”称为轴向驻波,“2”称为切向 驻波,“3”称为斜向驻波。
一、室内声场的基本特征
室内声能密度从0到稳定值4W/cA的过程称为室内声场 的建立与稳定过程。
室内声能密度从稳定值4W/cA逐渐衰减为0的过程称为 室内声场的衰减过程。
图4-3描述了上述室内声场的这种建立、稳定和衰减过 程。图中,a、b、c三条曲线分别表示大小、形状相同 ,但室内界面吸声量不同的三个房间的上述过程。其 中曲线a所表示的房间吸声量最小,而曲线c所表示的房 间吸声量最大。
第一节 室内声场
二、室内声场分布
概念:室内声场分布,是指固定而稳定的声源发声后,其 声能密度也在室内空间的分布。
(一)房间常数 R
房间常数是房间吸声能力以及混响声声能密度的反映
根据相关原理可导出右图公式: e 4W
c( S ) 1
式中,e为声能密度,W为声功率,
设 R S ,上式即为e 4W
(三)最佳混响时间
1.最佳混响时间概念:对于不同用途的的声室,不同的 音质设汁,应有不同容积的室空间。在此容积下,有 某一段混响时间范围,其间声效果最好。最佳混响时 间通常取500~1000Hz作为标准。
图4-9为录音室和演播室的推荐容积和混响时间; 录音室:35~120m3;混响时间0.15~0.4s; 音乐演播室:250~10000m3;混响时间0.9~1.5s。
第一节 室内声场
二、混响和混响时间
(二)混响时间的计算 通常,在声场均匀分布的封闭室内的混响时间可用著名 的赛宾(W.C.Sabine)公式进行工程估算 :

室内声场的驻波表现及其对音质的影响

室内声场的驻波表现及其对音质的影响

室内声场的驻波表现及其对音质的影响陈小平【摘要】在简述室内声场驻波表现和规律的基础上,介绍了评估房间共振模式形态好坏的博内罗(Bonello)准则,并从模式效应角度介绍了房间典型频率特性及其截止频率和临界频率的计算方法,最后介绍了这些基本理论在控制房间音质方面的应用.【期刊名称】《电声技术》【年(卷),期】2015(039)005【总页数】5页(P1-5)【关键词】简正频率;简正驻波;共振模式;Bonello准则;房间频率特性【作者】陈小平【作者单位】中国传媒大学音乐与录音艺术学院,北京100024【正文语种】中文【中图分类】TU112室内声场有两种基本分析方法。

一是利用几何声学分析处理室内声场,这种分析方法将声波视同光线一样向各方向直线传播,遇到界面将产生反射,且满足反射定律,即入射角等于反射角。

在几何声学中,通常用统计学方法进行室内声场的分析计算,因此也称为统计声学。

几何声学忽略了声波的波动特性,具有直观简便的优点,通常用来分析计算室内声场的平均特性,如混响时间、室内稳态声压级等,其适用条件是工作频率高、房间尺寸大,即满足扩散声场的前提条件。

另一种是用波动声学法分析处理室内声场,即通过求解带边界条件的波动方程来分析室内声场特性,因此它保留了声波的波动特性,具有普遍适用的特点,但数学计算较复杂,尤其对实际房间更是如此。

本文讨论的室内声场驻波模式就是利用波动声学法计算的结果。

当房间不满足几何声学分析条件时,例如,房间小且工作频率较低,或房间角落的声学特性,就无法用几何声学进行精确分析,这时必须借助波动声学法。

驻波是由相向而行的两列相同频率的行波叠加而形成的。

在一个有边界的空间如房间,由于墙面对声波的反射作用,室内声场将主要以驻波形式存在。

那么,室内驻波究竟以什么形态存在?室内驻波模式频率如何计算?2.1 简正频率和简正模式在室内声学理论中,通常以矩形刚性壁房间为特例进行分析,然后把结论推广到一般房间。

建筑声学-11室内声学与厅堂音质设计

建筑声学-11室内声学与厅堂音质设计
原来方向前进。 ▪ 把声波的传播看做沿声线传播的声能,而忽略声波的波动性能。
4
几何声学方法: 适用条件:反射面或障碍物的尺寸要远大于声波的波长。 ——中高频声音、房间尺度较大。 ——对于低频声,如63~125Hz,波长为5.4m~2.7m。因此,在一个各个表
面尺寸均小于声波波长的小房间内,几何反射定律将不适用。
▪ P376 表17-1
27
二、客观技术指标 2.频率特性 ▪ 为了使音乐各声部和语音的低、中、高频的分量平衡,使音色不失
真,还必须照顾到低、中、高频声能之间的比例关系。 ▪ 由于人耳对低频声的宽容度较大,同时厅堂内界面和观众衣饰对中
高频的声能吸收较大,所以允许低频混响时间有15%-45%的提升。 ▪ 对于不同厅堂有不同具体要求。(录音室——以平直为主)
i 1
i 1
V T60 0.161 A
13
▪ 工程中普遍采用伊林(Erying)公式 ▪ 伊林公式在赛宾公式的基础上考虑了空气吸收的影响。
T60
-
S
0.161V
ln(1 ) 4 m V
▪ 空气吸声与声音频率有关,频率越高,空气吸声系数(4m)越大;频 率小于1000Hz时,4mV一项可省去。
25
4.优美的音质 ▪ 对于音乐声来说,除了听得见、听得清这些基本要求外,室内音质
设计还需要给听众提供听得舒服的环境。因此,为了让室内声音具 有优美的音质,还需要注意以下两方面: 1)足够的丰满度。丰满度的含意有:声音饱满、圆润,音色浑厚、温 暖,余音悠扬、有弹性。总之,它可以定义为声源在室内发声与在 露天发声相比较,在音质上的提高程度。(反射声:温暖or活跃) 2)良好的空间感。是指室内声场给听者提供的一种声音在室内的空间 传播感觉。其中包括听者对声源方向的判断(方向感),距声源远 近的判断(距离感)和对属于室内声场的空间感觉(环绕感、围绕 感)。

三室内声场

三室内声场

YOUR SITE HERE
室内声场的统计分析
LOGO
从以上分析可知,除声源发出的直达声外,还存在着大量反射 声。这些反射声在到达边界面并经过每次反射之前,均有一段自由传 播的路程,称为自由程。经过这一自由程后,声波就要反射一次,而 每次反射,因边界面的吸收就要损失一部分能量。在声源不断发声的 情况下,损失的这部分能量将不断获得补充,直至声场达到稳态。一 旦声源停止发声,虽然损失的能量得不到补充,但室内的声音并不会 马上消失。这是很显然的,因为这时直达声虽然没有了,但反射声继 续存在,这些反射声是由声源停止发声之前的直达声形成的,它不因 声源停止发声而立即消失,而是按照原有的规律——每反射一次损失 部分能量,持续进行下去,其声能不断减小,直至全部丧失殆尽。这 时由于不再有新的反射声产生,因而封闭空间中的总声级也就逐渐降 低,直至最后消失。这种在声源停止发声后仍然存在的声延续现象称 为混响。混响的概念在封闭空间声场的统计研究中具有特殊的意义, 它对室内的听闻条件有着重大的影响。
YOUR SITE HERE
声波在室内的传播
LOGO 直达声、近次反射声和混响声 直达声:声源直接到达接受点的声音。 近次反射声:相对直达声延时小雨50ms的反射声。 混响声:延时超过50ms以后到达接受点的多重反射声。
YOUR SITE HERE
声波在室内的传播
LOGO
室内声场的几何图解
几何声学是一门运用“声线”的概念研究声学问题的 学科,采用声线研究分析室内声场,主要了解声波在室内 经各反射面反射后的反射声分布情况。它的理论基础就是 惠更斯原理。
YOUR SITE HERE
室内声场的几何图解
LOGO 凸面的反射 条件:q<0 反射结果: 效果

室内声场的驻波表现及其对音质的影响

室内声场的驻波表现及其对音质的影响

1 引 言
室 内声场 有两种 基 本分 析方 法 。一是 利 用几 何
而形成 的 。在一个有 边界 的空 间如房 间 , 由于墙 面对
声波 的反 射作 用 , 室 内声 场将 主要 以驻 波形 式存 在 。 那么 , 室 内驻 波究竟 以什么形态存 在?室 内驻 波模 式 频率如何计 算 ?
■一 技■
。 f o g^口l 4●● “
声 频 工 程
国凹 6 ⑥ 匡 6 闶@@ 6 响
室 内声 场 的驻 波 表 现 及 其 对 音 质 的影 响 ・ 论 文 ・
陈 小平
( 中 国传 媒 大 学
音 乐与 录 音 艺 术 学 院 , 北京
1 0 0 0 2 4 )
能量损 失 ) , 通 过 求 解 带边 界 条 件 的波 动 方 程 后 , 得 到室 内声 压的表达式 为 _ l
【 K e y w o r d s 】 m o d a l f e q u e n c i e s n o r m a l s t a n d i n g w a v e s r e s o n a n c e m o d e s B o n e l l o c r i t e r i a r o o m f r e q u e n c y r e s p o n s e
【 摘
要】在筒述室 内声场驻波表 现和规律 的基础上 , 介绍 了评估房 间共振模 式形 态好 坏的博 内罗( B o n e l l o ) 准则 ,
并从模 式效应角度介绍 了房 间典型频率特性及 其截 止频率和临界频率 的计算方 法, 最后介 绍 了这 些基本理论在 控
制 房 间 音质 方 面 的应 用 。

在室 内声学理论 中 , 通常 以矩形 刚性壁房 间为特 例进行 分析 , 然后把 结论推广 到一般房 间。设 矩形 刚

室内音质设计

室内音质设计
3
厦 门 大 学 嘉 庚 学 院 史 维
建 筑 物 理 环 境
室 内 音 质 设 计
1.2客观标准
A 声压级 一般语言和音乐都有较宽的频带范围,声音的响度级大体上与经过A特性计权的dB(A)声级相 对应。
B混响时间 对清晰度、丰满度、明亮度有影响; 混响时间适当,可保证各声部间平衡; 混响时间的频率特性与主观评价中质的因素有关,如温暖对应低频混响,华丽对应高频混响。 C反射声音的时间分布 对响度的影响:50ms以内的反射声起到加强直达声的作用,其数量越多,响度增大越明显; 对清晰度的影响:50ms内声能比重越大越清晰; 对丰满度的影响:缺乏早期反射声,使直达声与混响声脱节,感觉声音断续、飘浮,干涩; 使低频RT较中高频RT长,可增加声音的丰满度和温暖感,反之则增加明亮感; 对亲切感的影响:20ms左右的早期反射声的多少决定了亲切感; D反射声音的空间分布 对亲切感的影响:来自前方的近次反射声有加强作用; 对围绕感的影响:来自侧面的近次反射声有加强作用;
建 筑 物 理 环 境
19
室 内 音 质 设 计
3.1.2扬声器的布置方式与建筑处理 A 布置要求 使全部观众席上的声压分布均匀 多数观众席上的声源方向感良好 控制声反馈和避免产生回声干扰 B 布置方式 •集中式 在观众席的前方或前上方(一般是在台口上部或两侧)设置有适当指向性的扬声器或扬声器组合 (一般是声柱或扬声器组合,在音质要求不高的厅中也可以是喇叭式扬声器),将扬声器的主轴 指向观众席的中、后部。常用于剧场、礼堂及体育馆。 优点:方向感好,观众的听觉与视觉一致,射向天花、墙面的声能较少,直达声强,清晰度高。
厦 门 大 学 嘉 庚 学 院 史 维
建 筑 物 理 环 境
13
室 内 音 质 设 计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)简正方式和简正频率
概念:声波在互相平行的一对刚性界面之间传播时,如果距 离为半波长的整数倍(L=n•λ/2),就会产生共振(形成驻波 )。相应的频率称简正频率(或固有频率、共振频率),相 应的驻波传播方式称简正振动方式,或简正方式 。
室内驻波不仅可以发生在矩形房间的X、Y、Z三个轴向(如图
1
第一节 室内声场
2
第二节 室内音质评价
3
第三节 室内音质的改善
第四节 吸声与隔声材料的结构与机理
一、室内声场的基本特征
概念:室内声场是指声源辐射的声波在封闭的室内空间传播时所形 成的声场。 (一)室内声的组成 对室内的脉冲声源辐射的一个脉冲声,室内听音者首先听到的应是
直达声; 接着是从最近的反射面(地面、墙壁、天花板等)反射过来的“第
由于室的周边界面对声的反射作用,当室内声源停止发声后 ,室内声并不立即停止,而是继续持续一段时间,这种声的 残响现象通常称之为混响。
由于室形状的复杂性或线度比例失当,声波在室内传播时, 还有可能产生回声、聚焦、蛙鸣以及前面已提及的声染色等 特异声现象。
二、混响和混响时间
(一)室内声场的建立、稳定和衰减
赛宾公式:
0.161V
T60
S
T60—闭室的混响时间(s); S—室内表面总面积(m2),包括地面、墙面和天花板;
—墙壁、天花板、地板等房间内表面的平均吸声系数; V—闭室的容积。
第一节 室内声场
二、混响和混响时间
(二)混响时间的计算 艾润公式
式中,若 ——〉1时,则T60——〉0,这和理论结果 是一致的,艾润公式克服了赛宾公式的局限性。
4-2中的“1”,即为X向驻波),还可以发生在X-Y、X-Z或Y-Z 三个平面内(如图4-2中的“2”),也可以发生在空间的其它 方向(如图4-2中“3”)。“l”称为轴向驻波,“2”称为切向 驻波,“3”称为斜向驻波。
一、室内声场的基本特征
(三)室内声场的基本特征
如果室内声源辐射的是连续稳定声波,那么在室内各受音点 接受到的声压值也是稳定的,但由于反射声对直达声迭加的 结果,声压随声源距的衰减没有象室外声场那样明显。
1
cR
第一节 室内声场
二、室内声场分布
(二)混响半径
混响半径 当直达声场与混响声场的声能相等时,受声
点到声源的距离r称为混响半径rc 。
设室内一点声源,声功率为W,距声源r处的直达声声密
度 ed W / 4r 2c ;另一方面该声源又建立起的混响声
能密度 e 4W / cR 与r无关。
W 4W
当 <<1时,-ln(1— )约等于 ,这和赛宾公 式就一样了。
第一节 室内声场
二、混响和混响时间
(三)混响时间的频率特性 由于室内各界面材料或界面结构对不同频率的吸声系 数不一样,因此,对不同的频率的声波,房间的混响 的时间也不一样。这一特性称为混响时间的频率特性 ,或叫做T60频谱。 一般情况下,如无特别说明,一个房间的混响时间是 指500Hz声波的混响时间。
指向因子Q:自由声场(无反射声的声场,此时,声源
周围无反射界面、或反射面a值均等于1)中,声源在
某方向上某点产生的声强Id与相同声功率无指向性声源 在该方向该点产生的声强Id0的比值为:
测量方法:P41
Q Id I d0
第一节 室内声场
第一节 室内声场
二、室内声场分布
概念:室内声场分布,是指固定而稳定的声源发声后,其 声能密度也在室内空间的分布。
(一)房间常数 R
房间常数是房间吸声能力以及混响声声能密度的反映
根据相关原理可导出右图公式: e 4W
c( S ) 1
式中,e为声能密度,W为声功率,
设 R S ,上式即为e 4W
第一节 室内声场
二、混响和混响时间
(二)混响时间的计算 混响时间的定义:通常,我们定义Lp衰减60(dB)的时 间为混响时间。记为T60。
T60=(Tb—Ta)×60/(Lpa—Lpb)
(1)T60 与房间内的声源声功率无关。 (2)左图中曲线上端为稳态时测点声压 级,下端为背景声压级,直线ab为衰减 过程。
第一节 室内声场
二、混响和混响时间
(二)混响时间的计算 通常,在声场均匀分布的封闭室内的混响时间可用著名 的赛宾(W.C.Sabine)公式进行工程估算 :
T60—闭室的混响时间(s); S—室内表面总面积(m2),包括地面、墙面和天花板; —墙壁、天花板、地板等房间内表面的平均吸声系数; V—闭室的容积。
室内驻波不仅可以发生在矩形房间的X、Y、Z三个轴向(如图
4-2中的“1”,即为X向驻波),还可以发生在X-Y、X-Z或Y-Z 三个平面内(如图4-2中的“2”),也可以发生在空间的其它 方向(如图4-2中“3”)。“l”称为轴向驻波,“2”称为切向 驻波,“3”称为斜向驻波。
一、室内声场的基本特征
取某一半径rc,使得该点ed=e,即:
4rc2c
cR
解得
rc
1 4
R
或 rc 0.14
R
混响半径
rc 0.14 R
当r小于rc时,直达声占主要成分。 当r大于rc时,混响声占主要成分。
(三)声源指向因子
混响半径 的计算,是采用点声源(无指向性声源) 。
电声系统所涉及的声源常具有指向性的声源。
室内声能密度从0到稳定值4W/cA的过程称为室内声场 的建立与稳定过程。
室内声能密度从稳定值4W/cA逐渐衰减为0的过程称为 室内声场的衰减过程。
图4-3描述了上述室内声场的这种建立、稳定和衰减过 程。图中,a、b、c三条曲线分别表示大小、形状相同 ,但室内界面吸声量不同的三个房间的上述过程。其 中曲线a所表示的房间吸声量最小,而曲线c所表示的房 间吸声量最大。
一反射声”。 紧接第—反射声后是从次近反射面反射过来的第二反射声,以及其
后的第三、第四等前期反射声。 再以后则是人单无法区分开的众多反射面、众多反射次数的众多反
射声的叠加….。
一、室内声场的基本特征
(二)简正方式和简正频率
概念:声波在互相平行的一对刚性界面之间传播时,如果距 离为半波长的整数倍(L=n•λ/2),就会产生共振(形成驻波 )。相应的频率称简正频率(或固有频率、共振频率),相 应的驻波传播方式称简正振动方式,或简正方式 。
相关文档
最新文档