推荐中考数学压轴题专项汇编:专题19中点模型
推荐中考数学压轴题专项汇编:专题19中点模型

推荐中考数学压轴题专项汇编:专题19中点模型专题19 中点模型破解策略1.倍长中线在△ABC中.M为BC边的中点.图1 图2(1)如图1,连结AM并延长至点F,使得ME=AM.连结CE.则△ABM≌△ECM.(2)如图2,点D在AB边上,连结DM并延长至点E.使得MF =DM.连结CE,则△BDM≌△CEM,遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.2.构造中位线在△ABC中.D为AB边的中点,图1 图2(1)如图1,取AC边的中点E,连结DE.则DE∥BC,且DF=B C.(2)如图2.延长BC至点F.使得CF=B C.连结CD,AF.则DC∥AF,且DC=AE.三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线,3.等腰三角形“三线合一”如图,在△ABC中,若AB=A C.通常取底边BC的中点D.则AD⊥BC,且AD平分∠BA C.事实上,在△ABC中:①AB=AC;②AD平分∠BAC;③BD=CD,④AD⊥B C.对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.4.直角三角形斜边中线如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=AC.反过来,在△ABC中,点D在AC边上,若BD=AD=CD=AC,则有∠ABC=900例题讲解例1 如图,在四边形ABCD中,E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连结AG、BG、CG且∠AGD=∠BGC,若AD、BC所在直线互相垂直,求的值解由题意可得△AGB和△DGC为共顶点等顶角的两个等腰三角形,所以△AGD≌△BGC,△AGD∽△EGF.方法一:如图1,连结CE并延长到H,使EH=EC,连EH、AH,则AH∥BC,AH=BC,而AD=BC,AD⊥BC所以AD=AH,AD⊥AH,连结DH,则△ADH为等腰直角三角形,又因为E、F分别为CH、CD的中点,所以。
中点四大模型-【压轴必刷】中考数学压轴大题之经典模型(解析版)

中点四大模型解题策略模型1倍长中线或类中线(与中点有关的线段)构造全等三角形模型分析如图1,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS )如图2,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS )模型2已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到:“边等、角等、三线合一”.图1AABCD EB CD倍长中线ABCDEF ABCDF 倍长类中线构造全等图2ABCDABCD连接中线模型3已知三角形一边的中点,可考虑中位线定理模型分析:在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理:DE ∥BC ,且DE =12BC 来解题,中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型4已知直角三角形斜边中点,可以考虑构造斜边中线模型分析:在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12BC ,来证明线段间的数量关系,而且可以得到两个等腰三角形;△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用。
A BCD A BC D E 取另一边中点构造中位线ABCDABCD构造直角三角形斜边上的中线经典例题【例1】(2022·江苏·南通市通州区育才中学八年级阶段练习)已知,在△ABC中,∠ACB=90°,AC= BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)如图1,求证:AD=CE;(2)如图2,点O为AB的中点,连接OD,OE.请判断△ODE的形状?并说明理由.【答案】(1)见解析(2)△DOE等腰直角三角形,理由见解析【分析】(1)根据垂直的定义及直角三角形中两个锐角互余得出∠EBC=∠DCA,再由全等三角形的判定和性质即可证明;(2)连接OC,根据等腰直角三角形的性质及斜边上的中线的性质得出AO=BO=CO,∠CAB=∠CBA=45°,CO⊥AB,再由全等三角形的判定得出△DCO≌△EBO(SAS),△ADO≌△CEO,最后结合图形证明即可.【详解】(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,∠E=∠D,∠EBC=∠DCA,BC=AC,∴△CEB≌△ADC(AAS),∴AD=CE.(2)△DOE等腰直角三角形,理由如下:连接OC,如图所示:∵AC=BC,∠ACB=90°,点O是AB中点,∴AO=BO=CO,∠CAB=∠CBA=45°,CO⊥AB,∴∠AOC=∠BOC=∠ADC=∠BEC=90°,∵∠BOC+∠BEC+∠ECO+∠EBO=360°,∴∠EBO +∠ECO =180°,且∠DCO +∠ECO =180°,∴∠DCO =∠EBO ,且DC =BE ,CO =BO ,∴△DCO ≌△EBO (SAS ),∴EO =DO ,∠EOB =∠DOC ,同理可证:△ADO ≌△CEO ,∴∠AOD =∠COE ,∠AOD +∠DOC =90°,∴∠DOC +∠COE =90°,∴∠DOE =90°,且DO =OE ,∴△DOE 是等腰直角三角形.【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的判定和性质,直角三角形斜边上的中线的性质等,理解题意,综合运用这些知识点是解题关键.【例2】(2022·重庆市合川中学九年级阶段练习)在△ABC 中,∠ABC =45°,D 为BC 上一动点.(1)如图1,当∠ADC =75°时,若AB =3+3,求AD 的长;(2)如图2,当AC =AD 时,点P 为AB 的中点,且AB =2CD ,求证:AC =PC ;(3)如图3,在(2)的条件下,将△BCP 绕点P 旋转180°,得到△AC P ,连接DC ,直接写出CC 'C 'D的值.【答案】(1)AD =23(2)见解析(3)102【分析】(1)过点D 作DH ⊥AB 于点H .由三角形外角的性质易求∠DAH =30°.根据题意可求∠DBH =∠BDH =45°,即得出BH =DH .设BH =DH =x ,则AD =2x ,根据勾股定理可求出AH =AD 2-DH 2=3x .从而可列出关于x 的方程,解出x ,即可求出AD 的长;(2)连接DP ,过点A 作AQ ⊥BC 于点Q .易得出AQ =BQ ,根据勾股定理可得出AB =2AQ =2BQ .结合题意又可得出CD =AQ =BQ .设CD =AQ =BQ =2a .根据等腰三角形的性质可得CQ =DQ =12CD =a =BD ,即点D 为BQ 中点.结合题意利用三角形中位线定理可得PD ∥AQ ,PD =12AQ =a ,从而可证PD ⊥BC ,最后根据勾股定理可求出PC =5a =AC ;(3)在(2)的基础上,过点C 作C T ⊥BC 交CB 的延长线于点T ,由旋转的性质可知AC =BC =3a,∠AC P=∠PCB,即易证四边形AC TQ是矩形,得出TQ=AC =3a,C T=AQ=2a,进而可求出BT=TQ-BQ=a,DT=TQ-DQ=2a=C T,CT=TQ+CQ=4a,最后根据勾股定理求出C C和C D的长,作比即可.【详解】(1)如图,过点D作DH⊥AB于点H.∵∠ADC=∠ABC+∠BAD,∠ABC=45°,∠ADC=75°,∴∠BAD=30°,即∠DAH=30°.∵DH⊥AB,∴∠DBH=∠BDH=45°,∴BH=DH.设BH=DH=x,则AD=2x,∴AH=AD2-DH2=3x.∴AB=AH+BH=x+3x=3+3,解得:x=3,∴AD=23;(2)如图,连接DP,过点A作AQ⊥BC于点Q.∵∠ABC=45°,∴∠BAQ=∠ABC=45°,∴AQ=BQ,∴AB=2AQ=2BQ.∵AB=2CD,∴CD=AQ=BQ.设CD=AQ=BQ=2a.∵AD=AC,AQ⊥CD,∴CQ=DQ=12CD=a=BD,即点D为BQ中点.∵点P为AB的中点,即AP=BP,∴PD∥AQ,PD=12AQ=a,∴PD⊥BC,∴PC=PD2+CD2=a2+4a2=5a,AC=AQ2+CQ2=4a2+a2=5a,∴PC=AC;(3)如图,在(2)的基础上,过点C 作C T⊥BC交CB的延长线于点T,由旋转的性质可知AC =BC=3a,∠AC P=∠PCB,∴AC ∥CT .∵C T ⊥BC ,AQ ⊥BC ,∴四边形AC TQ 是矩形,∴TQ =AC =3a ,C T =AQ =2a ,∴BT =TQ -BQ =3a -2a =a ,DT =TQ -DQ =3a -a =2a =C T ,CT =TQ +CQ =3a +a =4a ,∴C D =2DT =22a ,C C =C T 2+CT 2=2a2+(4a )2=25a ,∴C C C D =25a 22a=102.【点睛】本题考查三角形外角的性质,等腰直角三角形的判定和性质,含30度角的直角三角形的性质,勾股定理,三角形中位线定理,矩形的判定和性质等知识,综合性强,较难.正确的作出辅助线是解题关键.【例3】(2022·河南·嵩县教育局基础教育教学研究室一模)如图,Rt △ABC 的中,∠BAC =90°,AB =4cm ,AC =3cm ,点G 是边AB 上一动点,以AG 为直径的⊙O 交CG 于点D ,E 是边AC 的中点,连接DE .(1)求证:DE 与⊙O 相切;(2)填空:①当AG =___________cm 时,⊙O 与直线BC 相切;②当点G 在边AB 上移动时,△CDE 面积的最大值是___________cm 2【答案】(1)见解析(2)①3,②98【分析】(1)证明DE 是圆的切线,即连接OD ,再由直径AG 和中点E 想到连接AD 、OE ,则可知DE =AE ,最后证明ΔODE ≌ΔOAE 即可求证;(2)①由⊙O 与BC 相切,故结合ΔABC 的面积等于ΔAOC 的面积与ΔBOC 的面积之和即可求解;②结合(1)中分析可知CE =12AC =32,再结合三角形的面积公式,即可分析求解.【详解】(1)连接OE ,OD ,AD ∵AG 是⊙O 的直径,∴∠ADG =∠ADC =90°,即ΔADC 是直角三角形.∵E 是斜边AC 的中点,∴DE =AE .在ΔODE 和ΔOAE 中,OD =OADE =AEOE =OE∴△ODE ≌△OAE SSS ∴∠ODE =∠BAC =90°.∵OD 是⊙O 的半径,∴DE 与⊙O 相切.(2)①设⊙O 与BC 相切与点F ,⊙O 的半径为r 连接OC 则OF =OA =r =12AG ∵AB =4,AC =3,∠BAC =90°∴BC =32+42=5,S ΔAOC =12×AC ×OA =12×3×r =32r ,S ΔABC =12×AB ×AC =12×4×3=6∵⊙O 与BC 相切与点F ∴S ΔBOC =12×BC ×OF =12×5×r =52r ∵S ΔABC =S ΔAOC +S ΔBOC ∴6=32r +52r ,即r =32∴AG =2r =32×2=3故答案是:3.②由(1)可知DE =CE =12AC =32,设CE 边上的高为h ,则S ΔCDE =12×CE ×h =34h ∴当h 取最大值时,S ΔCDE 的值最大结合题意可知,当h =DE =32时最大,即DE ⊥AC 时,∴S ΔCDE 的最大值为34h =34×32=98故答案是:98.【点睛】本题主要考查圆的性质、切线的证明、直角三角形的性质、勾股定理、全等三角形的判定与性质、面积最值问题、线段长度问题等知识点,属于综合几何证明题,具有一定难度.解题的关键是熟练掌握圆和直角三角形的相关性质,并根据题意画出辅助线,即线段OD ,AD .【例4】(2021·广西·南宁二中八年级期中)在平面直角坐标系中有一等腰三角形ABC ,点A 在y 轴正半轴上,点B 在x 轴负半轴上.(1)如图1,点C 在第一象限,若∠BAC =90°,A 、B 两点的坐标分别是A (0,4),B (-2,0),求C 点的坐标;(2)如图2,点C 在x 正半轴上,点E 、F 分别是边BC 、AB 上的点,若∠AEF =∠ACB =2∠OAE .求证:BF =CE ;(3)如图3,点C 与点O 重合时点E 在第三象限,BE ⊥AE ,连接OE ,求∠BEO 的度数.【答案】(1)C 4,2 ;(2)见解析;(3)135°.【分析】(1)过点C 作CM ⊥OA ,垂足为M ,则∠AMC =90°,求出∠ABO =∠CAM ,证明△ABO ≌△CAM AAS ,得出MC =AO =4,AM =BO =2,则可得出答案;(2)证明∠BEF =∠EAC ,∠FAE =∠AFE ,可得AE =EF ,利用AAS 证明△AEC ≌△EFB ,则可得出BF =CE ;(3)过点O 作OG ⊥AE 于点G ,OH ⊥BE 交BE 的延长线于点H ,AE 与OB 交于点M ,证明△AOG ≌△BOH AAS ,由全等三角形的性质得出OG =OH ,证明EO 平分∠AEH ,求出∠OEH =∠AEO =45°,则可得出答案.【详解】(1)解:如图1中,过点C 作CM ⊥OA ,垂足为M ,则∠AMC =90°,∵∠BAC =∠AOB =90°,∴∠BAO +∠CAM =90°,∠BAO +∠ABO =90°,∴∠ABO =∠CAM ,∵△ABC 是等腰三角形,∠BAC =90°,∴AB =CA ,在△ABO 和△CAM 中,∠ABO =∠CAM ∠AOB =∠CMA AB =CA,∴△ABO ≌△CAM AAS ,∴MC =AO ,AM =BO ,∵A (0,4),B (-2,0),∴AO =4,BO =2,∴MC =4,AM =2,∴MO =AO -AM =2,∴C 4,2 ;(2)证明:设∠OAE =α,则∠AEF =∠ACB =2α,∵∠AEF +∠BEF +∠AEC =180°,∠ACB +∠EAC +∠AEC =180°,∴∠BEF =∠EAC ,由图2可知,等腰三角形ABC 中,AB =AC ,∴∠ABC =∠ACB ,∵OA ⊥BC ,∴∠BAO =∠CAO ,∵∠FAE =∠FAO +∠OAE =∠OAC +α=α+∠EAC +α=2α+∠EAC ,∠AFE =∠FBE +∠BEF =2α+∠BEF ,∴∠FAE =∠AFE ,∴AE =EF ,∴△AEC ≌△EFB AAS ,∴BF =CE ;(3)解:∵点C 与点O 重合,∠AOB =90°,∴OA =OB ,如图3,过点O 作OG ⊥AE 于点G ,OH ⊥BE 交BE 的延长线于点H ,AE 与OB 交于点M ,∵BE ⊥AE ,∴∠AEB =90°,∵∠AOB =90°,∠AMO =∠BME,∴∠MAO=∠OBH,又∵∠AGO=∠BHO=90°,OA=OB,∴△AOG≌△BOH AAS,∴OG=OH,又∵OG⊥AE,OH⊥BE,∴EO平分∠AEH,∴∠OEH=∠AEO=45°,∴∠BEO=∠AEB+∠AEO=90°+45°=135°.【点睛】本题是三角形综合题,考查了全等三角形的判定与性质,等腰三角形的判定与性质,角平分线的判定,三角形内角和定理,坐标与图形的性质等知识,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.培优训练一、解答题1.(2021·湖北武汉·九年级阶段练习)△ABC中,BC=4,AC=6,∠ACB=m°,将△ABC绕点A顺时针旋转n°得到△AEF,E与B是对应点,如图1.(1)延长BC、EF,交于点K,求证:∠BKE=n°;(2)当m=150,n=60时,求四边形CEFA的面积;(3)如图3.当n=150时,取BE的中点P和CF的中点Q,直接写出PQ2的值.【答案】(1)见解析;(2)12+93;(3)8-43【分析】(1)根据旋转的性质可得∠AEF=∠B,利用三角形的外角性质可得∠BKE=∠KPA-∠AEF,从而得到∠BKE=∠BAE=n°;(2)连CF,作FH⊥AC于H,根据条件得到ΔACF是等边三角形,则∠EFC=90°,从而根据S四边形CEFA=SΔCEF+SΔACF计算即可;(3)取CE中点G,连接PG,QG,构造△GPQ为等腰三角形,并结合中位线定理以及旋转的性质求解∠PGQ=30°,再作CN⊥FA于N点,结合旋转的性质求解出sin15°=6-24,最后在△GPQ中运用“三线合一”的性质求解出PQ的长度得出结论.【详解】(1)设CK、AE交于点P,∵ΔAEF是ΔABC旋转所得,∴ΔAEF≅ΔABC,∴∠AEF=∠B,∵∠BKE=∠KPA-∠AEF,∠BAE=∠KPA-∠B,∴∠BKE=∠BAE=n°;(2)连CF,作FH⊥AC于H,∵ΔAEF≅ΔABC,∴EF=BC=4,AF=AC=6,∠AFE=∠ACB=150°,∴ΔACF是等边三角形,∴∠AFC=60°,∴∠EFC=∠AFE-∠AFC=150°-60°=90°,∴SΔCEF=12CF⋅EF=12×6×4=12,∵AH=12AC=3,FH=AF2-AH2=36-9=33,∴SΔACF=12AC⋅FH=12×6×33=93,=SΔCEF+SΔACF=12+93;∴S四边形CEFA(3)如图,取CE中点G,连接PG,QG,则PG,QG为△BCE和△FCE的中位线,∴PG=12BC=2,QG=12EF=2,△GPQ为等腰三角形,根据中位线定理可得:∠BCE=∠PGE,∠CEF=∠CGQ,∴∠PGQ=∠PGE+∠CGQ-180°=∠BCE+∠CEF-180°,又∵∠BCE+∠CEF=∠BCE+∠CEA+∠AEF=∠BCE+∠CEA+∠ABC,∴在四边形ABCE中,∠BCE+∠CEA+∠ABC=360°-∠BAE=360°-150°=210°,∴∠BCE+∠CEF=210°,∠PGQ=∠PGE+∠CGQ-180°=210°-180°=30°,作CN⊥FA于N点,根据旋转可知,∠CAF=150°,AC=AF=6,∠AFC=15°,∴∠CAN=30°,在Rt△CAN中,AC=6,∠CAN=30°,∴CN=3,AN=33,∴NF=AN+AF=6+33由勾股定理得:FC=CN2+NF2=36+32,∴sin∠CFN=CNCF=336+32=6-24,即:sin15°=6-2 4,此时,作GM⊥PQ,则根据“三线合一”知GM平分∠PGQ,∠MGQ=15°,PM=QM,∴MQ=GQ·sin15°=2×6-24=6-2 2,∴PQ=2MQ=6-2,∴PQ2=6-22=8-43.【点睛】本题考查图形旋转的综合问题,包括全等三角形的判定与性质,等腰三角形的判定与性质,以及运用三角函数解直角三角形等,熟练根据题意灵活构造辅助线是解题关键.2.(2022·四川·石室中学八年级期中)已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图1,若点P在线段AB上,且AC=6+2,PA=2,求PB的长度;(2)在(1)的条件下,猜想PA、PB、PQ三者之间的数量关系并证明;(3)如图2,若点P在AB的延长线上,求证:PA2+PB2=PQ2.【答案】(1)23(2)PA2+PB2=PQ2,证明见解析(3)证明见解析【分析】(1)在Rt△ABC中,利用勾股定理可求得AB,由PB=AB-PA可求得PB;(2)过C作CD⊥AB于点D,则△ADC是等腰直角三角形,则可求得AD=CD=12AB=1+3,进而得出PD的长,在Rt△PCD中利用勾股定理可求得PC的长,进而求出PQ的长即可得到结论;(3)过C作CD⊥AB于点D,把PA2和PB2都用PC和CD表示出来,在Rt△PCD中,由勾股定理得到PC和PD、CD的关系,从而可证得结论;【详解】(1)解:∵△ABC是等腰直角三角形,AC=6+2,∴AB=AC2+BC2=6+22=23+2,2+6+2∵PA=2,∴PB=AB-PA=23+2-2=23,(2)解:PA2+PB2=PQ2,证明如下:如图1,过C作CD⊥AB于点D,则△ADC是等腰直角三角形,∴AD=CD=12AB=1+3,∴PD=AD-PA=3-1,在Rt△PCD中,PC=CD2+PD2=3+12=22,2-3-1∵△PCQ是等腰直角三角形,∠PCQ=90°,∴PC=QC=22,∴PQ=PC2+QC2=4,∵PA2=4,PQ2=16,PB2=12,∴PA2+PB2=PQ2;(3)证明:如图2,过C作CD⊥AB于点D,∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB,∵PA2=AD+PD2=CD2+2CD⋅PD+PD2,2=CD+PDPB2=PD-BD2=CD2-2CD⋅PD+PD2,2=PD-CD∴PA2+PB2=2CD2+2PD2=2CD2+PD2,在Rt△PCD中,由勾股定理可得PC2=CD2+PD2,∴PA2+PB2=2PC2,∵△PCQ为等腰直角三角形,且∠PCQ=90°,∴PQ2=PC2+CQ2=2PC2,∴PA2+PB2=PQ2.【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,正确作出辅助线,构造直角三角形是解题的关键.3.(2022·广东·惠州市惠阳区朝晖学校九年级阶段练习)阅读理解:如图,等腰直角△ABC中,∠ABC =90∘,AB=BC,点A,B分别在坐标轴上.(1)如图①,过点C作CG⊥y轴于点G,若点C的横坐标为5,求点B的坐标.(2)如图②,将△ABC摆放至x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD⊥x轴于点D,求CDAM的值.(3)如图③,若点A坐标为(-4,0),分别以OB,AB为直角边在第一、第二象限作等腰Rt△OBF与等腰Rt△ABE,连接EF交y轴于点P.当B点在y轴正半轴上移动时,PB的长度是否会发生改变?若改变,请说明理由,若不改变,请直接写出PB的长度.【答案】(1)(0,5)(2)12(3)2【分析】(1)过点C作CG⊥y轴于点G,根据余角的性质,得出∠ABO=∠BCG,证明△ABO≌△BCG,得出BO=CG=5,即可得出答案;(2)分别延长AB,CD相交于点H,根据“AAS”证明△ABM≌△CBH,得出AM=CH,根据等腰三角形的性质,得出CD=DH,即可得出答案;(3)作EG⊥y轴于G,证明△BAO≌△EBG,得到BG=AO=4,EG=OB,证明△EGP≌△FBP,得到PB=PG,得到答案.【详解】(1)解:∵∠ABC=90∘,CG⊥y轴,∴∠1+∠ABO=90∘,∠1+∠BCG=90∘,∴∠ABO=∠BCG(同角的余角相等),∵∠ABC=90∘,CG⊥y轴,∠ABO=∠BCG,AB=BC,∴△ABO≌△BCG(两角及其中一角的对边对应相等的两个三角形全等),∴BO=CG(全等三角形的对应边相等),∵C点的横坐标为5,∴CG=5,∵CG=5,BO=CG,B点在y轴上,∴B点的坐标是0,5.(2)解:分别延长AB,CD相交于点H,如图所示:∵∠ABC=90∘,CH⊥x轴,∴∠1+∠A MB=90∘,∠3+∠CMD=90∘,∠CBH=90∘,∵∠A MB=∠CMD,∴∠1=∠3(等角的余角相等),∵∠ABC=∠CBH=90∘,∠1=∠3,AB=BC,∴△ABM≌△CBH(两角及其中一角的对边对应相等的两个三角形全等),∴AM=CH(全等三角形的对应边相等),∵AD平分∠BAC,CH⊥x轴,∴∠1=∠2,∠ADH=∠ADC=90°,∵AD=AD,∴△ADH≅△ADC,∴DH=DC,∴AM=CH=2CD,∴CD AM=1 2.(3)解:PB的长度不变,作EG⊥y轴于G,如图所示:∵点A的坐标为-4,0,∴OA=4,∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,∴∠BAO=∠EBG,在△BAO 和△EBG 中∠AOB =∠BGE∠BAO =∠EBG AB =BE,∴△BAO ≌△EBG AAS ,∴BG =AO =4,EG =OB ,∵OB =BF ,∴BF =EG ,在△EGP 和△FBP 中∠EPG =∠FPB∠EGP =∠FBP EG =FB,∴△EGP ≌△FBP AAS ,∴PB =PG ,∴PB =12BG =2.【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.4.(2022·河北·八年级期中)如图,在△ABC 中,已知AB =AC ,∠ABC =∠ACB =45°,AH 是△ABC 的高,BC =10cm ,射线CM ⊥BC ,动点D 从点C 开始沿射线CB 的方向以每秒2厘米的速度运动,动点E 也同时从点C 开始在射线CM 上以每秒1厘米的速度运动,连接AD 、AE ,设运动时间为t t >0 s .(1)请直接写出CD 、CE 的长度(用含有t 的式子表示):CD =______cm ,CE =______cm ;(2)当点D 到点H 的距离为2cm 时,求t 的值;(3)请直接写出当t =103s 时,△ABD 与△ACE 是否全等?【答案】(1)2t ,t (2)32s 或72s (3)全等,理由见解析【分析】(1)直接根据路程=速度×时间可得结论;(2)分当点D 位于点H 右边时;当点D 位于点H 左边时,两种情况进行讨论即可;(3)分别求出BD ,CD 的长度,然后根据“SAS ”证明全等即可.【详解】(1)解:根据题意可得CD =2t cm ,CE =t cm ,故答案为:2t ,t ;(2)解:∵AB=AC,∠ABC=∠ACB=45°,∴△ABC为等腰直角三角形,∵AH是△ABC的高,BC=10cm,∴BH=CH=5,当点D位于点H右边时,CD=CH-HD=5-2=2t,解得:t=3 2;当点D位于点H左边时,CD=CH+DH=5+2=7=2t,解得:t=7 2,综上所示:当点D到点H的距离为2cm时,t的值为32s或72s;(3)解:△ABD与△ACE全等,理由如下:当t=103s时,CD=2t=2×103=203cm,CE=t=103cm,∴BD=BC-CD=10-203=103cm,∴BD=CE,∵CM⊥BC,∠ABC=∠ACB=45°,∴∠ACE=45°,在△ABD和△ACE中,AB=AC∠B=∠ACEBD=CE,∴△ABD≌△ACE(SAS).【点睛】本题考查了全等三角形判定与性质,一元一次方程的应用,等腰直角三角形的性质,灵活运用相关知识点列方程求解是关键.5.(2022·江苏徐州·八年级期中)如图,△ABC中,∠ACB=90°,AC=BC,点D是斜边AB的中点,点E、F分别在边AC、BC上,且DE⊥DF,垂足为D.(1)如图1,当DE⊥AC时,DE、DF的大小关系是______;(2)如图2,将∠EDF绕点D点旋转,(1)中的关系还成立吗?请说明理由;(3)如图3,连接EF,试探究AE、BF、EF之间的数量关系,并证明你的结论.【答案】(1)DE=DF(2)成立,理由见解析(3)EF2=AE2+BF2,证明见解析【分析】(1)连接CD,由DE⊥AC,得∠DEC=90°=∠ACB=∠EDF,可得DF⊥BC,而AC= BC,D为AB中点,知CD是∠ACB的平分线,即得DE=DF;(2)过D作DM⊥AC于M,DN⊥BC于N,同(1)可得DM=DN,由∠DMC=∠DNC=∠ACB= 90°,可得∠MDN=90°=∠EDF,从而∠MDE=∠NDF,可证△DME≌△DNF(AAS),故DE= DF;(3)过D作DM⊥AC于M,DN⊥BC于N,由(2)知△DME≌△DNF,可得ME=NF,DE=DF,DM=DN,即可得EF2=2DE2,而AC=AB,∠ACB=90°,有∠A=∠B=45°,从而AM=DM= DN=BN,设ME=NF=x,则AM=AE-x=DM,BN=BF+x=DN,由AM=BN,得AE-x=BF+x,x=AE-BF2,即ME=AE-BF2,DM=AE-x=AE+BF2,又DE2=DM2+ME2,即可得EF2=2DE2=AE2+BF2.【详解】(1)解:DE=DF,理由如下:连接CD,如图:∵DE⊥AC,∴∠DEC=90°=∠ACB=∠EDF,∴∠DFC=90°,即DF⊥BC,∵AC=BC,D为AB中点,∴CD是∠ACB的平分线,∵DE⊥AC,DF⊥BC,∴DE=DF(角平分线上的点到两边的距离相等);故答案为:DE=DF;(2)将∠EDF 绕点D 点旋转,(1)中的关系还成立,理由如下:过D 作DM ⊥AC 于M ,DN ⊥BC 于N ,如图:同(1)可得DM =DN ,∵∠DMC =∠DNC =∠ACB =90°,∴∠MDN =90°=∠EDF ,∴∠MDN -∠EDN =∠EDF -∠EDN ,即∠MDE =∠NDF ,∵∠DME =90°=∠DNF ,∴△DME ≌△DNF (AAS ),∴DE =DF ;(3)EF 2=AE 2+BF 2,证明如下:过D 作DM ⊥AC 于M ,DN ⊥BC 于N ,如图:由(2)知△DME ≌△DNF ,∴ME =NF ,DE =DF ,DM =DN ,∵∠EDF =90°,∴DE 2+DF 2=EF 2,∴EF 2=2DE 2,∵AC =AB ,∠ACB =90°,∴∠A =∠B =45°,∵DM ⊥AC 于M ,DN ⊥BC 于N ,∴AM =DM =DN =BN ,设ME =NF =x ,则AM =AE -x =DM ,BN =BF +x =DN ,∵AM =BN ,∴AE -x =BF +x ,∴x =AE -BF 2,即ME =AE -BF 2,∴DM =AE -x =AE +BF 2,∵DE 2=DM 2+ME 2=AE +BF 2 2+AE -BF 2 2=AE 2+BF 22,∴EF 2=2DE 2=AE 2+BF 2.【点睛】本题考查等腰直角三角形中的旋转问题,涉及三角形全等的判定与性质,勾股定理及应用等知识,解题的关键是作辅助线,构造全等三角形.6.(2022·湖北·武汉市黄陂区教学研究室八年级期中)如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE .(1)如图1,求证:BD =CE ;(2)如图2,当AD =CD 时,过点C 作CM ⊥AD 于点M ,如果DM =2,求CD -BD 的值.【答案】(1)见解析(2)4【分析】(1)过A 作AH ⊥BC 于点H ,根据三线合一可得:BH =CH ,DH=EH ,即可证明;(2)过A 作AH ⊥BC 于点H ,易证△AHD ≌△CMD ,可得MD =DH ,即可求解.【详解】(1)证明:如图过A 作AH ⊥BC 于点H ,∵AB =AC ,AH ⊥BC ,∴BH =CH ,∵AD =AE ,∴DH =EH ,∴BD =CE ;(2)解:过A 作AH ⊥BC 于点H ,在△AHD 和△CMD 中,∠CDM =∠ADH∠CMD =∠AHD =90°CD =AD∴△AHD ≌△CMD AAS ,∴DH =MD ,∴CD -BD =CH +DH -BH -DH =2DH =2MD =4.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质“三线合一”,熟练掌握全等三角形的判定方法是解题的关键.7.(2022·浙江·杭州市大关中学九年级期中)如图,在△ABC 中,AB =AC ,∠A =30°,AB =10,以AB 为直径的⊙O 交BC 于点D ,交AC 于点E ,连接DE ,过点B 作BP 平行于DE ,交⊙O 于点P ,连接CP ,OP .(1)求证:点D 为BC的中点;(2)求AP 的长度.【答案】(1)见解析(2)5π2【分析】(1)连接AD ,可得AD ⊥BC ,再由等腰三角形的性质,即可求证;(2)由等腰三角形的性质,可得∠ABC =75°,再根据四边形ABDE 为⊙O的内接四边形,可得∠EDC =∠BAC =30°,然后根据BP ∥DE ,可得∠PBC =∠EDC =30°,从而得到∠OBP =∠ABC -∠PBC =45°,然后根据圆周角定理可得∠AOP =90°,再根据弧长公式计算,即可求解.【详解】(1)证明:如图,连接AD ,∵AB 为⊙O 的直径,∴∠ADB =90°,即AD ⊥BC ,∵AB =AC ,∴BD =CD ,即点D 为BC 的中点;(2)解:∵∠BAC =30°,AB =AC ,∴∠ABC =12×180°-30° =75°,∵四边形ABDE 为⊙O 的内接四边形,∴∠EDB +∠BAC =180°,∵∠EDB +∠EDC =180°,∴∠EDC =∠BAC =30°,∵BP ∥DE ,∴∠PBC =∠EDC =30°,∴∠OBP =∠ABC -∠PBC =45°,∵OB =OP ,∴△OBP 为等腰直角三角形,∴∠BOP =90°,∴∠AOP =90°,∵AB =10,∴半径OA =5,∴AP 的长度为90π×5180=5π2.【点睛】本题主要考查了求弧长,圆周角定理,圆内接四边形的性质,等腰三角形的性质,熟练掌握弧长公式,圆周角定理,圆内接四边形的性质,等腰三角形的性质是解题的关键.8.(2022·湖北黄石·九年级期中)如图,△ABC 中,AB =AC ,AH ⊥BC 于H ,BD ⊥AC 于D ,AH ,BD 相交于点O ,以O 为圆心、OD 为半径的⊙O 交BC 于点E 、F ,已知AD =6,BD =8.(1)求证:AB 是⊙O 的切线;(2)求⊙O 的半径;(3)求弦EF 的长.【答案】(1)见解析;(2)3;(3)4.【分析】(1)过点O 作OM ⊥AB 于点M ,利用角平分线的性质得到OM=OD ,即可;(2)利用勾股定理求得AC =AB =10,从而得到CD =4,再由勾股定理求得BC =45,则BH =CH =25,再由勾股定理得到AH =45,由△AOD ∽△ABH 得到AD AH=OD BH ,即可求解;(3)连接OE ,求得OH ,利用勾股定理得到EH ,即可求解.【详解】(1)证明:过点O 作OM ⊥AB 于点M ,如图∵AH ⊥BC ,AB =AC∴AH 平分∠BAC又∵OM ⊥AB ,OD ⊥AC∴OM =OD∴AB 是⊙O 的切线;(2)解:由勾股定理可得,AB =AD 2+BD 2=10,AC =10,则CD =4,由勾股定理可得:BC =BD 2+CD 2=45,由题意可得:AH 为中线,∴BH =CH =25由勾股定理可得:AH =AB 2-BH 2=45由(1)可得∠BAH =∠OAD ,又∵∠ADB =∠AHB =90°∴△AOD ∽△ABH ,∴AD AH =OD BH ,即645=OD 25解得:OD =3,即半径为3.(3)连接OE ,如下图:由题意可得:OE =3,OH ⊥EF∴EH =HF在Rt △AOD 中,由勾股定理可得:AO =OD 2+AD 2=35∴OH =AH -AO =5,在Rt△OEH中,由勾股定理可得:EH=OE2-OH2=2∴EF=2EH=4【点睛】此题考查了切线的判定,垂径定理,相似三角形的判定与性质,勾股定理,等腰三角形的性质,解题的关键是熟练掌握相关性质.9.(2022·江苏·泰州中学附属初中八年级阶段练习)按要求作图.(1)如图(1),在平行四边形ABCD中,AC为对角线,AC=BC,AE是△ABC的中线.①在AD取一点F使得EF∥CD;(仅使用无刻度的直尺画图).②画出△ABC的高CH.(仅使用无刻度的直尺画图).(2)如图(2),四边形ABCD是平行四边形,在线段CD找一点E,使得BE平分∠AEC.(仅使用圆规画图)【答案】(1)①见解析;②见解析(2)见解析【分析】(1)①连接BD交AC于O点,则OB=OD,则OE为△BCD的中位线,可得OE∥CD,延长EO交AD于F,则EF满足条件;②设BD交AE于P点,则P点为△ABC的三条中线的交点,然后延长CP交AB于H,CH为AB边上的中线,再由AC=BC,根据等腰三角形的性质得到CH⊥AB;(2)以A点为圆心,AB为半径画弧交DC于E点,则AE=AB,可得∠AEB=∠ABE,再根据CD∥AB,可知∠ABE=∠CEB,从而得到∠CEB=∠AEB,即可.【详解】(1)解:①如图1,连接BD交AC于O点,并延长EO交AD于F,F点即为所作;理由:∵四边形ABCD是平行四边形,∴OB=OD,∵AE是△ABC的中线.∴OE为△BCD的中位线,∴OE∥CD,即EF∥CD;②如图1,设BD交AE于P点,延长CP交AB于H,CH即为所作;理由:∵四边形ABCD是平行四边形,∴OA=OC,∵AC=BC,AE是△ABC的中线.∴P点为△ABC的三条中线的交点,∴CH为AB边上的中线,∴CH⊥AB,即CH是△ABC的高;(2)解:如图2,以A点为圆心,AB为半径画弧交DC于E点,则线段BE为所作.理由:根据作法得:AE=AB,∴∠AEB=∠ABE,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠CEB,∴∠CEB=∠AEB,即BE平分∠AEC.【点睛】本题考查了作图--复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质,三角形中位线的性质,等腰三角形的性质以及平行线的性质.10.(2022·湖南长沙·九年级期中)如图,在△ABC中,AB=AC,以AC为直径的⊙O,与AB边相交于点D,与BC边相交于点E,过点E作EF⊥AB,垂足为点F.(1)求证:EF是⊙O的切线;(2)求证:点E是CD的中点;(3)若⊙O的直径为18,BC=12,求AD的长.【答案】(1)见解析;(2)见解析;(3)AD的长为14.【分析】(1)连接OE,利用等腰三角形的性质,证明OE∥AB即可证明;(2)利用圆周角定理以及等腰三角形三线合一的性质即可证明;(3)连接AE、CD,利用直径所对的圆周角是直角、等腰三角形三线合一以及证明△ABE∽△CBD,即可解答.【详解】(1)证明:连接OE,∵EF⊥AB,∴∠EFD=∠EFB=90°,∵AB=AC,∴∠B=∠C,∵OC=OE,∴∠C=∠OEC,∴∠OEC =∠B ,∴OE ∥AB ,∴∠OEF =∠EFB =90°,∵OE 是⊙O 的半径,∴EF 是⊙O 的切线;(2)证明:如图,连接AE ,∵AC 是直径,∴AE ⊥BC ,∵AB =AC ,∴∠BAE =∠CAE ,∴DE =CE ,∴点E 是CD 的中点;(3)解:连接AE 、CD ,∵AC 是⊙O 的直径,AB =AC ,BC =12,∴∠CDB =∠AEC =∠AEB =90°,BE =CE =6,∵∠B =∠B ,∴△ABE ∽△CBD ,∴AB CB=BE BD ,即1812=6BD ,解得:BD =4,∴AD =AB -BD =18-4=14,故AD 的长为14.【点睛】本题考查了切线的判定与性质,等腰三角形的性质,勾股定理,垂径定理,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.11.(2022·广东·广州市白云区白云实验学校八年级期中)在Rt △ABC 中,∠ACB =90°,∠A =30°,BD 是△ABC 的角平分线,DE ⊥AB 于点E .(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是AC边上一个动点(不与点D重合),以BM为一边,在BM的下方作∠BMG=60°,MG 交射线DE于点G.请画出完整图形,探究MD,DG与AD数量之间的关系,并说明理由.【答案】(1)见详解(2)画图见详解,当分M点在线段AD上时,AD+MD=DG;当M点在线段DC上时,AD-MD= DG.【分析】(1)根据含30°角的直角三角形的性质可得∠ABC=60°,BC=12AB,根据BD是△ABC的角平分线,可得∠ABD=∠CBD=30°,即有可得△ABD是等腰三角形,结合DE⊥AB和DE是△ABD的中线,可得AE=BE=12AB,问题随之得解;(2)分M点在线段AD上和M点在线段DC上两种情况来补全图形:当分M点在线段AD上时,延长BD至N点,使得MD=ND,连接MN,先证明△MND是等边三角形,再证明△MNB≌△MDG ASA,即可得解;当M点在线段DC上时,延长GD至H,使得DH=MD,连接HM,BD与MG交于点Q,先证明△MDH是等边三角形,再证明△HMG≌△D MB AAS,即可得解.【详解】(1)∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,BC=12AB,∵BD是△ABC的角平分线,∴∠ABD=∠CBD=30°,∴∠ABD=∠A,∴AD=BD,∴△ABD是等腰三角形,∵DE⊥AB,∴DE是△ABD的中线,∴AE=BE=12AB,∵BC=12AB,∴BC=BE,∵∠ABC=60°,∴△EBC是等边三角形;(2)补全图形如下:(分M点在线段AD上和M点在线段DC上两种情况)当分M点在线段AD上时,延长BD至N点,使得MD=ND,连接MN,如图,在(1)中求得:∠ABD=∠CBD=30°=∠A,∵∠DEA=∠DEB=90°,∴∠EDA=∠EDB=60°,∵∠BMG=60°,∴∠EDA=∠EDB=60°=∠BMG,∴∠NDM=180°-∠EDB-∠EDA=60°,∵MD=ND,∴△MND是等边三角形,∴MD=ND=MN,∠NMD=60°=∠N,∴∠N MB=∠NMD+∠D MB=∠G MB+∠D MB=∠GMD,∵∠ADE=60°=∠N,MD=MN,∴△MNB≌△MDG ASA,∴NB=DG,∴DB+ND=DG,根据(1)可知AE=BE=12AB,DE⊥AB,∴DG是线段AB的垂直平分线,∴AD=BD,∵MD=ND,∴AD+MD=DG;当M点在线段DC上时,延长GD至H,使得DH=MD,连接HM,BD与MG交于点Q,如图,∵∠EDA=∠EDB=60°=∠BMG,∴∠HDM=∠EDA=60°,∠MDB=180°-∠EDA-∠EDB= 60°,∵DH=MD,∴△MDH是等边三角形,∴DM=HM,∠H=60°,∵∠EDB=60°=∠BMG,∠DQG=∠BQM,∴∠DGQ=∠QBM,∵∠H=∠MDB,DM=HM,∴△HMG≌△D MB AAS,∴HG=BD,∵HD=MD,AD=BD,∴AD=BD=HG=HD+DG=MD+DG,∴AD-MD=DG;综上:当分M点在线段AD上时,AD+MD=DG;当M点在线段DC上时,AD-MD=DG.【点睛】此题是三角形的综合题,主要考查了等边三角形的判定与性质以及全等三角形的判定与性质,根据已知正确作出辅助线是解题关键.12.(2022·福建·上杭县教师进修学校八年级期中)数学活动课上老师出示如下问题,供同学们探究讨论:如图,在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是线段BD上的一个动点(不与点B重合,且BC≠BE),在线段BE上截取BA=BC,连接AC.试探究线段AE,BF,CD之间的数量关系.小敏与同桌小聪经过深入的思考讨论后,进行了如下探究:特殊入手,探索结论:(1)①如图,若点C与点D重合,即线段CD=0,观察此时线段AE,BF之间的数量关系是AE=BF,即有:AE=BF+CD,请你说明AE=BF的理由;特例启发,猜测结论:②若点C不与点D重合,猜测线段AE,BF,CD之间的数量关系是___________,并给予证明;完成上面的问题后,老师继续提出下列问题,请同学们探究讨论:深入探究,拓展结论:(2)在上面的问题中,若把“点C是线段BD上的一个动点”改为“点C是射线BD上的一个动点,其它条件都不变.”,则当点C在线段BD的延长线上时,请你用等式表示线段AE,BF,CD之间的数量关系(自行画图探究,直接写出结果,不需要证明).【答案】(1)①见解析,②AE=BF+CD,见解析(2)当BC<BE时,数量关系是:BF=AE+CD,当BC>BE时,数量关系是:CD=AE+BF,见解析【分析】(1)①过D作DG⊥EF于G,利用等腰和等边三角形的性质,即可得证;②在BE上截取BG =BD,连接DG,利用等腰和等边三角形的性质,即可得证;(2)分BC<BE和BC>BE两种情况分类讨论,求解即可.【详解】(1)证明:①∵BA=BC,∠EBD=60°,∴△ABC是等边三角形过D作DG⊥EF于G,则有:EG=FG;AG=BG∴EG-AG=FG-BG,∴AE=BF;②数量关系为:AE=BF+CD,证明如下:在BE上截取BG=BD,连接DG,∵BA=BC∴BG-BA=BD-BC,∴AG=CD∵∠EBD=60°,BG=BD,∴△GB D是等边三角形∴由①的结论可得:EG=BF∴AE=EG+AG=BF+CD。
中点模型

15
(3)AG⊥DG,DG=AG×tan(α/2) 证明:延长DG与BC交于H,连接AH、AD,
16
∵四边形CDEF是菱形, ∴DE=DC,DE∥CF, ∴∠GBH=∠GED,∠GHB=∠GDE, ∵G是BE的中点,∴BG=EG, ∴△BGH≌△EGD(AAS), ∴BH=ED,HG=DG, ∴BH=DC, ∵AB=AC,∠BAC=∠DCF=α, ∴∠ABC=90°﹣α/2,∠ACD=90°﹣α/2, ∴∠ABC=∠ACD, ∴△ABH≌△ACD(SAS), ∴∠BAH=∠CAD,AH=AD, ∴∠BAC=∠HAD=α; ∴AG⊥HD,∠HAG=∠DAG=α/2, ∴tan∠DAG=tan(α/2), ∴DG=AGtan(α/2).
3
模型三 如图,在△ABC中,点D是AB边的中点.可作另一边AC 的中点,构造三角形中位线.如下图所示:由中位线的性 质可得,DE//BC且DE=1/2BC.
4
模型四:连接直角顶点,构造斜中定理
5
模型运用
6
例1、如图,在平行四边形ABCD中,AD=2AB,点E 是BC边的中点.连接AE,DE.求∠AED的度数.
19
小试身手 如图1,在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的 中点G,连接EG、CG.易证:EG=CG且EG⊥CG. (1)将△BEF绕点B逆时针旋转90°,如图2所示,则线段EG和CG有怎样的 数量和位置关系?请直接写出你的猜想. (2)将△BEF绕点B逆时针旋转180°,如图3所示,则线段EG和CG又有怎样 的数量和位置关系?请写出你的猜想,并加以证明. (3)将△BEF绕点B旋转一个任意角度α,如图4所示,则线段EG和CG有怎样 的数量和位置关系?请直接写出结论.
初中数学动点最值问题19大模型+例题详解,彻底解决压轴难题

动点最值问题永远都是中考最难的压轴类题目,很多同学都反应不知道该怎么下手寻找思路。
其实这类题目的题型有限,全部总结归纳就是这19种,希望同学们对每一种都能掌握技巧,再遇见类似的就能及时找到思路。
PS:可下载电子版打印高清版本,链接文末获取!
1、将军饮马模型(对称点模型)
2、利用三角形两边差求最值
3、手拉手全等取最值
4、手拉手相似取最值
5、平移构造平行四边形求最小
6、两点对称勺子型连接两端求最小
7、两点对称折线连两端求最小
8、时钟模型,中点两定边求最小值
9、时钟模型,相似两定边求最小值
10、转化构造两定边求最值
11、面积转化法求最值
12、相似转化法求最值
13、相似系数化一法求最值
14、三角函数化一求最值
15、轨迹最值
16、三动点的垂直三角形
17、旋转最值
18、隐圆最值-定角动弦
19、隐圆最值-动角定弦。
中考数学基本模型—中点模型,初三数学专题复习总结倍长中线练习题

中考数学基本模型——中点模型线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用线相交.即“延长中线交平行”此时,易证△BEF≌△CED模型三如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:时,只需将AE延长和DC的延长线相交,就一定会得到全等三角形,进而得到我们需要的结果.证明:如图,延长AE交DC的延长线于点F.∵四边形ABCD是平行四边形∴AB//CD,即AB//DF∴∠BAE=∠CFE,∠B=∠FCE又∵点E是BC中点∴BE=CE∴△ABE≌△FCE∴CF=AB=CD,AE=FE∴DF=2CD,又∵AD=2CD∴AD=DF,又因为点E是AF的中点∴DE⊥AF即∠AED=90°.反思:对于本题,还可以延长AE至点F使EF=AE,连接CF.通过证明△ABE ≌△FCE得到AB//CF,利用经过直线外一点有且只有一条直线与已知直线平行,得到D、C、F三点共线.再证明△DAF是等腰三角形,利用等腰三角形三线合一得到结论.对于第二种方法,同学们可以自己尝试.例2、在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.分析:由题可知,DE//BF,且点G是BE的中点,满足平行线间夹中点,所以可将DG延长与BF相交.证明:(1)AG=DG,且AG⊥DG.如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是正方形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF又∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等腰直角三角形∴AB=AC,∠ACD=180°-45°-90°=45°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=90°∴△DAH是等腰直角三角形,又∵点G是DH的中点∴AG=DG且AG⊥DG.反思:若将正方形绕点C旋转任意角度,在旋转的过程中,上述结论还成立吗?试试看(2)AG⊥DG,AG=√3DG如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是菱形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF又∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等边三角形∴AB=AC,∠ACD=180°-60°-60°=60°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=60°∴△DAH是等边三角形,又∵点G是DH的中点∴AG⊥DG.∠DAG=1/2∠DAH=30°∴AG=√3DG(3)AG⊥DG,DG=AG×tan(α/2)证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是菱形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BE的中点,∴BG=EG,∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=α,∴∠ABC=90°﹣α/2,∠ACD=90°﹣α/2,∴∠ABC=∠ACD,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=α;∴AG⊥HD,∠HAG=∠DAG=α/2,∴tan∠DAG=tan(α/2),∴DG=AGtan(α/2).反思:在本题的证明中,我们结合题目中给出的平行线间夹中点这一条件,将DG进行延长和BC相交,通过全等使问题得证.对于本题我们也可以采用倍长中线法进行证明.下面用倍长中线法对第一种情况加以证明.证明:如图,延长AG至点H,使GH=AG.连接EH,AD,DH.在△ABG和△HEG中BG=EG,∠AGB=∠HGE,AG=HG∴△ABG≌△HEG∴AB=HE,∠ABG=∠HEG∵AB=AC∴AC=HE∵DE//BC∴∠DEG=∠EBC∴∠HED=∠HEB+∠DEG=∠ABG+∠EBC=∠ABC=45°又∠ACD=180°-45°-90°=45°∴∠ACD=∠HED在△ACD和△HED中AC=HE,∠ACD=∠HED,DC=DE∴△ACD≌△HEDDA=DH,∠ADC=∠HDE∴∠ADC-∠HDC=∠HDE-∠HDC即∠ADH=∠CDE=90°所以△ADH是等腰直角三角形又因为点G是AH的中点所以DG=AG,DG⊥AG.上面我们用倍长中线证明了第一种情况,请你对第二三问加以证明.反思:在本题的证明过程中,容易犯的一个错误是,许多同学看到HE经过点C,就说∠HED=45°.而这一结论是需要证明的.小试身手如图1,在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG.易证:EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图2所示,则线段EG和CG有怎样的数量和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图3所示,则线段EG和CG又有怎样的数量和位置关系?请写出你的猜想,并加以证明.(3)将△BEF绕点B旋转一个任意角度α,如图4所示,则线段EG和CG 有怎样的数量和位置关系?请直接写出结论.前两问较简单,请同学们自行完成,这里只给出第三问的几种解法,仅供大家参考.解法一:如图,延长EG至点H,使GH=EG.连接DH,CE,CH.因为点G是DF的中点,所以GF=GD.根据SAS易证△GEF≌△GHDEF=HD且∠GEF=∠GHD,所以EF//DH.分别延长HD与EB交于点K,HD的延长线交BC于点M.如下图:因为EB⊥EF,而EF//DH,所以EK⊥HK,即∠BKM=∠MCD=90°.又∠BMK=∠CMD.根据三角形的内角和,可得∠KBM=∠MDC.所以∠EBC=∠HDC.又EB=HD,BC=DC所以△EBC≌△HDC.所以CE=CB且∠ECB=∠HCD.所以∠ECB=90°,即△BCE是等腰直角三角形,又因为点G是斜边EB的中点,所以CG⊥GE且CG=GE.解法二:如图,延长CG至点N,是GN=CG.连接FN,EN,EC.以下过程可参照解法一自行完成解法三:延长FE至点P使得EP=EF,连接BP;延长DC至点Q,使得CQ=CD,连接BQ.连接FQ,DP。
中考数学压轴专题:中点专题

目录
秘籍一: 见中点-------倍长中线........................................................................................................ 5 【方法说明】 ................................................................................................................................... 5 【应用场合】 ................................................................................................................................... 5 【典例解析】 ................................................................................................................................... 6 【题型分类】 ................................................................................................................................... 9 题型一 倍长中线............................................................................................................................ 9 题型二:倍长中线应用之证明线段不等 ...................................................................................... 11 题型三:倍长中线应用之证明线段相等 ...................................................................................... 11 题型四:倍长中线应用之证明线段倍分 ...................................................................................... 12 题型五:倍长中线应用之证明线段垂直 ...................................................................................... 12 题型六:用中线倍长法来证明或计算角的大小关系 .................................................................. 12 【提高训练】 ................................................................................................................................. 16 秘籍二:见中点(或等分点)-----作平行用相似 ............................................................................ 19 秘籍三:见多个中点-------构造中位线 ............................................................................................ 24 三角形的中位线 ............................................................................................................................. 24 三角形中位线性质运用-------中点四边形 ................................................................................ 28 【巩固练习】 ................................................................................................................................. 32 梯形中位线 ..................................................................................................................................... 38 秘籍三:见等腰三角形底边中点-----连接顶点与中点,构造三线合一 ........................................ 43 秘籍四:见垂直平分线--------构造等腰三角形 .............................................................................. 48 秘籍五:见直角三角形与中点--------构造斜边上中线 .................................................................. 49 秘籍六:中线 ......................................................................................................................................... 58 题型一:中线等分三角形的面积.................................................................................................. 58 题型二:三角形中线有关的周长问题.......................................................................................... 59 题型三:三角形中线的线段求值和证明问题 .............................................................................. 59 题型四:三角形中线有关的面积问题.......................................................................................... 62 秘籍六:圆中的中点 ............................................................................................................................. 63 题型一:圆心是中点问题.............................................................................................................. 63 题型二:弧的中点问题:.............................................................................................................. 64 题型三:圆中弦的中点.................................................................................................................. 65
初中数学突破中考压轴题几何模型之中点模型教案

初中数学突破中考压轴题几何模型之中点模型教案集团标准化工作小组[Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]中点模型学习过中位线之后,你能否总结一下,口前我们学习了哪些定理或性质与中点有关直角三角形中点你想到了什么,等腰三角形中点你想到了什么,一般三角形中点你乂想到了什么1.直角三角形斜边中线定理:如图,在RZBC中,ZACB = 90% D 为AB 中点,则有:CD = AD = BD = -AB o2.三线合一:在AABC中:(1) 4C = BC;(2) CD平分ZACB ;(3) AD = BD,(4) CD丄“知二得二”:比如由(2) (3)可得出(1) (4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出余下两条。
3.中位线定理:如图,在AABC中,若AD = BD, AE = CE,则DE//BC且DE = -BC o24.中线倍长(倍长中线):如图(左图),在AABC中,D为BC中点,延\^AD到E使DE = AD,联结则有:^ADC^AEDBo 作用:转移线段和角。
Y C D例1:如图所示,已知D为BC中点,点A在DEJt, ^AB = CE,求证:ZBAD= ZCED ・提示:用倍长中线法,借助等腰三角形和全等三角形证明试一试:如图,已知在AABC中,AD是3C边上的中线,E是AD L一点,且BE=AC,延长BE交AC于F,求证:AF = EF。
证明:延长%至点G使得毎0G联结CG类比倍长中线易得:'BDE^'CDG 所以乙BEX乙DGC,B申CG 因为B&AC,所以AOGC所以ZEAUZDGC,因为ABED^AEF所以ZAEF^ZFAE所以A&EF例2:如图,已知AABC中,BD.CE为高线,点M是BC的中点,点N是DE的中点..求证:MN丄DE。
证明:联结ZK DM 在Rt'BEC中在Rt'BDC中DM=l3C2 2所以EPZZ”,乂因为£匸切,所以MN丄DE例3:如图,在SABC中,AD为ZA的平分线,M为BC的中点,AD//ME,求证:BE=CF = -(AB+AC)O2D M证明:延长刖至点G,使得FKG,联结%类比倍长中线易得:鳩所以乙匕乙CFM, BUCF因为旳9〃刃/,所以ZBAXZE, ZDA&/EFA因为ZB心ZDAC, ZAF吕ZCFM所以ZBZAF吕乙CF并ZG所以於於防AB=AF1.在梯形ABCD中,AD//BC. AB = AD+BC, E为CD的中点,求证:AE丄BE提示:延长月佼庞交于点尸,易证△血阻△尸6E得4CF, A&EF。
2023年中考数学压轴题专题19 二次函数与平移变换综合问题【含答案】

专题19二次函数与平移变换综合问题【例1】.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.【例2】.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y 如下表:x…﹣10123…y…430﹣5﹣12…(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图象向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q 的图象,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=,实数k的取值范围是;(3)A、B、C是二次函数y=ax2+bx+3的图象上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图象的对称轴对称,求∠ACB的度数.【例3】.(2022•连云港)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.【例4】.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.【例5】.(2022•镇江)一次函数y=x+1的图象与x轴交于点A,二次函数y=ax2+bx+c(a≠0)的图象经过点A、原点O和一次函数y=x+1图象上的点B(m,).(1)求这个二次函数的表达式;(2)如图1,一次函数y=x+n(n>﹣,n≠1)与二次函数y=ax2+bx+c(a≠0)的图象交于点C(x1,y1)、D(x2,y2)(x1<x2),过点C作直线l1⊥x轴于点E,过点D作直线l2⊥x轴,过点B作BF⊥l2于点F.①x1=,x2=(分别用含n的代数式表示);②证明:AE=BF;(3)如图2,二次函数y=a(x﹣t)2+2的图象是由二次函数y=ax2+bx+c(a≠0)的图象平移后得到的,且与一次函数y=x+1的图象交于点P、Q(点P在点Q的左侧),过点P作直线l3⊥x轴,过点Q作直线l4⊥x轴,设平移后点A、B的对应点分别为A′、B′,过点A′作A′M⊥l3于点M,过点B′作B′N⊥l4于点N.①A′M与B′N相等吗?请说明你的理由;②若A′M+3B′N=2,求t的值.一.解答题(共20题)1.(2022秋•临海市月考)如图,以A(3,0),为顶点的抛物线交y轴于点B(0,4)(1)求此抛物线的函数解析式.(2)点C(7,4)是否也在这个抛物线上?(3)你能否通过左右平移该抛物线,使平移后的抛物线经过点C(7,4)?若能,请写出平移的方法.2.(2022秋•江夏区月考)已知抛物线y=﹣x2+bx+c经过点A(﹣1,2).(1)抛物线顶点位于y轴右侧且纵坐标为6.①求抛物线的解析式.②如图1,直线y=﹣x+4与抛物线交于B、C两点,P为线段BC上一点,过P作PM∥y轴交抛物线于M点.若PM=3,求P点的坐标.(2)将抛物线平移,使点A的对应点为A'(m+1,b+4),其中m≠2.若平移后的抛物线经过点N(2,1),平移后的抛物线顶点恰好落在直线y=x+5上,求b的值.3.(2022•湖里区二模)抛物线y=ax2+bx+1与x轴仅有一个交点A(m,0),与y轴交于点B,过点B的直线BC⊥AB交x轴于点M,BC=kAB.(1)用含b的式子表示m;(2)若四边形AMBE是平行四边形,且点E在抛物线上,求抛物线的解析式;(3)已知点C在抛物线上,且m>0,k=4,将抛物线y=ax2+bx+1平移,若点M在平移后的抛物线上,判断平移后的抛物线是否经过点C?若经过,请说明抛物线平移的方式;若不经过,请说明理由.4.(2022•上海)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,ⅰ.如果S△OBP求k的取值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.5.(2022•青浦区模拟)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的表达式及点C的坐标;(2)点P为抛物线上一点,且在x轴下方,联结PA.当∠PAB=∠ACO时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向平移,平移后点P的对应点为点Q,当AQ平分∠PAC时,求抛物线平移的距离.6.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求抛物线的解析式;(2)求点P的坐标;(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.7.(2022•雁塔区校级模拟)已知抛物线L1:y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3).(1)求抛物线L的表达式;(2)若点P是直线y=x+1上的一个动点,将抛物线L进行平移得到抛物线L',点B的对应点为点Q,是否存在以A、B、P、Q四个点为顶点的四边形是菱形?若存在,求出抛物线的平移方式;若不存在,请说明理由.8.(2022•渭滨区一模)在平面直角坐标系xOy中,已知抛物线y=﹣+bx2+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D 按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.9.(2021秋•普兰店区期末)抛物线y=ax2+4(a≠0)与x轴交于A,B两点(A点在B点的左侧),AB=4,点P(2,1)位于第一象限.(1)求抛物线的解析式;(2)若点M在抛物线上,且使∠MAP=45°,求点M的坐标;(3)将(1)中的抛物线平移,使它的顶点在直线y=x+4上移动,当平移后的抛物线与线段AP只有一个公共点时,求抛物线顶点横坐标t的取值范围.10.(2022•碑林区校级四模)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n与x轴交于点A,B(A在B的左侧).(1)若抛物线的对称轴为直线x=﹣3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x轴正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标.11.(2022•静安区二模)在平面直角坐标系xOy中,已知点A坐标是(2,4),点B在x轴上,OB=AB(如图所示),二次函数的图象经过点O、A、B三点,顶点为D.(1)求点B与点D的坐标;(2)求二次函数图象的对称轴与线段AB的交点E的坐标;(3)二次函数的图象经过平移后,点A落在原二次函数图象的对称轴上,点D落在线段AB上,求图象平移后得到的二次函数解析式.12.(2022•富阳区二模)设二次函数y=(x﹣a)(x﹣a+2),其中a为实数.(1)若二次函数的图象经过点P(2,﹣1),求二次函数的表达式;(2)把二次函数的图象向上平移k个单位,使图象与x轴无交点,求k的取值范围;(3)若二次函数的图象经过点A(m,t),点B(n,t),设|m﹣n|=d(d≥2),求t的最小值.13.(2022•宁波模拟)已知二次函数y=x2+x﹣m的部分图象如图所示.(1)求该二次函数图象的对称轴,并利用图象直接写出一元二次方程x2+x﹣m=0的解.(2)向上平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.14.(2022•宁波模拟)已知二次函数y=x2﹣2mx+m2﹣1(m为常数)的图象与x轴交于A,B两点,顶点为C.(1)若把二次函数图象向下平移3个单位恰好过原点,求m的值.(2)①若P(m﹣3,y1),Q(m+2,y2)在已知的二次函数图象上,比较y1,y2的大小;②求△ABC的面积.15.(2022•吴兴区一模)如图已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标:(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为y轴上且位于点C下方的一点,P为直线AC上一点,在第四象限的抛物线上是否存在一点Q,使以C、E、P、Q为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.16.(2022•南宁模拟)已知关于x的二次函数y=ax2+2ax+c(a≠0),且c=﹣3a.(1)若a=﹣1,求该二次函数的解析式和顶点坐标;(2)在(1)的条件下,求出下表中k、n的值,并在以下平面直角坐标系中,用描点法画出该二次函数的图象;根据图象回答:当0≤x≤2时,直接写出y的最小值.(3)当﹣3<x<0时,y有最小值﹣4,若将该二次函数的图象向右平移m(m>1)个单位长度,平移后得到的图象所对应的函数y'在﹣3≤x≤0的范围内有最小值﹣3,求函数y=ax+m的解析式.x…﹣101…y…4k n…17.(2022•房山区二模)在平面直角坐标系xOy中,点A(2,﹣1)在二次函数y=x2﹣(2m+1)x+m的图象上.(1)直接写出这个二次函数的解析式;(2)当n≤x≤1时,函数值y的取值范围是﹣1≤y≤4﹣n,求n的值;(3)将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x﹣h)2+k,当x<2时,y随x的增大而减小,求k的取值范围.18.(2022•洞头区模拟)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与y 轴交于点A(0,3),交x轴于点B(3,0).(1)求抛物线的解析式,并根据该图象直接写出y>3时x的取值范围.(2)将线段OB向左平移m个单位,向上平移n个单位至O'B'(m,n均为正数),若点O',B'均落在此二次函数图象上,求m,n的值.19.(2022•桥西区校级模拟)如图,抛物线,点Q为顶点.(1)无论a为何值,抛物线L总过一个定点为;(2)若抛物线的对称轴为直线x=1.①求该抛物线L的表达式和点Q的坐标;②将抛物线L向下平移k(k>0)个单位长度,使点Q落在点A处,平移后的抛物线与y 轴交于点B.若QA=QB,求k的值;(3)当a=2时,点M(m,n)为抛物线上一点,点M到y轴的距离不超过2,直接写出n的取值范围.20.(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B(﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.【例1】(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.【分析】(1)求出A、B、C三点坐标,再用待定系数法求直线AC的解析式即可;(2)分四种情况讨论:①当m>1时,p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,解得m=(舍);②当m+2<1,即m<﹣1,p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,解得m=﹣(舍);③当m≤1≤m+1,即0≤m≤1,p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,解得m=﹣1或m=﹣﹣1(舍);④当m+1<1≤m+2,即﹣1≤m<0,p﹣q=m2﹣2m﹣3+4=2,解得m=+1(舍)或m=﹣+1;(3)分两种情况讨论:①当抛物线向左平移h个单位,则向上平移h个单位,平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,求出直线BA的解析式为y=x﹣5,联立方程组,由Δ=0时,解得h=,此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;②当抛物线向右平移k个单位,则向下平移k个单位,平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,当抛物线经过点B时,此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点;当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,由此可求解.【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点A(1,﹣4),令x=0,则y=﹣3,∴C(0,﹣3),∵CB∥x轴,∴B(2,﹣3),设直线AC解析式为y=kx+b,,解得,∴y=﹣x﹣3;(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=1,①当m>1时,x=m时,q=m2﹣2m﹣3,x=m+2时,p=(m+2)2﹣2(m+2)﹣3,∴p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,解得m=(舍);②当m+2<1,即m<﹣1,x=m时,p=m2﹣2m﹣3,x=m+2时,q=(m+2)2﹣2(m+2)﹣3,∴p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,解得m=﹣(舍);③当m≤1≤m+1,即0≤m≤1,x=1时,q=﹣4,x=m+2时,p=(m+2)2﹣2(m+2)﹣3,∴p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,解得m=﹣1或m=﹣﹣1(舍);④当m+1<1≤m+2,即﹣1≤m<0,x=1时,q=﹣4,x=m时,p=m2﹣2m﹣3,∴p﹣q=m2﹣2m﹣3+4=2,解得m=1+(舍)或m=1﹣,综上所述:m的值﹣1或1﹣;(3)设直线AC的解析式为y=kx+b,∴,解得,∴y=﹣x﹣3,①如图1,当抛物线向左平移h个单位,则向上平移h个单位,∴平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,设直线BA的解析式为y=k'x+b',∴,解得,∴y=x﹣5,联立方程组,整理得x2﹣(3﹣2h)x+h2﹣h+2=0,当Δ=0时,(3﹣2h)2﹣4(h2﹣h+2)=0,解得h=,此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;②如图2,当抛物线向右平移k个单位,则向下平移k个单位,∴平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,当抛物线经过点B时,(2﹣1﹣k)2﹣4﹣k=﹣3,解得k=0(舍)或k=3,此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点,当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,∴综上所述:1<n≤4或n=.【例2】(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:x…﹣10123…y…430﹣5﹣12…(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图象向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q 的图象,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=y=﹣x2+6x﹣5(答案不唯一),实数k的取值范围是4≤k≤5;(3)A、B、C是二次函数y=ax2+bx+3的图象上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图象的对称轴对称,求∠ACB的度数.【分析】(1)用待定系数法可得二次函数的表达式为y=﹣x2﹣2x+3;(2)将二次函数y=﹣x2﹣2x+3的图象向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,新图象的对称轴为直线x=k﹣1,根据当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,知3≤k﹣1≤4,得4≤k≤5,即可得到答案;(3)求出A(m,﹣m2﹣2m+3),B(m+1,m2﹣m),C(﹣2﹣m,﹣m2﹣2m+3),过B作BH⊥AC于H,可得BH=|﹣m2﹣4m﹣(﹣m2﹣2m+3)|=|﹣2m﹣3|,CH=|(﹣2﹣m)﹣(m+1)|=|﹣2m3|,故△BHC是等腰直角三角形,∠ACB=45°,当B在C右侧时,同理可得∠ACB=135°.【解答】解:(1)将(﹣1,4),(1,0)代入y=ax2+bx+3得:,解得,∴二次函数的表达式为y=﹣x2﹣2x+3;(2)如图:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴将二次函数y=﹣x2﹣2x+3的图象向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,∴新图象的对称轴为直线x=k﹣1,∵当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,∴3≤k﹣1≤4,解得4≤k≤5,∴符合条件的二次函数y=mx2+nx+q的表达式可以是y=﹣(x﹣3)2+4=﹣x2+6x﹣5,故答案为:y=﹣x2+6x﹣5(答案不唯一),4≤k≤5;(3)当B在C左侧时,过B作BH⊥AC于H,如图:∵点A、B的横坐标分别是m、m+1,∴y A=﹣m2﹣2m+3,y B=﹣(m+1)2﹣2(m+1)+3=﹣m2﹣4m,∴A(m,﹣m2﹣2m+3),B(m+1,﹣m2﹣4m),∵点C与点A关于该函数图象的对称轴对称,而抛物线对称轴为直线x=﹣1,∴=﹣1,AC∥x轴,∴x C=﹣2﹣m,∴C(﹣2﹣m,﹣m2﹣2m+3),过B作BH⊥AC于H,∴BH=|﹣m2﹣4m﹣(﹣m2﹣2m+3)|=|﹣2m﹣3|,CH=|(﹣2﹣m)﹣(m+1)|=|﹣2m﹣3|,∴BH=CH,∴△BHC是等腰直角三角形,∴∠HCB=45°,即∠ACB=45°,当B在C右侧时,如图:同理可得△BHC是等腰直角三角形,∴∠ACB=180°﹣∠BCH=135°,综上所述,∠ACB的度数是45°或135°.【例3】(2022•连云港)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.【分析】(1)把O(0,0)代入y=x2+(m﹣2)x+m﹣4可得y=x2+2x=(x+1)2﹣1,即得函数图像的顶点A的坐标为(﹣1,﹣1);(2)由抛物线顶点坐标公式得y=x2+(m﹣2)x+m﹣4的顶点为(,),根据m>2,=﹣(m﹣4)2﹣1≤﹣1<0,可知二次函数y=x2+(m﹣2)x+m ﹣4的顶点在第三象限;(3)设平移后图像对应的二次函数表达式为y=x2+bx+c,其顶点为(﹣,),将(﹣,)代入y=﹣x﹣2得c=,可得OB=﹣c=﹣,过点A=OB•AH=×(﹣)×1=﹣(b+1)2+,由作AH⊥OB于H,有S△AOB二次函数性质得△AOB面积的最大值是.【解答】(1)解:把O(0,0)代入y=x2+(m﹣2)x+m﹣4得:m﹣4=0,解得m=4,∴y=x2+2x=(x+1)2﹣1,∴函数图像的顶点A的坐标为(﹣1,﹣1);(2)证明:由抛物线顶点坐标公式得y=x2+(m﹣2)x+m﹣4的顶点为(,),∵m>2,∴2﹣m<0,∴<0,∵=﹣(m﹣4)2﹣1≤﹣1<0,∴二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)解:设平移后图像对应的二次函数表达式为y=x2+bx+c,其顶点为(﹣,),当x=0时,B(0,c),将(﹣,)代入y=﹣x﹣2得:=﹣2,∴c=,∵B(0,c)在y轴的负半轴,∴c<0,∴OB=﹣c=﹣,过点A作AH⊥OB于H,如图:∵A(﹣1,﹣1),∴AH=1,在△AOB中,S△AOB=OB•AH=×(﹣)×1=﹣b2﹣b+1=﹣(b+1)2+,∵﹣<0,取最大值,最大值为,∴当b=﹣1时,此时c<0,S△AOB答:△AOB面积的最大值是.【例4】(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.【分析】(1)根据抛物线对称轴和点C坐标分别确定b和c的值,进而求得结果;(2)根据点A,D,C坐标可得出AD,AC,CD的长,从而推出三角形ADC为直角三角形,进而得出∠DAC和∠BCO的正切值相等,从而得出结论;(3)先得出y1的顶点,进而得出先抛物线的表达式,N的坐标,根据三角形相似或一次函数可求得点M坐标,以MN为边,点M,N,P,Q为顶点的四边形是▱MNQP和▱MNPQ 根据M,N和点P的横坐标可以得出Q点的横坐标,进而求得结果.【解答】(1)解:由题意得,,∴,∴二次函数的表达式为:y=﹣x2﹣2x+3;(2)证明:∵当x=﹣1时,y=﹣1﹣2×(﹣1)+3=4,∴D(﹣1,4),由﹣x2﹣2x+3=0得,x1=﹣3,x2=1,∴A(﹣3,0),B(1,0),∴AD2=20,∵C(0,3),∴CD2=2,AC2=18,∴AC2+CD2=AD2,∴∠ACD=90°,∴tan∠DAC===,∵∠BOC=90°,∴tan∠BCO==,∴∠DAC=∠BCO;(3)解:如图,作DE⊥y轴于E,作D1F⊥y轴于F,∴DE∥FD1,∴△DEC∽△D1FC,∴=,∴FD1=2DE=2,CF=2CE=2,∴D1(2,1),∴y1的关系式为:y=﹣(x﹣2)2+1,当x=0时,y=﹣3,∴N(0,﹣3),同理可得:,∴,∴OM=3,∴M(3,0),设P(2,m),当▱MNQP时,∴MN∥PQ,PQ=MN,∴Q点的横坐标为﹣1,当x=﹣1时,y=﹣(﹣1﹣2)2+1=﹣8,∴Q(﹣1,8),当▱MNPQ时,同理可得:点Q横坐标为:5,当x=5时,y=﹣(5﹣2)2+1=﹣8,∴Q′(5,﹣8),综上所述:点Q(﹣1,﹣8)或(5,﹣8).【例5】(2022•镇江)一次函数y=x+1的图象与x轴交于点A,二次函数y=ax2+bx+c(a ≠0)的图象经过点A、原点O和一次函数y=x+1图象上的点B(m,).(1)求这个二次函数的表达式;(2)如图1,一次函数y=x+n(n>﹣,n≠1)与二次函数y=ax2+bx+c(a≠0)的图象交于点C(x1,y1)、D(x2,y2)(x1<x2),过点C作直线l1⊥x轴于点E,过点D作直线l2⊥x轴,过点B作BF⊥l2于点F.①x1=,x2=(分别用含n的代数式表示);②证明:AE=BF;(3)如图2,二次函数y=a(x﹣t)2+2的图象是由二次函数y=ax2+bx+c(a≠0)的图象平移后得到的,且与一次函数y=x+1的图象交于点P、Q(点P在点Q的左侧),过点P作直线l3⊥x轴,过点Q作直线l4⊥x轴,设平移后点A、B的对应点分别为A′、B′,过点A′作A′M⊥l3于点M,过点B′作B′N⊥l4于点N.①A′M与B′N相等吗?请说明你的理由;②若A′M+3B′N=2,求t的值.【分析】(1)先求出点A、B的坐标,利用交点式设y=ax(x+2),把B(,)代入即可求得答案;(2)①联立得x2+2x=x+n,解方程即可求得答案;②分两种情况:当n>1时,CD位于AB的上方,可得:AE=﹣2﹣=,BF=﹣=,故AE=BF;当<n<1时,CD位于AB的下方,可得:AE=﹣(﹣2)=,BF=﹣=,故AE=BF;(3)方法一:①设P、Q平移前的对应点分别为P′、Q′,则P′Q′∥PQ,可得P′Q′∥AB,再由(2)②及平移的性质可证得结论;②由A′M+3B′N=2,可得A′M=B′N=,根据二次函数y=x2+2x的图象的顶点为(﹣1,﹣1),二次函数y=(x﹣t)2+2的图象的顶点为(t,2),可得新二次函数的图象是由原二次函数的图象向右平移(t+1)个单位,向上平移3个单位得到的,把Q(t+1,3)代入y=x+1,即可求得答案;方法二:①设点Q的坐标为(x3,y3),由y3=x3+1,y3=(x3﹣t)2+2,得x3+1=(x3﹣t)2+2,可得:点P的横坐标为,点Q的横坐标为(t>).再由二次函数y=x2+2x图象的顶点为(﹣1,﹣1),二次函数y=(x﹣t)2+2的图象的顶点为(t,2),可得新二次函数的图象是由原二次函数的图象向右平移(t+1)个单位,向上平移3个单位得到的,求得:B′(t+,),A′(t﹣1,3),即可证得结论.【解答】解:(1)∵直线y=x+1与x轴交于点A,令y=0,得x+1=0,解得:x=﹣2,∴A(﹣2,0),∵直线y=x+1经过点B(m,),∴m+1=,解得:m=,∴B(,),∵抛物线y=ax2+bx+c(a≠0)经过A(﹣2,0),O(0,0),B(,),设y=ax(x+2),则=a××(+2),解得:a=1,∴y=x(x+2)=x2+2x,∴这个二次函数的表达式为y=x2+2x;(2)①由题意得:x2+2x=x+n(n>﹣),解得:x1=,x2=,故答案为:,;②当n>1时,CD位于AB的上方,∵A(﹣2,0),B(,),∴AE=﹣2﹣=,BF=﹣=,∴AE=BF,当<n<1时,CD位于AB的下方,∵A(﹣2,0),B(,),∴AE=﹣(﹣2)=,BF=﹣=,∴AE=BF,∴当n>﹣且n≠1时,AE=BF;(3)方法一:①设P、Q平移前的对应点分别为P′、Q′,则P′Q′∥PQ,∴P′Q′∥AB,∵平移后点A、B的对应点分别为A′、B′,由(2)②及平移的性质可知:A′M=B′N;②∵A′M+3B′N=2,∴A′M=B′N=,设点Q在原抛物线上的对应点为Q′,∵二次函数y=x2+2x的图象的顶点为(﹣1,﹣1),二次函数y=(x﹣t)2+2的图象的顶点为(t,2),∴新二次函数的图象是由原二次函数的图象向右平移(t+1)个单位,向上平移3个单位得到的,∴Q′的横坐标为0或1,∴Q′(0,0)或(1,3),当Q′(0,0)时,Q(t+1,3),将点Q的坐标代入y=x+1,得:3=(t+1)+1,解得:t=3;当Q′(1,3)时,Q(t+2,6),将点Q的坐标代入y=x+1,得:6=(t+2)+1,解得:t =8;综上所述,t =3或8;另解:∵A ′M +3B ′N =2,∴A ′M =B ′N =,B (,)的对应点为B ′(t +,),∵B ′N =,∴点Q 的横坐标为t +1,代入y =x +1,得y =(t +1)+1=t +,∴Q (t +1,t +),将点Q 的坐标代入y =(x ﹣t )2+2中,得t +=(t +1﹣t )2+2,解得:t =3.方法二:①设点Q 的坐标为(x 3,y 3),由y 3=x 3+1,y 3=(x 3﹣t )2+2,得x 3+1=(x 3﹣t )2+2,当t >时,解得:x 3=,∴点Q 的横坐标为;同理可得点P 的横坐标为,∵点P 在点Q 的左侧,∴点P 的横坐标为,点Q 的横坐标为(t >).∵二次函数y =x 2+2x 图象的顶点为(﹣1,﹣1),二次函数y =(x ﹣t )2+2的图象的顶点为(t ,2),∴新二次函数的图象是由原二次函数的图象向右平移(t +1)个单位,向上平移3个单位得到的,∴B (,)的对应点为B ′(t +,),A (﹣2,0)的对应点为A ′(t ﹣1,3).∴B ′N =t +﹣=,A ′M =﹣(t ﹣1)=,∴A ′M =B ′N .一.解答题(共20题)1.(2022秋•临海市月考)如图,以A(3,0),为顶点的抛物线交y轴于点B(0,4)(1)求此抛物线的函数解析式.(2)点C(7,4)是否也在这个抛物线上?(3)你能否通过左右平移该抛物线,使平移后的抛物线经过点C(7,4)?若能,请写出平移的方法.【分析】(1)设顶点式y=a(x﹣3)2,然后把B点坐标代入求出a,从而得到抛物线解析式;(2)根据二次函数图象上点的坐标特征进行判断;(3)设平移后的抛物线解析式为y=(x﹣m)2,再把C(7,4)代入求出m的值为4或10,从而可判断抛物线向右平移1个单位或7个单位.【解答】解:(1)设抛物线解析式为y=a(x﹣3)2,把B(0,4)代入得4=a×(0﹣3)2,解得a=,∴抛物线解析式为y=(x﹣3)2;(2)当x=7时,y=(x﹣3)2=×(7﹣3)2=≠4,∴点C(7,4)不在这个抛物线上;(3)能.设平移后的抛物线解析式为y=(x﹣m)2,把C(7,4)代入得×(7﹣m)2=4,解得m1=4,m2=10,∴把抛物线y=(x﹣3)2向右平移1个单位或7个单位可经过点C(7,4).2.(2022秋•江夏区月考)已知抛物线y=﹣x2+bx+c经过点A(﹣1,2).(1)抛物线顶点位于y轴右侧且纵坐标为6.①求抛物线的解析式.②如图1,直线y=﹣x+4与抛物线交于B、C两点,P为线段BC上一点,过P作PM∥y轴交抛物线于M点.若PM=3,求P点的坐标.(2)将抛物线平移,使点A的对应点为A'(m+1,b+4),其中m≠2.若平移后的抛物线经过点N(2,1),平移后的抛物线顶点恰好落在直线y=x+5上,求b的值.【分析】(1)①将点A(﹣1,2)代入y=﹣x2+bx+c,得到b、c的关系为c﹣b=3,再由=6,求出b、c的值即可求函数的解析式;②设M(t,﹣t2+2t+5),则P(t,﹣t+4),可得PM=﹣t2+3t+1=3,求出t的值即可求M 点坐标;(2)由题意可知抛物线向右平移m+2个单位,向上平移b+2个单位,则平移后的抛物线解析为y=﹣(x﹣﹣m﹣2)2+2b+5+,所以抛物线的顶点为(+m+2,2b+5+),再由题意可得m=+b﹣2①,﹣(﹣﹣m)2+2b+5+=1②,由①②求出b的值即可.【解答】解:(1)①将点A(﹣1,2)代入y=﹣x2+bx+c,∴c﹣b=3,∵抛物线的顶点纵坐标为6,∴=6,∴c=﹣3或c=5,∴b=﹣6或b=2,∵顶点位于y轴右侧,∴b>0,∴b=2,∴y=﹣x2+2x+5;②设M(t,﹣t2+2t+5),则P(t,﹣t+4),∴PM=﹣t2+3t+1,∵PM=3,∴﹣t2+3t+1=3,解得t=1或t=2,∴P(1,3)或(2,2);(2)∵点A(﹣1,2)平移后对应点为A'(m+1,b+4),∴抛物线向右平移m+2个单位,向上平移b+2个单位,∵c﹣b=3,∴y=﹣x2+bx+c=﹣(x﹣)2+b+3+,∴平移后的抛物线解析为y=﹣(x﹣﹣m﹣2)2+2b+5+,∴抛物线的顶点为(+m+2,2b+5+),∵抛物线顶点恰好落在直线y=x+5上,∴+m+2+5=2b+5+,∴m=+b﹣2①,∵平移后的抛物线经过点N(2,1),∴﹣(﹣﹣m)2+2b+5+=1②,由①②可得,b+2m=b+4或b+2m=﹣b﹣4,当b+2m=b+4时,m=2,此时不符合题意;当b+2m=﹣b﹣4时,b=0或b=﹣10,当b=0时,m=﹣2;当b=﹣10时,m=8;∴b的值为0或﹣10.3.(2022•湖里区二模)抛物线y=ax2+bx+1与x轴仅有一个交点A(m,0),与y轴交于点B,过点B的直线BC⊥AB交x轴于点M,BC=kAB.(1)用含b的式子表示m;(2)若四边形AMBE是平行四边形,且点E在抛物线上,求抛物线的解析式;(3)已知点C在抛物线上,且m>0,k=4,将抛物线y=ax2+bx+1平移,若点M在平移后的抛物线上,判断平移后的抛物线是否经过点C?若经过,请说明抛物线平移的方式;若不经过,请说明理由.【分析】(1)利用Δ=b2﹣4ac决定抛物线与x轴的交点个数得到Δ=b2﹣4a=0,可得a=,则y=x2+bx+1=(x+)2,把A(m,0)代入即可求解;(2)求出E(﹣,1),则BE=|﹣|,证明△AOB∽△BOM,可求M(﹣,0),再由AM=BE,得到|﹣|=|m+|,求出b=±2,即可求解析式y=(x﹣1)2或y=(x+1)2;(3)平移后抛物线的顶点由A变为M,则平移后的抛物线为y=(x+)2,因为C在抛物线上,平移后的抛物线经过C,所以(x+)2=(x﹣m)2,此时m2=﹣1,m 无解.【解答】解:(1)∵抛物线y=ax2+bx+1与x轴仅有一个交点A(m,0),∴Δ=b2﹣4ac=b2﹣4a=0,∴a=,∴y=x2+bx+1=(x+)2,把A(m,0)代入得,(m+)2=0,∴m=﹣;(2)若四边形AMBE是平行四边形,A,M均在x轴上,则AM∥BE,AM=BE,∵B在y轴上,当x=0时,y=ax2+bx+1=1,∴B(0,1),∴E的纵坐标为1,把y E=1代入抛物线y=(x+)2,∴(x+)2=1,解得x=0(舍)或﹣,∴E(﹣,1),∴BE=|﹣|,∵BC⊥AB,∴∠MBA=90°,∵∠MBO+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠MBO,∴△AOB∽△BOM,∴=,∴OM=,∴M(﹣,0),∵AM=BE,∴|﹣|=|m+|,∵m=﹣,∴b=±2,∴y=(x﹣1)2或y=(x+1)2;(3)平移后的抛物线不经过点C,理由如下:∵平移后抛物线的顶点由A变为M,∴平移后的抛物线为y=(x+)2,∵C在抛物线上,平移后的抛物线经过C,∴(x+)2=(x﹣m)2,∴m2=﹣1,∴m无解,∴平移后的抛物线不经过C点.4.(2022•上海)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,ⅰ.如果S△OBP求k的取值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)i.根据三角形面积求出平移后的抛物线的对称轴为直线x=2,开口向上,由二次函数的性质可得出答案;ii.P(m,﹣3),证出BP=PQ,由等腰三角形的性质求出∠BPC=60°,由直角三角形的性质可求出答案.【解答】解:(1)将A(﹣2,﹣1),B(0,﹣3)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣3.(2)i.∵y=x2﹣3,∴抛物线的顶点坐标为(0,﹣3),即点B是原抛物线的顶点,∵平移后的抛物线顶点为P(m,n),∴抛物线平移了|m|个单位,=×3|m|=3,∴S△OPB∵m>0,∴m=2,即平移后的抛物线的对称轴为直线x=2,∵在x=k的右侧,两抛物线都上升,原抛物线的对称轴为y轴,开口向上,∴k≥2;ii.把P(m,n)代入y=x2﹣3,∴n=﹣3,∴P(m,﹣3),由题意得,新抛物线的解析式为y=+n=﹣3,∴Q(0,m2﹣3),∵B(0,﹣3),∴BQ=m2,+,PQ2=,∴BP=PQ,如图,过点P作PC⊥y轴于C,则PC=|m|,∵PB=PQ,PC⊥BQ,∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,∴tan∠BPC=tan60°==,∴m=2或m=﹣2(舍),∴n=﹣3=3,∴P点的坐标为(2,3).5.(2022•青浦区模拟)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的表达式及点C的坐标;(2)点P为抛物线上一点,且在x轴下方,联结PA.当∠PAB=∠ACO时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向平移,平移后点P的对应点为点Q,当AQ平分∠PAC时,求抛物线平移的距离.【分析】(1)运用待定系数法即可求得答案;(2)设P(t,﹣t2+4t﹣3),如图1,过点P作PD⊥x轴于点D,连接AC、AP,可证得△APD∽△CAO,建立方程求解即可得出答案;(3)如图2,连接AQ、PQ,过点P作PE⊥PA交AQ于点E,过点E作EF⊥PQ于点F,可证得△APD≌△PEF(AAS),得出:PF=AD=,EF=PD=,即E(,﹣),再利用待定系数法求得直线AE的解析式为y=﹣2x+2,再求得Q(,﹣),即可求得抛物线平移的距离.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0)和点B(3,0),∴,解得:,∴该抛物线的表达式为y=﹣x2+4x﹣3,当x=0时,y=﹣3,∴C(0,﹣3);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题19 中点模型
破解策略
1.倍长中线
在△ABC中.M为BC边的中点.
图1 图2
(1)如图1,连结AM并延长至点F,使得ME=AM.连结CE.则△ABM≌△ECM.
(2)如图2,点D在AB边上,连结DM并延长至点E.使得MF=DM.连结CE,则△BDM≌△CEM,
遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.
2.构造中位线
在△ABC中.D为AB边的中点,
图1 图2
(1)如图1,取AC边的中点E,连结DE.则DE∥BC,且DF=B C.
(2)如图2.延长BC至点F.使得CF=B C.连结CD,AF.则DC∥AF,且DC=AE.
三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线,
3.等腰三角形“三线合一”
如图,在△ABC中,若AB=A C.通常取底边BC的中点D.则AD⊥BC,且AD平分∠BA C.
事实上,在△ABC中:①AB=AC;②AD平分∠BAC;③BD=CD,④AD⊥B C.
对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.
4.直角三角形斜边中线
如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=AC.
反过来,在△ABC中,点D在AC边上,若BD=AD=CD=AC,则有∠ABC=900
例题讲解
例1 如图,在四边形ABCD中,E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连结AG、BG、CG且∠AGD=∠BGC,若AD、BC所在直线互相垂直,求的值
解由题意可得△AGB和△DGC为共顶点等顶角的两个等腰三角形,
所以△AGD≌△BGC,△AGD∽△EGF.
方法一:如图1,连结CE并延长到H,使EH=EC,连EH、AH,则
AH∥BC,AH=BC,而AD=BC,AD⊥BC
所以AD=AH,AD⊥AH,连结DH,则△ADH为等腰直角三角形,又因为E、F分别为CH、CD的中点,所以
方法二:如图2,连结BD并取中点H,连结EH,FH.则EH=AD,且EH∥AD,FH=BC,
而AD=BC,AD⊥BC,所以△E HF为等腰直角三角形,所以
例2 如图,在△ABC中,BC=22,BD⊥AC于点D,CE⊥AB于E,F、G分别是BC、DE的中点,若ED=10,求FG 的长.
解:连结EF、DF,由题意可得EF、DF分别为RT△BEC,RT△BDC斜边的中线,所以DF=EF=
BC=11,而G为DE的中点,所以DG=EG=5,FG⊥DE,所以RT△FGD中,FG==
例3 已知:在RT△ACB和RT△AEF中,∠ACB=∠AEF=900,若P是BF的中点,连结PC、PE
(1)如图1,若点E、F分别落在边AB、AC上,请直接写出此时PC与PE的数量关系.
(2)如图2,把图1中的△AE F绕着点A顺时针旋转,当点E落在边CA的延长线上时,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
解(1)易得PC=PE=BF,即PC与PE相等.
(2)结论成立.理由如下:
如图4,延长CP交EF的延长线于点D,则BC∥FD,易证△BPC≌△FPD,所以PC=PD,而∠CED=900,所以PE
=CD=PC。