高考数学专题复习之圆锥曲线的中点弦问题
高考圆锥曲线中点弦问题 讲义--高三数学一轮复习

圆锥曲线中点弦问题题型识别:弦中点,斜率积用点差若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,点)(00,y x M 为AB 的中点,OM AB k k .的值为定值么? 答题模版第一步:若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x , 第二步:两式相减得0))(((2212122121=-++-+by y y y a x x x x ))(, 第三步:2121x x y y --是直线AB 的斜率k ,)(2,22121y y x x ++是线段AB 的中点)(00,y x ,化简可得2221212121a b x x y y x x y y -=--⋅++2200ab k x y -=⋅⇒类型1 求中点弦直线斜率或方程典例1:已知椭圆E :22142x y +=,O 为坐标原点,作斜率为k 的直线交椭圆E 于A ,B两点,线段AB 的中点为M ,直线OM 与AB 的夹角为θ,且tan 22θ=则k =( ) A .22±B .2±C .22D 2 【答案】A【解析】由题意知0k ≠,设()11,A x y ,()22,B x y ,()00,M x y ,则0122x x x =+,0122y y y =+,将A ,B 两点坐标代入椭圆方程22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22012121222121212012y y y y y y y k x x x x x x x -+-=-=-⨯=--+-,则0012OM y k x k ==-,设直线OM 的倾斜角为α,则1tan α2k=-,设直线AB 的倾斜角为β,则tan k β=,则()()()1tan αtan π2tan tan απ221tan αtan π12k k k kβθββ--+-=+-===---22k =±.对点训练1.已知(2,1)-是直线l 被椭圆221369x y +=所截得线段的中点,则直线l 的方程是( )A .20x y -=B .240x y -+=C .230x y ++=D .2310x y --=2.已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )A .12 B .12- C .2 D .2-3.已知双曲线2213y x -=上存在两点M,N 关于直线y x m =+对称,且MN 的中点在抛物线29y x =上,则实数m 的值为( )A .4B .-4C .0或4D .0或-4类型2 求曲线的标准方程典例2:已知椭圆2221(02)4x y b b+=<<的左右焦点分别为12,F F ,过左焦点1F 作斜率为2的直线与椭圆交于,A B 两点,AB 的中点是P ,O 为坐标原点,若直线OP 的斜率为14-,则b 的值是( )A .2B 3C .32D 2 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则2211214x y b +=,222224x y b+=1,两式相减可得14(x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0,∵P 为线段AB 的中点,∴2x p =x 1+x 2,2y p =y 1+y 2,∴1212y y x x --•212124y y b x x +=-+,又1212y y x x -=-k AB =2,121214y y x x +=-+∴2124b -=-,即22b =,∴2b =对点训练1.椭圆221ax by +=与直线12y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜2,则ab的值为( ) A 2 B 3 C .22 D .32.若双曲线的中心为原点,(0,2)F -是双曲线的焦点,过F 的直线l 与双曲线相交于M ,N两点,且MN 的中点为(3,1)P 则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=3.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为( )B .y 2=4x B .y 2=−4xC .x 2=4yD .y 2=8x类型三 点差法求离心率典例3:已知A ,B 是椭圆E :22221(0)x y a b a b+=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为( )A .23 B .33 C .23 D .53【答案】D【解析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+-则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,①又2200221x y a b +=,得2222002()b y a x a =-,即2202220y b x a a =--,②联立①②,得2249b a -=-,即22249a c a -=,解得5e =.对点训练1.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3] B .3(0,]4 C .3D .3[,1)42.经过双曲线22221(00)x y a b a b-=>>,的右焦点,倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[2,+∞)B .(1,2)C .(1,2]D .(2,+∞)3.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( ) A 5 B 51+ C .2 D 2 综合训练1.已知 m,n,s,t ∈R ∗,m +n =3,m s+nt=1,其中m ,n 是常数且m <n ,若s +t 的最小值是3+2√2,满足条件的点(m,n )是椭圆 x 24+y 216=1一弦的中点,则此弦所在的直线方程为( )A. x −2y +3=0B. 4x −2y −3=0C. x +y −3=0D. 2x +y −4=02.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12- D .123.已知双曲线22184x y -=上有不共线的三点、、A B C ,且AB BC AC 、、的中点分别为D E F 、、,若OD OE OF 、、的斜率之和为-2,则111AB BC ACk k k ++= ( ) A .-4 B .23- C .4 D .64.若双曲线的中心为原点,()2,0F -是双曲线的焦点,过F 直线l 与双曲线交于M ,N 两点,且MN 的中点为()1,3P ,则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=5.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜2,则m n 的值是( )A .22B 23C 92D 236.中心为原点,一个焦点为F (2)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=7.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( ) A .14 B .12 C .3 D .1548.已知椭圆()222210x y a b a b+=>>,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是(2,1)M -,则椭圆的离心率是( ) A 5B 3C 2D .12圆锥曲线中点弦问题解析题型识别:弦中点,斜率积用点差若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,点)(00,y x M 为AB 的中点,OM AB k k .的值为定值么? 答题模版第一步:若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x , 第二步:两式相减得0))(((2212122121=-++-+by y y y a x x x x ))(, 第三步:2121x x y y --是直线AB 的斜率k ,)(2,22121y y x x ++是线段AB 的中点)(00,y x ,化简可得2221212121a b x x y y x x y y -=--⋅++2200ab k x y -=⋅⇒类型1 求中点弦直线斜率或方程典例1:已知椭圆E :22142x y +=,O 为坐标原点,作斜率为k 的直线交椭圆E 于A ,B两点,线段AB 的中点为M ,直线OM 与AB 的夹角为θ,且tan 22θ=则k =( ) A .22±B .2±C .22D 2 【答案】A【解析】由题意知0k ≠,设()11,A x y ,()22,B x y ,()00,M x y ,则0122x x x =+,0122y y y =+,将A ,B 两点坐标代入椭圆方程22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22012121222121212012y y y y y y y k x x x x x x x -+-=-=-⨯=--+-,则0012OM y k x k ==-,设直线OM 的倾斜角为α,则1tan α2k=-,设直线AB 的倾斜角为β,则tan k β=,则()()()1tan αtan π2tan tan απ221tan αtan π12k k k kβθββ--+-=+-===---22k =±.对点训练1.已知(2,1)-是直线l 被椭圆221369x y +=所截得线段的中点,则直线l 的方程是( )A .20x y -=B .240x y -+=C .230x y ++=D .2310x y --= 【答案】B【解析】设直线和圆锥曲线交点为1(A x ,1)y ,2(B x ,2)y ,其中点坐标为(2,1)-,当斜率不存在时,显然不成立,设y kx m =+,分别代入圆锥曲线的解析式22111369x y +=,22221369x y +=并作差,利用平方差公式对结果进行因式分解,得12121212936y y y y x x x x -+=--+,得19236k =--,12k =,所以1(2)12y x =++,即:240x y -+=.2.已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )A .12 B .12- C .2 D .2- 【答案】A 【解析】设直线l 的方程为1y k x b =+,代入双曲线方程2212x y -=,得到2221112102k x bk x b ⎛⎫----= ⎪⎝⎭,得到11221212k bx x k +=-,设()()111212,,,M x k x b N x k x b ++,则()11212,22k x x x x N b ⎛⎫+++ ⎪⎝⎭,则21121212b k k x x k =+=+,故1212k k ⋅=,故选A .3.已知双曲线2213y x -=上存在两点M,N 关于直线y x m =+对称,且MN 的中点在抛物线29y x =上,则实数m 的值为( )A .4B .-4C .0或4D .0或-4 【答案】D【解析】∵MN 关于y=x+m 对称∴MN 垂直直线y=x+m ,MN 的斜率﹣1,MN 中点P (x 0,x 0+m )在y=x+m 上,且在MN 上设直线MN :y=﹣x+b ,∵P 在MN 上,∴x 0+m=﹣x 0+b ,∴b=2x 0+m由2213y x b y x =+⎧⎪⎨-=⎪⎩﹣消元可得:2x 2+2bx ﹣b 2﹣3=0△=4b 2﹣4×2(﹣b 2﹣3)=12b 2+12>0恒成立,∴M x +N x =﹣b ,∴x 0=﹣2b ,∴b=2m∴MN 中点P (﹣4m ,34m )∵MN 的中点在抛物线y 2=9x 上, ∴299164mm =-∴m=0或m=﹣4类型2 求曲线的标准方程典例2:已知椭圆2221(02)4x y b b+=<<的左右焦点分别为12,F F ,过左焦点1F 作斜率为2的直线与椭圆交于,A B 两点,AB 的中点是P ,O 为坐标原点,若直线OP 的斜率为14-,则b 的值是( )A .2B 3C .32D 2 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则2211214x y b +=,222224x y b+=1,两式相减可得14(x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0,∵P 为线段AB 的中点,∴2x p =x 1+x 2,2y p =y 1+y 2,∴1212y y x x --•212124y y b x x +=-+,又1212y y x x -=-k AB =2,121214y y x x +=-+∴2124b -=-,即22b =,∴2b =对点训练1.椭圆221ax by +=与直线12y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜2,则ab的值为( ) A .24 B .36C .22D .3【答案】C【解析】设点()11,A x y ,()22,B x y ,联立22112ax by y x⎧+=⎨=-⎩,得:()24410a b x bx b +-+-=,()()()244414164b a b b a b ab ∆=--+-=+- .12124414b x x a b b x x a b ⎧+=⎪⎪+⎨-⎪=⎪+⎩⇒12224x x b a b +=+,∴()121212*********x x y y x x -++-+-===()1241144b a x x a b a b -+=-=++.设M 是线段AB 的中点,∴M (2,44b a a b a b++).∴直线OM 的斜率为42224aa ab b b a b+==+则22ab=代入①满足△>0(a >0,b >0).2.若双曲线的中心为原点,(0,2)F -是双曲线的焦点,过F 的直线l 与双曲线相交于M ,N两点,且MN 的中点为(3,1)P 则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=【答案】B【解析】由题意设该双曲线的标准方程为22221(0,0)y x a b a b-=>>,1122(,),(,)M x y N x y ,则2211221y x a b -=且2222221y x a b-=,则1212121222()()()()y y y y x x x x a b +-+-=,即1212222()6()y y x x a b --=,则21221261(2)1230y y a x x b ---===--,即223b a =,则2244c a ==,所以221,3a b ==,即该双曲线的方程为2213x y -=.3.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为( )B .y 2=4x B .y 2=−4xC .x 2=4yD .y 2=8x 【答案】A【解析】设抛物线方程为y 2=2px ,直线与抛物线方程联立求得x 2−2px =0,∴x A +x B =2p ,∵x A +x B =2×2=4,∴p=2,∴抛物线C 的方程为y 2=4x .类型三 点差法求离心率典例3:已知A ,B 是椭圆E :22221(0)x y a b a b +=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为( )A 2B 3C .23D 5【答案】D【解析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+-则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,①又2200221x y a b +=,得2222002()b y a x a =-,即2202220y b x a a =--,②联立①②,得2249b a -=-,即22249a c a -=,解得5e =.对点训练1.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3(0,]2 B .3(0,]4 C .32D .3[,1)4【答案】C【解析】当P 是椭圆的上下顶点时,12F PF ∠最大,121120180,6090,F PF F PO ∴︒≤∠<︒∴︒≤∠<︒12sin 60sin sin 90,F PF ∴︒≤∠<︒113,,1c F P a F O c a ==≤<则椭圆的离心率e 的取值范围为32⎫⎪⎪⎣⎭.2.经过双曲线22221(00)x y a b a b-=>>,的右焦点,倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[2,+∞)B .(1,2)C .(1,2]D .(2,+∞) 【答案】A【解析】已知双曲线()2222100x y a b a b-=>,>的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b a ,∴3b a ≥e 2222224c a b a a+==≥,∴e ≥2,故选:A3.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( ) A 5 B 51+ C .2 D 2 【答案】B【解析】设直线1l 的方程为b y x a =,则直线2l 的方程为b y x a =-,设点11,b A x x a ⎛⎫ ⎪⎝⎭、22,b M x x a ⎛⎫- ⎪⎝⎭,则点11,b B x x a ⎛⎫-- ⎪⎝⎭,()1212AM bx x ak x x +=-,()12121212MBb b b x x x x a a a k x x x x -+-==--+,22AM BM b k k e a ∴⋅==,即21e e -=,即210e e --=,1e >,解得512e =,故选:B.综合训练1.已知 m,n,s,t ∈R ∗,m +n =3,ms +nt =1,其中m ,n 是常数且m <n ,若s +t 的最小值是3+2√2,满足条件的点(m,n )是椭圆 x 24+y 216=1一弦的中点,则此弦所在的直线方程为( )A. x −2y +3=0B. 4x −2y −3=0C. x +y −3=0D. 2x +y −4=0 【答案】D【解析】因为 m ,n ,s ,t 为正数,m +n =3,ms +nt =1,s +t 的最小值是 3+2√2,所以 (s +t )(ms +nt ) 的最小值是 3+2√2,所以 (s +t )(ms +nt )=m +n +mt s+ns t≥m +n +2√mn ,满足mt s =ns t时取最小值,此时最小值为 m +n +2√mn =3+2√2,得:mn =2,又:m +n =3,所以,m =1,n =2.设以 (1,2) 为中点的弦交椭圆 x 24+y 216=1 于A (x 1,y 1),B (x 2,y 2),由中点坐标公式知 x 1+x 2=2,y 1+y 2=4,把 A (x 1,y 1),B (x 2,y 2)分别代入 4x 2+y 2=16,得 {4x 12+y 12=16,4x 22+y 22=16,两式相减得 2(x 1−x 2)+(y 1−y 2)=0,所以 k =y 2−y 1x 2−x 2=−2.所以此弦所在的直线方程为 y −2=−2(x −1),即 2x +y −4=0.2.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12- D .12【答案】C 【解析】由题得2222222242,4()2,2c c a a b a a b a =∴=∴-=∴=.设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=,所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-.3.已知双曲线22184x y -=上有不共线的三点、、A B C ,且AB BC AC 、、的中点分别为D E F 、、,若OD OE OF 、、的斜率之和为-2,则111AB BC ACk k k ++= ( ) A .-4 B .23- C .4 D .6 【答案】A【解析】设112200(,),(,),(,)A x y B x y D x y ,则1201202,2x x x y y y +=+=,2211184x y -=,2222184x y -=,两式相减,得12121212()()()()84x x x x y y y y +-+-=,即0121202y y y x x x -=-,即12OD AB k k =,同理,得112,2OE OF BC AC k k k k ==,所以1112()4OD OE OF AMBC ACk k k k k k ++=++=-. 4.若双曲线的中心为原点,()2,0F -是双曲线的焦点,过F 直线l 与双曲线交于M ,N 两点,且MN 的中点为()1,3P ,则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=【答案】D【解析】根据题意,()2,0F -是双曲线的焦点,则双曲线的焦点在x 轴上,设双曲线的方程为22221x y a b-=,且()11,M x y ,()22,N x y ,直线MN 过焦点F ,则()30112MNK -==--,则有12121y y x x -=-,变形可得1212y y x x -=-,2211222222221,1,x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩①②,-①②,2222121222x x y y a b--=,又由1212y y x x -=-,且122x x +=,126y y +=,变形可得:223b a =,又由2c =,则224a b +=,解可得:21a =,23b =,则要求双曲线的方程为:2213y x -=.5.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则m n 的值是( )A .22B 23C .922D 23【答案】A【解析】设()()1122,,,M x y N x y ,设MN 中点为1212,22x x y y A ++⎛⎫⎪⎝⎭,直线MN 的斜率为1-,直线OA 的斜率为12121212222y y x x x x y y ++==++.由于,M N 在椭圆上,故2211222211mx ny mx ny ⎧+=⎨+=⎩,两式相减得()()222212120m x x n y y -+-=,化简为12121212x x y y m n y y x x +--⋅=+-,即221,2m m n n -=-=. 6.中心为原点,一个焦点为F (2)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=【答案】C【解析】由已知得c =2,设椭圆的方程为2222150x ya a +=-,联立得222215032x y a a y x ⎧+=⎪-⎨⎪=-⎩,消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2),由根与系数关系得x 1+x 2=()22125010450a a --,由题意知x 1+x 2=1,即()22125010450a a --=1,解得a 2=75,所以该椭圆方程为2212575x y +=.7.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( ) A .14 B .12 C .3 D 15 【答案】C【解析】由已知得(,0),(,0)A a B a -,设()00,x y ,由题设可得,2200221x y a b+=,所以()222202b y a x a=-.因为()222220200022222000014A MM B b a x y y y b a k k x a x a x a x a a -⋅=⋅===-=-+---,所以2214b a =,则22222222314c a b b e a a a -===-=,所以3e =8.已知椭圆()222210x y a b a b+=>>,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是(2,1)M -,则椭圆的离心率是( ) A 5B 3C .22D .12 【答案】C【解析】显然(2,1)M - 在椭圆内,设直线30x y -+=与椭圆的交点为112212(,),(,)()A x y B x y x x ≠,由M 是,A B 的中点有:12124,2x x y y +=-+=,将,A B 两点的坐标代入椭圆方程得:2211221x y a b +=, 2222221x y a b+=。
中点弦在圆锥曲线规律

中点弦在圆锥曲线规律
中点弦定理是圆锥曲线中的一个基本定理,它描述了圆锥曲线上一点到两个焦点的距离之差等于它到一个定点(中点弦所在直线与圆锥曲线的交点)的距离的两倍。
具体来说,对于椭圆、双曲线和抛物线,中点弦定理可以分别表示为:
椭圆:设M为椭圆上一点,F1和F2为椭圆的两个焦点,N为MF1的中点,则MF2=2FN。
双曲线:设M为双曲线上一点,F1和F2为双曲线的两个焦点,N为MF1的中点,则MF2=-2FN。
抛物线:设M为抛物线上一点,F为抛物线的焦点,T 为MF的中点,则MT=PF,其中P为抛物线的顶点。
中点弦定理在圆锥曲线的研究中有着广泛的应用。
例如,在椭圆的应用中,中点弦定理可以用于计算椭圆上一点的速度和加速度等物理量;在双曲线的应用中,中点弦定理可以用于计算双曲线上一点的切线和法线等几何量;在抛物线的应用中,中点弦定理可以用于计算抛物线上一点的切线和法线等几何量。
中点弦问题(基础知识)

圆锥曲线的中点弦问题一:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.①在椭圆中,以为中点的弦所在直线的斜率;②在双曲线中,以为中点的弦所在直线的斜率;③在抛物线中,以为中点的弦所在直线的斜率。
注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0!1、以定点为中点的弦所在直线的方程例1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
例2、已知双曲线1222=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。
若存在这样的直线l ,求出它的方程,若不存在,说明理由。
策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。
本题属于中点弦问题,应考虑点差法或韦达定理。
2、 过定点的弦和平行弦的中点坐标和中点轨迹例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标。
例4、已知椭圆1257522=+x y ,求它的斜率为3的弦中点的轨迹方程。
3、 求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为21,求椭圆的方程。
∴所求椭圆的方程是1257522=+x y 4、圆锥曲线上两点关于某直线对称问题例6、已知椭圆13422=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。
五、注意的问题(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。
利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。
高考数学专题复习圆锥曲线中点弦问题

关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题, 是解析几何中的重要内容之一,也是高考的一个热点问题.这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题.其解法有代点相减法、设而不求法、参数法、待定系数法 及中央对称变换法等.一、求中点弦所在直线方程问题在的直线方程. 解法一:设所求直线方程为 y-1=k(x-2)22 _ _ 2(4k1)x8( 2k k)x又设直线与椭圆的交点为 A(x 1,y 1),B (x 2,y 2),那么x 1,x 2是方程的两个根,于是8(2k 2 k)x 1 x2—TT~2一"一,4k 1 2又M 为AB 的中点,所以 工一9 4^2一s 2 ,2 4k 1-1解得k-, 2故所求直线方程为 x 2y 4 0.2 2x y 例2过椭圆—— —1上一点P (-8, 0)作直线交椭圆于 Q 点,求PQ 中点的轨迹万 6436x 2例1过椭圆一 16 2y-1 内一点 M (2, 41)引一条弦,使弦被点 M 平分,求这条弦所,代入椭圆方程并整理得: _ 2 一4(2k 1)16 0解法二:设直线与椭圆的交点为 A(x 1, 所以 x 1 x 2 4 , y 1 y 2 2,22又A 、B 两点在椭圆上,那么 x 1 4 y l.... 1 . (2)222两式相减得(x 1 x 2 ) 4( y 1 y 2 )所以Li- X21,即x 〔 x 2 4( y 〔 y 2) 2故所求直线方程为 x 2y 4 0. 解法三:设所求直线与椭圆的一个交点为 那么另一个交点为 B(4- x ,2 y ), 由于A 、B 两点在椭圆上,所以有(4两式相减得x 2y 4 0, 由于过A 、B 的直线只有一条, 故所求直线方程为 x 2y 4 0.、求弦中点的轨迹方程问题 %), B (x 2,y 2), M (2, 1)为 AB 的中点,22_16 , x 2 4 y 2 16 ,0 ,k1kAB八,2A( x , y ),由于中点为M (2, 1),22x 24y 216 2-2x)24(2 y)2 16程.解法一:设弦PQ中点M ( x, y),弦端点P ( Xi, yi) , Q ( X2, y2),2 2那么有9X1216y12576,两式相减得9(x12 x22)9X2 16y2 576三、弦中点的坐标问题例3求直线y x 1被抛物线y2 4x截得线段的中点坐标.解:解法一:设直线y x 1与抛物线y2 4x交于A(x1, y1), B(x2, y2),其中点y x 1P(x0,y o),由题意得2,y 4x消去y 得(x 1)2 4x,即x2 6x 1 0 ,所以x.六3, y. x. 1 2,即中点坐标为(3,2).解法二:设直线y x 1与抛物线y2 4x交于人(为」),B(x2,y2),其中点P(x0,y0),由题意得"24",两式相减得y22 y: 4(x2 x1),y2 4x2所以(y2 y1)(y2 y1)416(y:2、y2 ) 0,又由于x1 x2 2x, y1 y22y,所以9 2x(x1x2) 16 2y(y1 y2) 0,y1y29x 工所以—————,而k PQx1x216y化简可得9x2 72x 16y2 0 (x 8).解法二:设弦中点M(x,y) , Q ( x1, y1),由x W 2y, x1 8 y1 广八八-一,y 工可得x1 2x 8 ,2 22 又由于Q在椭圆上,所以卫64 1 ,即4(x“ 36 64 鱼136所以PQ中点M的轨迹方程为(x 4)16x 8).所以y i y 24,即y o 2 , X 0 y 0 1 3,即中点坐标为〔3,2〕.上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些根本解法.下面我们 看一个结论 2 2弓।理 设A 、B 是二次曲线C :A X Cy D X Ey F弦AB 的中点,那么 0上的两点,p 〔X0,y0〕为 kAB E 0) 2 设 A (X I ,V I )、B (X 2, y 2)贝u Axi 2 AX 22Cy i 2Cy 2 D X I Ey i F 0……(i) DX 2 Ey 2 F ⑴(2)得 A(X i .2A X 0 (x i X 2 ) X 2)(X i X 2) C(y i y 2)(y i v2 D(X i X 2) 2) E(y i V2) 0 . (2AX 0 D)(x i •• 2Cy 0 〔说明:当A2A X 0 酝B D E ) 2推论i 设圆X 2X 0 D 2y 0 k AB 推论2b \X--- -• ----------k AB 设点 2Cy o (y i y 2)D(X 1 X 2) X 2) (2Cy ° E)(y i y ?) .X i X 2y i y X i X 2 时,上面的结论就是过二次曲线 〔假设点设椭圆a2・a y0.〔注:对丫?血2・a V .〕推论3 设双曲线bi?及 2 ■ E(y i y 2) 2AX 0 2Cy ° E 即 k AB2AX 0 D 2C V ^~~ED X Ey F 0的弦 P 在圆上时,那么过点 2匕b 2a< b C 上的点P 〔X0,y .〕的切线斜率公式, AB 的中点为 p 〔X0,y0〕〔y .0〕,那么 k P 的切线斜率2X 0 D2y .E为) i的弦AB也成立.假设点2y b 2a y 0.〔假设点p 在双曲线上,的中点为P〔X0,y.〕y 00),那么P 在椭圆上, 那么过点P 的切线斜率为i的弦AB 的中点为那么过 P 点的切线斜率为2推论4设抛物线y2Px 的弦AB 的中点为P 〔x0,y0〕〔k 卫〕P 在抛物线上,那么过点 P 的切线斜率为y0P (x 0 , y 0 ) y 00)那么y.bl?a 2 ■a V .)k AB0)那么P y0.(假我们可以直接应用上面这些结论解决有关问题,下面举例说明.例1、求椭圆252L 116 斜率为3的弦的中点轨迹方程.解:设P (x,V)是所求轨迹上的任一点,那么有c 16 cx3 — ?一25 y,故所示的轨迹方程为( 16x+75y=075,2412x;1)…,,一2例2、椭圆a2y 1(a b 0),A、2 ,2a bB是椭圆上两点,线段AB的垂直平分线l2 ,2a bP(x0,0),求证:证实:设AB的中点为T(x i,y i),由题设可知AB与x轴不垂直,,y i 0b2 a2 aQy i --- Z-■''.•.l的方程为:2ax1 ~ 1T2a b2 ,2a b -.l±AB2 土?〞(xb x1• . | x1 | ab2a2例3、抛物线C: y x ,直线在关于l对称的两点,k的取值范围是什么?解:设中点为C上两点A、P(x0 , y0 )(k AB 12y0令y=02*?t(x.x1)2a-2""ab-?x01l:y k(x 1) 1,要使抛物线C上存B两点关于l对称,AB的0)1k2 k(x0 1)•• P在抛物线内_ 2(k 2)( k1,1k24y0. PC1 kl y°k(x°J 1 1 I、P( ,- k)2 k 21) 1,k3» 0,4k与抛物线有关的弦的中点的问题〔1〕中点弦问题:y =3+ 1与/+_/+分-了= 1交于两点,且这两点关于直缥+ y = 0对称,那么笳+5 = 7〔上题麻烦了.是圆不用中点法〕争两交点是〔工1,乃、〔电1?都满足二i■太曲线方程.?〔1〕•㈡〕有〔局一/〕3 +/〕+〔>[-M〕C X1+⑷土中.「占〕-〔>-以〕=.小同时除出一々〕有区+引+33〔乃+打〕〞一"建二0」〔占一修〕〔七一刍〕空生就是直线的斜率E 〔西十两〕,乃〕就是交点中点坐标的两倍,由关于另〔占-%〕直线对称,所以逐=-1,且交点的中点就是两直线交点为〔」,当,所以, 2 2占十勺二1 j【十乃二1,所以又有1+ 〔1〕+匕・31〕=.得到g/p例1由点〔2,0〕向抛物线y2 4x弓|弦,求弦的中点的轨迹方程.分析:解决问题的关键是找到弦的端点A、B在直线上的性质和在抛物线上的性质的内在联系.解法1:利用点差法. 2 2设漏点为A〔x i,yj , B〔x2,y2〕,那么y i 4x i, y4x2,2 2 ., 、两式相减得y2y1 4〔 x2x1〕, ①①式两边同时除以x2 x1,得〔y2 y i〕 y—y1 4, ②x2x1设弦的中点坐标为〔x, y〕,那么x1 x2 2x, y1 y2 2y, ③又点〔x, y〕和点〔2,0〕在直线AB上,所以有」一 y 2y1. ④瓯'+短+㈣-乃= 1.〕*、婚+W+6电-打二1⑵2 x2x1y i y 22 2一代入(i)得 y 2 2(x 2)k2 2故得所求弦中点的轨迹万程是y 2(x 2)在抛物线y 4x 内部的局部.评注:(i )求点的轨迹方程即是求曲线上的点的横、纵坐标所满足的关系式,此题所给 (x, y)与条件的内在联系,列关于 x, y 的关系式,进而求出轨迹的方程.(2)弦中点轨迹问题与中点的关系,要学会推导,并能运用.将③、④代入②得2y y 4, x 22整理得y 2(x 2).故得中点的轨迹方程是 y 2 2(x 2)在抛物线y 2 4x 内部的局部. 解法2:设弦AB 所在直线的方程为y k(x 2),由方程组y k(x 2)4x消去x 并整理得ky 2 4y 8k 0, (3)(x i , y i )、 B (x 2,y 2)、 '\ ' (x, y),对于方程(3),由根与系数的关系,有y i V2 2出的两种方法,都是找动点 设抛物线y 22 Px (0)的弦 AB ,A (x i ,y i ) ,B(x 2,y 2),弦 AB 的中点 C (x o ,y 0),2,y i 那么有 2 y 22px i2 Px 2⑴(2)(i) — ( 2)2y i 2y 22p(x i x 2),.y i y 2x i x 22P y i y 2将 y i y 2y 1y 2q _yi 72,代入上式,并整理得x i x 2k AB—,这就是弦的斜率 y .例2抛物线y22x ,过点Q(2,i)作一条直线交抛物线于A,B两点,试求弦AB的中点轨迹方程.解:如图,设弦AB的中点为A、B、M点坐标分别为(x[,y i),2 -(x,y),根据题意设有y i2x 1 ,①2 -公y2 2x 2 ,② x 1 x 2 2x , ③ y iy 2 2y,④ rd,⑤x 1 x 2 x 2y i y 2i x 1 x 2, -------- -,x i X2y2-i 2 7 ⑥代入⑤得,y 丫*2,即(丫3)x -o2y 2 2x ,利用根与系数的关系,求出弦中点的轨迹方程.专题:直线与抛物线的位置关系及中点弦问题(1)位置关系:Q 直线/:, =必+皿用=0) r 抛物线y 2 = 2px(p>0)联立解CJ tky~ -2/?y + 2^ = 0 @假设k 二 (L 直战与抛物战的对称轴平行或重合,直线与抛物线相交于一点:假设k HU , △真线与抛物线相交,有阴个交点;A = 0n 亢浅与抛物浅相切,有一个交点;宜线与抛物线相离,无交点二(2)相交弦长:宜城与圆世曲线相交的茂长公式设直线圆锥曲线才Fi.r4)=O .它HI 的交点为Pi (xi»yi)- Pj 口?而,[Fix. v) = 0 且由1 ,Ti 消去了得到那苏十H.r+p=0『mHO), △=/ 一4川p*[,二心 + H设马・力3 那么弦长公式为;那么I AE 匕J1 +/那么 +//一4而/ 假设联立消去不得y 的一元二次方程:町/十fry + f/ = 0(m * 0)S 小阳,为yJ 『Ml AB 1= j + Jjbi +y 万 一4%力 {3)典洌分析:④代入①—②得,2 y(y iy 2) 2(x 1评注:此题还有其他解答方法,如设AB 的方程为y k(x 2) i ,将方程代入例1抛物线的方程为y2=4x,直线1过定点斜率为k,k为柯值时,直线1与抛物线y 2 = 4x :只有一个公共点;有两个公共点;没有公共点?解:由题意,设直绷的方程为y-l = Ar(x+2)由方程组e;:::(x+2)ffl ky2 - 4y + 4 (2k +1) - O (1)(1)当k = O时,由方程(1)得y = l将y = 1 代入y2 = 4x,得x =这时直线,与抛物线只有V个公共点g ,1)(2)当kHO时,方程⑴的判别式为©A = T6 冲+"I)⑴当A = 0时,即2k2 + k・l = 0,解得k = ・l,或k =;于是当k=-l,或k=T时,方程(1)只有一个解,从而方程组只有一个解.此时直线1与抛物线有一个交点.(2)当A>0时即2尸+J <0,解得—1<上< —2于是当时,方程⑴有两个解,从而方程组有两个解.此时直线1与抛物线有两个交点.(3)当A <0时,即+解得k<-l或幺>-于是当k<-l或k>不时,方程(1)没有肝,从而方程组没有解.此时直线I与制物线没有交点.绿上所述:当・l<k<g且k*0时,直缭口抛物线有网个交点;当k7或或k・0时,直蝴抛物线有一个交点;2当k<-l或k>:时,直缭口抛物线没有交点.例2、抛物线C:J=4x,设直线与抛物线两交点为A、B,且线段AB中点为M 〔2, 1〕,求直线/的方程.解由即意可知,亘线1斜率一定存在,故可设庆〔勺,?〕,13@2,%〕〔乂1工乂2〕,Mx l + x2 = 4,y1+y2 = 2曲[曰=4% =2!L^=_1_=2 gp k = 2I月=4七3一出乂+»2 2止匕由f直线/的方程为y-l = 2〔x-2〕,艮P2x-y-3 = 0由y - 4x 消x彳号y2・2y-6 = 0 n△ > 02x-y-3 = 0所以直线/的方程为y・l = 2〔x-2〕RU2x・y・3 = 0说明:中点弦问鹿的常见解决方法,点差法例3抛物线的顶点在原点,焦点在x釉的正半轴上,百线y = -4x + ]被抛物线所截得的弦AB的中点的纵坐标为- 2 .〔I〕求抛物线的方程:〔2〕是否存在异于原点的定点H,使得过〃的动直线与抛物线相交于A Q两点,且以PQ为直径的圆过原点?解〔1〕:由条件可设抛物线方程为:r =2px〔p>o〕联立直线y = -4x+l化简得:2y2+〃y - 〃 =〔〕设43],必〕,8〔/2,丫2〕那么?+〕'2 =-^ = -4.,./? = 8抛物纹方程为:y 2 =]6工〔2〕设存在满足条件的定点内.设动直线方程为〕& + 0〕联立抛物线方程化简得:02-16丁 + 161=0设.〔再,必〕,..2,/2〕那么有用/ + 丫.2 =〔〕即:b = -16k 故动电线方程为丁=6-164 = Z:〔x-16〕,恒过定点〔16. 0〕当直线斜率不存在时,设宜线方程为/ = %,易触得% = 16.粽匕存在异于原点的定止〃(16, 1J)满足条件0例4直线『过定点人43且与‘抛物线.:5'22#(2>0)交]子,Q两点,假设以PQ 为直径的阿枇过原点..求尸的伍解:可设直线/的方程为f = my+4代入« =2『工得y L-2/JW1V-8/J = 0»设代百,X )◎0,%)•那么九力=—8/,斯与=?- * =竽匕=16+2P 2p 4p由题总如,OPLOQ. Wl OP OQ = 0即丹马+耳为= 16 —8p = 0; p 二2此时,抛物线的方程为f = 4K.例5在抛物战y? = 64十上求一点,使到电战4K十3y+46 = 0的距嘉最短,并求出最短距瓦解;设与百线4#+ 3y +用=0平行且与楠制相切的直建方程为:x-y + m = 0联立化筒群/ +48v-48w = 0 L)由A = 0解得旧=-12,故切线方程为:4工+ 3, —12 = 0代人双曲线方程解得f 9-24 )最短师离d = 2例6求直线y x 1被抛物线y2 4x截得线段的中点坐标.解:解法一:设直线y x 1与抛物线y2 4x交于A(x1,y1), B(x2,y2),其中点y x 1P(x0,y0),由题意得2,y 4x消去y 得(x 1)2 4x,即x2 6x 1 0,所以x.3, y0 x. 1 2,即中点坐标为(3,2).解法二:设直线y x 1与抛物线y2 4x交于A(x1,y) , B(x2,y2),其中点2P(x0,y0),由题意得y124x1,两式相减得\2 y: 43x1), y2 4x2所以(y2 y1)(y2 y1)4,所以y〔y2 4,即y0 2 , x0y 1 3,即中点坐标为(3,2).。
圆锥曲线中点弦典型例题及解析

01
总结词
这类问题主要考察了圆锥曲线与切线相关的性质和定理,需要利用切线
性质和圆锥曲线的定义来解决。
02
详细描述
在解决与切线相关的问题时,我们需要利用圆锥曲线的切线性质和定义,
结合题目给出的条件,推导出与中点弦相关的方程或不等式,进而求解。
03
示例
已知抛物线C的方程为y^2 = 2px (p > 0),过其焦点F作直线与C交于A、
数形结合
将代数问题与几何图形相结合 ,利用几何意义求解。
THANKS
感谢观看
特殊情况
当点$P$为圆锥曲线的焦点时, 中点弦称为焦点弦。
中点弦的性质
垂直性质
角度性质
中点弦所在的直线与过点$P$的切线 垂直。
中点弦与切线之间的夹角等于该弦所 对的圆周角。
长度性质
中点弦的长度与过点$P$的切线长度 成反比。
中点弦的几何意义
中点弦是连接圆锥曲 线上的两个对称点的 线段。
中点弦的长度等于圆 锥曲线上的两个对称 点到点$P$的距离之 和的一半。
详细描述
在解决椭圆的中点弦问题时,需要注意中点 弦的特殊性质。例如,当直线过椭圆中心时, 中点弦即为椭圆本身;当直线的斜率为0或 无穷大时,中点弦的长度为椭圆的长轴或短 轴的长度。这些特殊性质可以帮助我们快速 判断中点弦的性质和范围。
双曲线的中点弦问题
总结词
双曲线的性质和方程
详细描述
双曲线的中点弦问题主要考察了双曲线的性质和方程。解决这类问题需要利用双曲线的 性质,如对称性、开口方向等,以及双曲线的方程,如标准方程、参数方程等。通过联 立直线和双曲线的方程,消元化简,可以得到关于中点弦的方程,进一步求解得到中点
专题9圆锥曲线中的中点弦-学生版

7.(2013•浙江)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于_________.
三、解答题
8.已知椭圆 ,求以点P(2,-1)为中点的弦所在的直线方程.
A. B.
C. D.
二、填空题
4.已知椭圆C的焦点 (-2 ,0)、 (2 ,0),且长轴长为6,设直线 交椭圆C于A、B两点,求线段AB的中点坐标
5.设已知抛物线 的顶点在坐标原点,焦点为F(1,0),直线 与抛物线 相交于A,B两点.若AB的中点为(2,2),则直线 的方程为_____________.
Step2:代入点坐标:即 ;
Step3:作差得出结论:(1)-(2)得: 。(作为公式记住,在小题中直接用。)
同理可推出以下三个重要结论:
ⅱ. ;
ⅲ. ;
ⅳ. .
方法二步骤规范模板:
①设直线 的方程;
②直线与曲线联立,整理成关于 (或 )的一元二次方程;
③写出根与系数的关系;
④利用 ,把根与系数的关系代入。
14.设椭圆方程为 ,过点 的直线l交椭圆于点A,B,O是坐标原点,点P满足 ,点N的坐标为 ,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2) 的最小值与最大值.
15.若直线 过抛物线 的焦点,与抛物线交于 两点,且线段 的中点的横坐标为2,求线段 的长.
16.已知点 在抛物线 上, 的重心与此抛物线的焦点 重合(如图).
Step2:代入点坐标:即 ; ,
Step3:作差得出结论:(1)-(2)得: 。(作为公式记住,在小题中直接用。)
用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题一、求以定点为中点的弦所在直线的方程例1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。
解:设直线与椭圆的交点为、为的中点又、两点在椭圆上,则,两式相减得于是即,故所求直线的方程为,即。
例2、已知双曲线,经过点能否作一条直线,使与双曲线交于、,且点是线段的中点。
若存在这样的直线,求出它的方程,若不存在,说明理由。
解:设存在被点平分的弦,且、则,,两式相减,得故直线由消去,得这说明直线与双曲线不相交,故被点平分的弦不存在,即不存在这样的直线。
策略:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。
由此题可看到中点弦问题中判断点的位置非常重要。
(1)若中点在圆锥曲线内,则被点平分的弦一般存在;(2)若中点在圆锥曲线外,则被点平分的弦可能不存在。
二、求弦的中点坐标和中点轨迹方程例3、已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点,求点的坐标。
解:设弦端点、,弦的中点,则,又,两式相减得即,即点的坐标为。
例4、已知椭圆,求它的斜率为3的弦中点的轨迹方程。
解:设弦端点、,弦的中点,则,又,两式相减得即,即,即由,得点在椭圆内它的斜率为3的弦中点的轨迹方程为三、求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求椭圆的方程。
解:设椭圆的方程为,则┅┅①设弦端点、,弦的中点,则,,又,两式相减得即┅┅②联立①②解得,所求椭圆的方程是四、求圆锥曲线上两点关于某直线对称的问题例6、已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。
解:设,为椭圆上关于直线的对称两点,为弦的中点,则,两式相减得,即,,这就是弦中点轨迹方程。
它与直线的交点必须在椭圆内联立,得则必须满足,即,解得例7、已知抛物线C: 和直线为使抛物线上存在关于对称的两点,求的取值范围。
解:设抛物线C上存在不同的两点关于直线对称,线段的中点为,则,①,②① -②可得:=,即由于,所以,故,即,即。
高中数学圆锥曲线中,如何解决中点弦的问题?

高中数学圆锥曲线中,如何解决中点弦的问题?
答:
一·中点弦问题
1.中点弦问题是圆锥曲线中一类典型的问题,是高考命题的热点。
2.中点弦问题即可以考查小题,也可以作为大题出现,常常涉及求直线方程、求直线斜率、求曲线方程、求曲线离心率等知识点。
3.下面以椭圆为例,处理中点弦问题常常有以下三种方法:韦达定理、点差法和椭圆的垂径定理。
二·典例剖析
三·失误提醒
1.值得说明的是,以上各种方法皆体现了“设而不求”的数学思想。
另外,法3其实是法2的结论的变形。
2.在选择、填空题中,三种方法皆可,不过采用椭圆的垂径定理更为快捷。
但是在解答题中,最好使用韦达定理或者点差法,避免因过程不严密而失分。
以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学专题复习之圆锥曲线的中点弦问题
直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。
这类问题一般有以下三种类型:
(1)求中点弦所在直线方程问题;
(2)求弦中点的轨迹方程问题;
(3)求弦中点的坐标问题。
其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。
一、求中点弦所在直线方程问题
例1 过椭圆14
162
2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。
解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:
016)12(4)2(8)14(2222=--+--+k x k k x k
又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是
1
4)2(82221+-=+k k k x x , 又M 为AB 的中点,所以21
4)2(422221=+-=+k k k x x , 解得2
1-=k , 故所求直线方程为042=-+y x 。
解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y ,
又A 、B 两点在椭圆上,则1642121=+y x ,1642
222=+y x ,
两式相减得0)(4)(22212221=-+-y y x x , 所以21)(421212121-=++-=--y y x x x x y y ,即2
1-=AB k , 故所求直线方程为042=-+y x 。
解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,),
因为A 、B 两点在椭圆上,所以有⎩⎨⎧=-+-=+16
)2(4)4(1642222y x y x , 两式相减得042=-+y x ,
由于过A 、B 的直线只有一条,
故所求直线方程为042=-+y x 。
二、求弦中点的轨迹方程问题
例2 过椭圆136
642
2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。
解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),
则有⎩⎨⎧=+=+576
16957616922222121y x y x ,两式相减得0)(16)(922212221=-+-y y x x , 又因为x x x 221=+,y y y 221=+,所以0)(216)(292121=-⋅+-⋅y y y x x x , 所以y x x x y y 1692121=--,而)
8(0---=x y k PQ ,故8169+=x y y x 。
化简可得01672922=++y x x (8-≠x )。
解法二:设弦中点M (y x ,),Q (11,y x ),由281-=x x ,2
1y y =可得821+=x x ,y y 21=,
又因为Q 在椭圆上,所以136642
121=+y x ,即136464)4(42
2=++y x , 所以PQ 中点M 的轨迹方程为19
16)4(2
2=++y x (8-≠x )。
三、弦中点的坐标问题
例3 求直线1-=x y 被抛物线x y 42
=截得线段的中点坐标。
解:解法一:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点),(00y x P ,由题意得⎩
⎨⎧=-=x y x y 412, 消去y 得x x 4)1(2=-,即0162=+-x x , 所以32
210=+=x x x ,2100=-=x y ,即中点坐标为)2,3(。
解法二:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点
),(00y x P ,由题意得⎩⎨⎧==2
2212144x y x y ,两式相减得)(4122122x x y y -=-, 所以4))((1
21212=-+-x x y y y y ,
所以421=+y y ,即20=y ,3100=+=y x ,即中点坐标为)2,3(。
上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些基本解法。
下面我们看一个结论
引理 设A 、B 是二次曲线C :
022=++++F Ey Dx Cy Ax 上的两点,P ),(00y x 为弦AB 的中点,则
)02(22000≠+++-=E Cy E Cy D Ax k AB 。
设A ),(11y x 、B ),(22y x 则0112121=++++F Ey Dx Cy Ax (1)
0222222=++++F Ey Dx Cy Ax (2)
)2()1(-得0)()())(())((212121212121=-+-+-++-+y y E x x D y y y y C x x x x A ∴0)()()(2)(22121210210=-+-+-+-y y E x x D y y Cy x x Ax
∴0))(2())(2(210210=-++-+y y E Cy x x D Ax
∵020≠+E Cy ∴21x x ≠ ∴E Cy D Ax x x y y ++-=--00212122即
E Cy D Ax k AB ++-=0022。
(说明:当B A −→−时,上面的结论就是过二次曲线C 上的点P ),(00y x 的切线斜率公式,即E Cy D Ax k ++-
=0022)
推论1 设圆022=++++F Ey Dx y x 的弦AB 的中点为P ),(00y x ()00≠y ,则
E y D x k AB ++-
=0022。
(假设点P 在圆上时,则过点P 的切线斜率为)
推论 2 设椭圆122
22=+b y a x 的弦AB 的中点为P ),(00y x ()00≠y ,则
0022y x a b k AB •-=。
(注:对a≤b 也成立。
假设点P 在椭圆上,则过点P 的切线斜率为0022y x a b k •-=)
推论3 设双曲线122
22=-b y a x 的弦AB 的中点为P ),(00y x ()00≠y 则
0022y x a b k AB •=。
(假设点P 在双曲线上,则过P 点的切线斜率为
0022y x a b k •=) 推论4 设抛物线px y 22=的弦AB 的中点为P ),(00y x ()00≠y 则0y p
k AB =。
(假
设点P 在抛物线上,则过点P 的切线斜率为
)0y p k =
我们可以直接应用上面这些结论解决有关问题,下面举例说明。
E y D x k ++-=0022
例1、求椭圆1162522=+y x 斜率为3的弦的中点轨迹方程。
解:设P (x ,y )是所求轨迹上的任一点,则有
y x •-=25163,故所示的轨迹方程为16x+75y=0
)2417524175(<<-x 例2、已知椭圆),0(122
22>>=+b a b y a x A 、B 是椭圆上两点,线段AB 的垂直平分线l
与x 轴相交于P )0,(0x ,求证:
a b a x a b a 2
2022-<<--。
证明:设AB 的中点为T ),(11y x ,由题设可知AB 与x 轴不垂直,∴01≠y ,
∴
1122y x a b k AB •-= ∵l ⊥AB ∴1122x y b a k l •= ∴l 的方程为:)(111221x x x y b a y y -•=- 令y=0 得)(01011221x x x y b a y -•=-
∴02221x b a a x •-= ∵a x <||1 ∴a x b a a <•-||0222
∴
a b a x a b a 2
2022-<<-- 例3、已知抛物线C :x y =2
,直线 ,1)1(:+-=x k y l 要使抛物线C 上存
在关于l 对称的两点,k 的取值范围是什么?
解:设C 上两点A 、B 两点关于l 对称,AB 的
中点为P ),(00y x ()00≠y
∴
k y y p k AB 121
00-=== ∴k y 210-=∵P ∈l ∴,1)1(00+-=x k y ∴,1)1(210+-=-x k k ∴
k x 1210-= ∴)21,121(k k P -- ∵P 在抛物线内 ,∴k k 121412-< ∴,04423<+-k k k
∴,04)22)(2(2<+-+k k k k ∴.02<<-k。