特殊平行四边形期末复习总结
特殊平行四边形知识点归纳

特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。
2.平行线性质:特殊平行四边形的两对边分别是平行的。
根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。
3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。
这个性质可以通过两个相似三角形的性质证明得出。
4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。
这个性质可以通过垂直线的性质证明得出。
5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。
这个性质可以通过平行线的性质证明得出。
6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。
这个性质也可以通过夹角的定义和平行线的性质证明得出。
7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。
这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。
特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。
例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。
特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。
总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。
通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。
初中数学特殊平行四边形知识点总结

特殊的平行四边形一、平行四边形(复习):中心对称图形,非轴对称图形平行四边形的定义:两组对边分别平行的四边形叫做平行四边形平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。
(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
补充:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
(3)平行线分线段成比例定理:两条直线被一组平行线所截,截得的对应线段的长度成比例。
推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)两条平行线的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
平行四边形的面积:S平行四边形=底边长×高=ah二、菱形:特殊平行四边形,有平行四边形一切性质菱形的定义:有一组邻边相等的平行四边形叫做菱形菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
新北师大版数学九年级上特殊平行四边形复习()省公开课获奖课件说课比赛一等奖课件

互平分”这一性质能够得出直角三角
形旳一种常用旳性质:直角三角形斜
边上旳中线等于斜边长旳二分
__________.
之一
┃知识归纳┃
5.矩形旳鉴定 (1)有一种角是直角旳__平__行__四__边__形___ 是矩形; (2)有三个角是直角旳___四__边__形____是 矩形; (3)对角线相等旳___平__行__四__边__形___是矩 形.
2.菱形旳鉴定措施 (1)有一组邻边相等旳___平__行__四__边__形___ 是菱形(定义); (2)对角线相互垂直旳__平__行__四__边__形____ 是菱形; (3)四边相等旳____四__边__形_____是菱形.
┃知识归纳┃
辨析:四边形、平行四边形、菱形关系如图:
┃知识归纳┃
3.菱形旳面积 (1)因为菱形是平行四边形,所以菱形 旳面积=底×高; (2)因为菱形旳对角线相互垂直平分, 所以其对角线将菱形提成4个全等旳三 角形,故菱形旳面积等于两对角线乘 积旳二分之一.
┃知识归纳┃
6.正方形旳性质 (1)正方形旳四个角都是___直__角___,四条 边___相__等____; (4)正方形旳对角线 ___相__等___且相互垂 直平分; (5)正方形既是轴对称图形,又是中心 对称图形,对称轴有_____四____条,对 称中心是对角线旳交点.
┃知识归纳┃
7.正方形旳鉴定 (1)有一组邻边相等旳_相__等___是正方形; (2)对角线___垂__直_____旳矩形是正方形; (3)有一种角是直角旳__菱__形__是正方形; (4)对角线___相__等_____旳菱形是正方形. [注意] 矩形、菱形、正方形都是平行四边 形,且是特殊旳平行四边形.矩形是有一 种内角为直角旳平行四边形;菱形是有一 组邻边相等旳平行四边形;正方形既是矩 形,又是菱形.
(完整版)平行四边形基本知识点总结

(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。
以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。
性质
1. 对边平行性质:平行四边形的两组对边分别平行。
2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。
3. 内角和性质:平行四边形的内角的和为180度。
4. 外角性质:平行四边形的外角的和为360度。
5. 对边长度性质:平行四边形的对边长度相等。
6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。
7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。
判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。
2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。
特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。
2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。
相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。
2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。
以上是关于平行四边形的基本知识点总结。
通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。
特殊平行四边形的性质和判定总结

平行四边形有一组领边相等_菱形
性质:
判定
周长
面积
菱形具有平行四边形的所有性质
边
四条边相等的四边形是菱形
边长×4
对角线积的一半或底×高
菱形的四条边都相等
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角
对角线
对角线互相垂直的平行四边形是菱形
对角线互相垂直且平分的四边形是菱形
3.正方形:
对角线互相垂直的矩形是正方形
对角线相等的菱形是正方形
对角线互相垂直且相等的平行四边形是正方形
对角线互相垂直平分且相等的四边形是正方形
一.平行四边形的性质及判定:
特殊的平行四边形:1.矩形:
平行四边形_有一个角是直角_矩形
性质:
判定
周长
面积
矩形具有平行四边形的所有性质
角
有一个角是直角的平行四边形是矩形
邻边之和的二倍
底×高
矩形的四个角都是直角
有三个角是直角的四边形是矩形
矩形的对角线相等
对角线
对角线相等的平行四边形是矩形
对角线互相平分且相等的四边形是矩形
性质:
判定:
周长
面积
平行四边形的对边平行且相等
边
两组对边分别平行的四边形是平行四边形
邻边之和的二倍
底×高
平行四边形的对角相等
两组对边分别相等
一组对边平行且相等的四边形是平行四边形
平行四边形的邻角互补
角
两组对角分别相等的四边形是平行四边形
对角线
对角线互相平分的四边形是平行四边形
平行四边形有一组邻边相等且有一个角是直角___正方形
性质:
判定:
平行四边形的知识点整理(一)2024

平行四边形的知识点整理(一)引言概述:平行四边形是一种特殊的四边形,具有一些独特的性质和特点。
了解这些知识点有助于我们在几何学中更好地理解和运用。
本文将对平行四边形的知识进行整理和总结,以帮助读者更好地掌握相关内容。
正文:一、平行四边形的定义和特点:1. 平行四边形的定义2. 平行四边形的性质和特点3. 平行四边形的内角和外角性质4. 平行四边形的对角线性质5. 平行四边形的边长和内角关系二、平行四边形的分类:1. 平行四边形的分类方法2. 等边平行四边形的性质和特点3. 矩形和正方形的性质和特点4. 菱形的性质和特点5. 平行四边形的其他特殊分类三、平行四边形的面积和周长计算:1. 平行四边形的面积计算方法2. 平行四边形的周长计算方法3. 面积和周长的相关性质和公式4. 平行四边形的面积和周长实例计算5. 平行四边形的面积和周长在实际问题中的应用四、平行四边形的相关定理和推论:1. 平行四边形的对称性定理2. 平行四边形的角平分线与边平分线定理3. 对角线互相平分的平行四边形定理4. 平行四边形的中位线定理5. 平行四边形的相关推论和应用五、平行四边形的解题方法和技巧:1. 解直角平行四边形的问题的方法和步骤2. 解面积和周长问题的技巧和注意事项3. 解平行四边形的性质问题的思路和方法4. 运用平行四边形求证和构造题的解题技巧5. 平行四边形相关问题的典型例题和解答总结:平行四边形是几何学中的重要内容,了解平行四边形的定义、性质和特点,掌握其分类、面积和周长计算方法,熟悉其相关定理和推论,并具备解题技巧和应用能力,对我们的几何学学习和问题解决能力都有很大的帮助。
通过学习本文所总结的平行四边形的知识点,相信读者会在几何学中取得更好的成绩,对未来的学习和发展起到积极的促进作用。
平行四边形及特殊的平行四边形知识点归纳总结

平行四边形及特殊的平行四边形知识点归纳总结平行四边形,就像是数学世界里的一个灵动的精灵,总是充满着各种奇妙的特点和变化。
先来说说平行四边形的定义吧。
两组对边分别平行的四边形就是平行四边形。
这就好比两个人,各自朝着不同的方向前进,但是步伐始终保持平行,是不是很有趣?平行四边形的性质那可不少。
它的对边相等,这就像双胞胎一样,长得一模一样,不分彼此。
对边平行就更不用说啦,一直朝着相同的方向延伸,不离不弃。
还有啊,它的对角相等,邻角互补。
这就好像是好朋友,有相同的兴趣爱好,也能互相补足。
平行四边形的判定方法也很重要哦。
两组对边分别平行的四边形,这是定义判定,就像一把最直接的钥匙打开大门。
两组对边分别相等的四边形,这不就像是找到了两个一模一样的拼图块,拼在一起就是完整的图形嘛。
一组对边平行且相等的四边形,这就好比一个人既有前进的方向,又有足够的实力,肯定能到达目的地。
对角线互相平分的四边形,就像两个人共同分享一个宝贝,公平分配,和谐共处。
说完平行四边形,咱们再来瞧瞧特殊的平行四边形。
菱形,那可是有棱有角的美。
菱形的四条边都相等,这不就像是四个一样高的小伙伴手拉手站成一圈。
菱形的对角线互相垂直且平分,各自都有自己的职责,又能互相配合。
矩形呢,方方正正,有规有矩。
矩形的四个角都是直角,就像是四个坚定的战士,昂首挺胸,威风凛凛。
矩形的对角线相等,仿佛是两条实力相当的巨龙,不分上下。
正方形就更厉害啦,它既是菱形又是矩形,集两家之长。
正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等。
这就如同一个全能的超人,无所不能。
掌握这些知识点,就像是拥有了一把打开数学宝藏的钥匙。
当你在数学的海洋中遨游时,这些知识能让你如鱼得水,轻松应对各种难题。
难道你不想拥有这样的能力吗?还不赶紧把这些知识装进你的脑袋里,让它们成为你攻克数学难题的有力武器!总之,平行四边形及特殊的平行四边形的知识点就像是一个丰富多彩的宝藏库,等待着我们去探索、去挖掘、去运用。
特殊的平行四边形期末复习

项目 四边形 对边 角 对角线 对称性
平行且相等
平行四边形
对角相等 邻角互补
互相平分
中心对称图形
平行且相等
矩形
四个角 都是直角 对角相等 邻角互补 四个角
相等且互相平分 互相垂直平分,且每一 条对角线平分一组对角 互相垂直平分且相等,每 一条对角线平分一组对角
中心对称图形 轴对称图形 中心对称图形 轴对称图形 中心对称图形
(1)求证:四边形AEFD是平行四边形
F
(2)△ABC增加一个条件
时,
D E A
四边形AEFD是矩形;△ABC增加
一个条件
时,四边形AEFD是菱形。
B C
(3)当△ABC满足什么条件时, 以A、E、F、D为顶点的四边形 不存在?
3、△ABC中,点O是AC边上的一个动点,过点O作直 线MN∥BC, ,设MN交∠BCA的平分线于点E,交∠BCA的外 角平分线于点F. (1)求证:EO=FO (2)当点O运动到何处时,四边形AECF是矩形?并证明 你的结论.
A D
A、 4 3cm
4 2cm B、
30° 6 30°
2X
3
E
6
C、3 3cm
D、8cm
B
X
F
C
3、现将这张矩形的纸对折再对折,然后 沿着图中的虚线剪下,打开,得到的是 (B )
A、平行四边形
C、矩形
B、菱形
D、正方形 D
A
O
C
B
若展开后的菱形纸片ABCD中,两条对 角线AC= 4 3,BD= 4 。 (1)求菱形ABCD的面积; 1 4 34 8 3 2 D (2)求菱形ABCD的高;
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立吗?如果成立,请证明;如果不成立,请说明理由.
D
C
D
C
N
N
A M B E A MB E
10、如图,P是矩形ABCD内一点,PA=3,
PD=4,PC=5,则PB=
.
A
D
P
B
C
G
A E B
F
C
B G A
G
D
E C
F
w依次连接对角线相等且垂直的四边形各边中点所 成的四边形是一个怎样的图形呢?先猜一猜,再证明.
·湖南教育版
例、 如图,在△ABC中,∠BAC=90°,AD⊥BC 于D,CE平分∠ACB,交AD于G,交AB于E, EF⊥BC于F.求证:四边形AEFG是菱形.
A.80° B.70° C.65° D.60°
4、如图,在菱形ABCD中,∠B=∠EAF=
60°,∠BAE=20°,则∠CEF=
.
A
B
D
E F
C
5、如图,在矩形ABCD中,AB=4cm,AD=12cm,
P点在AD边上以每秒1 cm的速度从A向D运动,点Q在
BC边上,以每秒4 cm的速度从C点出发,在CB间往返
(1)四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
(3)当△ABC满足什么条件时,以A、D、E、F为顶点 的四边形不存在?
E F
D
A
B
C
9、已知正方形ABCD中,M是AB的中点,E是AB延长线 上一点,MN⊥DM且交∠CBE的平分线于N.
(1)求证:MD=MN;
D
A
E
F
A
CH
E
B
F
D
G
连接矩形各边中点所成的四边形是一个 怎样的图形呢?先猜一猜,再证明.
w依次连接平行四边形各边中点所成的四边形是一 个怎样的图形呢?先猜一猜,再证明.
A H
E
B
F
A H
EB F
D
G
C
D
G
C
w依次连接梯形各边中点所成的四边形是一个 怎样的图形呢?先猜一猜,再证明.
A
E
D
B、5cm、 1 0 cm D、5cm、 2 3 cm
B
FC
G
7、如图,ABCD是正方形,P是对角线上的一 点,引PE⊥BC于E,PF⊥DC于F.
求证:(1)AP=EF;(2)AP⊥EF.
A
D
P
F
BE
C
8、如图,以△ABC的三边为边在BC的同一侧分别作三
个等边三角形,即△ABD、△BCE、△ACF.请回答下列 问题(不要求证明):
w依次连接等腰梯形各边中点所成的四边形是一 个怎样的图形呢?先猜一猜,再证明.
AE B
H
F
D
G
C
A E
H
B
F
D
G
C
w依次连接对角线相等的四边形各边中点所成的 四边形是一个怎样的图形呢?先猜一猜,再证明.
w依次连接对角线垂直的四边形各边中点所成的四 边形是一个怎样的图形呢?先猜一猜,再证明.
H D
一、菱形的面积
二、正方形 且
三、中点四边形
结论:依次连接任意四边形各边中点所成的四边 形是_平__行_四__边__形_.
A H
E B
F
AE B
H
F
D
G
C
D
GC
w依次连接正方形各边中点所成的四边形是一 个怎样的图形呢?先猜一猜,再证明.
w依次连接菱形各边中点所成的四边形是一个怎样 的图形呢?先猜一猜,再证明.
运动,二点同时出发,待P点到达D点为止,在这段时
间内,线段PQ有(
)次平行于AB.
A、1
B、2
C、3
D、4
A
D
P
Q
B
C
6、如图,已知矩形纸片ABCD中,AD=9cm, AB=3cm,将其折叠,使点D与点B重合,那么 折叠后DE的长和折痕EF的长分别是( )
A、4cm、 1 0 cm C、4cm、 2 3 cm
(C )
3、平行四边形四个内角的平分线,如果能围成一 个四边形,那么这个四边形一定是( ) A、矩形 B、菱形 C、正方形 D、等腰梯形
4.(2004·重庆市)如图,在菱形 ABCD中, ∠BAD=80°, D AB的垂直平分线交对角线AC 于点F,E为垂足,连接DF。 则∠CDF等于 ( D )
A EG
BFD
C
·湖南教育版
·湖南教育版
·湖南教育版
1.(2003·四川省)下列命题中,是真命题的是( C ) A.有两边相等的平行四边形是菱形 B.有一个角是直角的四边形是矩形 C.四个角相等的菱形是正方形 D.两条对角线互相垂直且相等的四边形是正方形
2.正方形具有而菱形不一定具有的性质是 A.四边相等 B.对角线垂直且平分 C.对角线相等 D.对角线平分一组对角