冶金新技术
湿法冶金新工艺新技术及设备选型应用手册

湿法冶金新工艺新技术及设备选型应用手册一、湿法冶金简介湿法冶金是一种从含金属的废水、废渣或土壤中回收有价金属的重要方法。
它通过化学或电化学过程,将金属从复杂的多金属氧化物或硫化物中提取出来,并转化为可溶性的离子形态,然后从溶液中提取出来。
湿法冶金广泛应用于工业生产中,尤其在环保和资源回收方面具有重要意义。
二、新工艺新技术1. 微生物浸出技术:利用某些特殊类型的微生物,能够将固体矿石中的金属离子转化为可溶性离子,提高金属提取效率。
2.化学沉淀法:通过添加沉淀剂,将金属离子转化为氢氧化物、碳酸盐或其他类型的沉淀,从溶液中分离并回收金属。
3. 膜分离技术:利用半透膜将溶液中的金属离子与杂质、有机物等分离,具有高效、选择性高的优点。
4. 电化学处理法:通过电解作用,将金属离子从溶液中提取出来,适用于处理高浓度金属离子废水。
三、设备选型应用1. 搅拌器:用于液体混合、搅拌,促进化学反应的进行。
2. 浸出罐:用于微生物浸出、化学沉淀等工艺过程的浸出作业。
3.沉淀池:用于金属离子的沉淀过程,回收金属。
4. 膜分离设备:用于处理含金属离子废水,回收金属。
5. 电镀槽:用于电化学处理法,将金属从溶液中提取出来。
四、总结湿法冶金新工艺新技术及设备选型应用日益多样化,包括微生物浸出、化学沉淀、膜分离和电化学处理等新工艺,以及相应的设备如搅拌器、浸出罐、沉淀池和电镀槽等。
这些新工艺和设备的选择和应用,将有助于提高金属回收效率,降低环境污染,实现资源的可持续利用。
以上内容仅供参考,具体选择和应用还需要根据实际情况进行考虑。
冶金轧钢生产新技术解析

冶金轧钢生产新技术解析作为冶金行业的重要领域之一,轧钢生产一直是冶金生产过程中的关键部分。
如今,随着科技的发展和工业化的进程,轧钢生产也在不断进步,新技术不断涌现,为轧钢生产带来了更高的效率和质量。
本文将就轧钢生产中的一些新技术进行解析。
1. 大断面高速无缝钢管轧制技术大断面高速无缝钢管轧制技术是一种创新性的钢管轧制技术,主要针对大断面高强度钢管轧制。
这项技术采用了先进的轧制工艺和设备,通过控制轧机的轧制力和控制轧制参数,可获得均匀的内外壁厚度和外径尺寸的高品质钢管。
2. 硅钢绕制全过程数值模拟技术硅钢绕制全过程数值模拟技术是一种新型的钢材制造技术,它将数学模型与计算机仿真技术相结合,在钢材生产过程中实现全程数字化。
这项技术可为钢材制造提供精确定位、快速优化并预测工艺过程,从而实现高效率和高质量的生产。
3. 冷拔技术冷拔技术是一种重要的金属加工技术,在钢材生产中具有广泛的应用。
这项技术通过采用特殊的机械设备,将钢材进行多道次冷拔,可为钢材提供均匀性好、抗弯曲性好以及耐磨性好的特点。
4. 超声波检测技术超声波检测技术是一种先进的无损检测技术,广泛用于金属制品、管道等各领域的检测。
在钢材生产中,超声波检测技术可在钢材制品的生产和加工过程中,检测和排除隐患和缺陷,提高产品的质量和可靠性。
5. 自动化控制技术自动化控制技术是一种基于计算机控制的自动化制造技术,可实现钢材生产过程的控制和监测,并优化整个生产过程。
这项技术可大幅减少劳动力和资源的浪费,提高生产的效率和质量。
以上这些新技术,都是钢材生产过程中的重要技术,可以为钢材生产带来更高的效益和更好的质量,同时也反映了我国冶金技术的不断进步和创新能力的不断提升。
微冶金建材矿山新技术及新产品(最新)

微冶金合金化新技术及建材矿山领域强化产品一、微冶金合金化新技术微冶金技术是利用特殊集中高密度热源,通过程序精确控制工艺参数,使得高性能合金粉末与金属基材表面发生局部微冶金反应,在基材表面制备具有耐高温、抗氧化、耐磨损、抗冲击等优秀性能的合金层,制得复合材料。
所制备的复合新材料应用广泛。
微冶金加工新技术具有基材无变形,一次微冶金反应制得的合金层厚度可达1~5mm,控制精度高,可多次微冶金反应制备大厚度合金层,合金层与基材为冶金结合,稀释率低,金属基材对合金层性能影响小。
基于我们在粉末冶金技术方面近15年的研发经历,已经在基于镍基、钴基、铁基、金属陶瓷基等金属粉末材料方面取得了突破性进展,开发的系列气雾化粉末达到100余种,而且在合金化制备方面开发了专用设备,实现了多种粉末的预合金化制备。
典型特点:推出系列金属基陶瓷强化型合金复合新材料,并在矿山、建材及水泥等领域得到应用,用户由此获得了良好的经济效益和社会效益。
二、微冶金产品技术指标及范围依托系列合金粉末制备的微冶金新材料强化产品指标及适用范围:微冶金后,表面质量好,接近初加工表面,性能均一,基材无变形。
硬度:HRC16—HRC65均可以实现;耐磨性:制备软基材上硬质颗粒增强型、硬质基体型等复合材料,耐磨性是同种硬度情况堆焊制备产品的1.5-3倍;耐热、耐冷温度范围:常温、低温(最低-75°)、高温(最高1150°),特别在600°—950°高温范围内独具特色的保持高温硬度的系列合金粉末,制备了高温下耐磨损、耐冲击及耐腐蚀性能优异的复合材料;耐腐蚀性:通过系列合金粉末的研发,形成了耐酸、碱、盐、氯离子腐蚀及耐气体腐蚀性能优异的多种复合材料,根据用户工况的需要,合理配比合金粉末,满足个性化耐腐蚀要求;依托在系列合金粉末方面的技术进步,采用微冶金技术制备的强化和再制造产品在冶金、矿山、水泥、电力、煤矿、等获得广泛应用,解决客户的难题。
粉末冶金新技术-烧结

用SPS制取块状纳米晶Fe90Zr7B3软磁的过程是: 先将由非 晶薄带经球磨制成的50~150μm非晶粉末装入WC/Co合金 模具内,并在SPS烧结机上烧结(真空度1×10-2Pa以下、升温 速度0.09~1.7K/s、温度673~873K、压力590MPa), 再把所 得的烧结体在1×10-2Pa真空下、以3 7K/s速度加热到923K、 保温后而制成。材料显示较好的磁性能:最大磁导率29800、 100Hz下的动态磁导率3430, 矫顽力12A/m。
3
双频微波烧结炉 生产用大型微波烧结炉 已烧结成多种材料:如陶瓷和铁氧体等材料。另 外,在日本又开发出相似的毫米波烧结技术,并成功 地在2023K下保温1h烧结成全致密的AlN材料。
4
2.爆炸压制技术 爆炸压制又称冲击波压制是一种有前途的工艺
方法,它在粉末冶金中发挥了很重要的作用, 爆炸压 制时,只是在颗粒的表面产生瞬时的高温,作用时间 短,升温和降温速度极快。适当控制爆炸参数,使得 压制的材料密度可以达到理论密度的90%以上,甚至 达到99%。
3)快速脉冲电流的加入, 无论是粉末内的放电部位还是焦耳 发热部位, 都会快速移动, 使粉末的烧结能够均匀化。
11
与传统的粉末冶金工艺相比,SPS工艺的特点是:
• 粉末原料广泛:各种金属、非金届、合金粉末,特别是 活性大的各种粒度粉末都可以用作SPS 烧结原科。
• 成形压力低:SPS烛结时经充分微放电处理,烧结粉末表 面处于向度活性化状态.为此,其成形压力只需要冷压烧 结的l/10~1/20。
17
SPS制备软磁材料 通常用急冷或喷射方法可得到FeMe(Nb、Zr、Hf)B的非 晶合金,在稍高于晶化温度处理后, 可得到晶粒数10nm,具有 体心立方结构,高Bs 、磁损小的纳米晶材料。但非晶合金目 前只能是带材或粉末, 制作成品还需要将带材重叠和用树脂固 结, 这使得成品的密度和Bs均变低。近年, 日本采用SPS工艺研 究FeMeB块材的成形条件及磁性能。
金属冶炼中的新技术新方法

采用先进的冶炼材料,如耐高温、耐腐蚀、耐磨损等,提高金属回收率
采用新型冶炼技术,如真空冶炼、电弧炉冶炼等,提高金属纯度 采用新型合金化技术,如微合金化、复合合金化等,提高金属性能 采用新型热处理技术,如快速冷却、高温淬火等,改善金属组织结构 采用新型表面处理技术,如电镀、喷涂等,提高金属表面性能和耐腐蚀性
,
汇报人:
01
03
05
02
04
青铜冶炼:采用铜、锡、铅 等金属的混合物,通过加热、 熔炼、铸造等工艺制成
铁器冶炼:采用铁矿石、木 炭等原料,通过高温熔炼、 锻造等工艺制成
钢冶炼:采用铁矿石、焦炭 等原料,通过高温熔炼、锻 造等工艺制成
铝冶炼:采用铝矿石、石灰 石等原料,通过电解、熔炼 等工艺制成
应用:广泛应 用于铝、镁、 钛等金属的冶
炼
挑战:熔盐电 解技术需要解 决熔盐腐蚀、 电解质损失等
问题
原理:利用微生物的生物代谢能力,将金属离子转化为金属单质 优点:环保、高效、低成本 应用:铜、铁、锌、金等金属的冶炼 挑战:微生物的培养、筛选和优化,以及冶炼条件的控制
原理:利用化学反应的热力学性质,控制反应条件,实现金属的冶炼 特点:高效、节能、环保 应用:应用于各种金属的冶炼,如铁、铜、铝等 发展趋势:随着科技的发展,化学热力学冶金技术将更加成熟和完善
铜冶炼:采用铜矿石、焦炭 等原料,通过高温熔炼、锻 造等工艺制成
锌冶炼:采用锌矿石、焦炭 等原料,通过高温熔炼、锻 造等工艺制成
电弧炉炼钢技 术的发展:提 高了炼钢效率
和质量
连续铸造技术 的发展:提高 了生产效率和
产品质量
真空冶金技术 的发展:提高 了金属纯度和
钢铁冶金新工艺技术目录

钢铁冶金新工艺技术目录钢铁冶金是现代工业中应用最广泛的材料之一,其技术不断发展和创新,推动了钢铁行业的高效生产和质量提升。
下面是一份钢铁冶金新工艺技术目录。
一、高炉冶炼新技术1. 高效节能热风炉技术:采用高效燃烧器和余热回收装置,提高燃烧效率和热风温度,降低燃料消耗和排放。
2. 富氧预处理技术:通过对冶炼矿石进行富氧预处理,提高还原效率和高炉产能,减少煤耗和焦耗。
3. 燃料灰渣精煤技术:通过对燃料灰渣中的可燃物质进行精煤,提高燃烧效率和热量利用率,降低煤耗和废气排放。
二、转炉冶炼新技术1. 高效氧枪技术:采用高效氧枪和透氧技术,提高氧枪吹氧效率和转炉熔化过程中的氧气利用率,降低氧气消耗和炉渣中的氧化铁含量。
2. 喷吹粉煤技术:通过将粉煤喷吹到转炉中,在燃烧过程中释放高热值的挥发分,提高炉内温度和燃烧效率,减少焦耗和燃料消耗。
3. 渣液脱锰技术:通过添加适量的石灰和石膏等物质,控制转炉渣中的碱度和碳酸锰含量,降低转炉渣锰损失和锰冶炼成本。
三、连铸新技术1. 水模连铸技术:采用水模铸坯,提高结晶器冷却效果和铸坯的表面质量,降低铸坯变形和裂损率,提高铸坯质量和连铸效率。
2. 轧辊调整技术:通过轧辊调整系统自动化控制,实现辊型调整和轧件形状控制,提高轧件尺寸精度和表面质量,降低轧制能耗和加工成本。
3. 涂层技术:在连铸过程中,对铸坯和轧件表面进行涂层处理,减少表面氧化、脱碳和损伤,提高产品质量和附加值。
四、高温热处理新技术1. 连续退火技术:采用连续退火设备,对钢材进行高温退火处理,实现均匀结构和优良性能,提高钢材的塑性和韧性。
2. 淬火技术:采用先进的淬火设备和工艺,快速冷却钢材,形成细小、均匀的马氏体组织,提高钢材的硬度和耐磨性。
3. 氮化处理技术:通过将钢材置于含氮气氛中,在高温下进行氮化处理,提高钢材的表面硬度和耐腐蚀性。
五、环保技术1. 高效除尘技术:采用先进的除尘设备和技术,减少钢铁冶炼过程中的烟尘和废气排放,改善环境污染问题。
粉末冶金新技术

一、制粉新技术 5.电爆炸金属丝 电爆炸金属丝 制取纳米粉 大功率电脉冲施于氩气保 护的金属丝上, 护的金属丝上,并受到大 功率脉冲产生的特殊场约 束。柱形等离子体被加热 到15000K以上高温,因而 15000K以上高温, 电阻剧增, 电阻剧增,引起特殊场崩 溃。金属蒸气的高压引起 爆炸,产生冲击波, 爆炸,产生冲击波,形成的 金属气溶胶快速绝热冷却, 金属气溶胶快速绝热冷却, 制得纳米粉。 制得纳米粉。
21
二、粉末冶金成型新技术 许多合金钢粉用动磁压制做过实验, 许多合金钢粉用动磁压制做过实验,粉末中不 添加任何润滑剂,生坯密度均在 以上。 添加任何润滑剂,生坯密度均在95%以上。动磁压 以上 制件可以在常规烧结条件下进行烧结, 制件可以在常规烧结条件下进行烧结,其力学性能 高于传统压制件。 高于传统压制件。动磁压制适用于制造柱形对称 的近终形件、薄壁管、 的近终形件、薄壁管、纵横比高的零件和内部形 状复杂的零件。 状复杂的零件。
16
一、制粉新技术 7.声化学制取纳米金属粉 7.声化学制取纳米金属粉 美国科学家采用声化学 技术制取纳米金属粉。 技术制取纳米金属粉。 声化学是研究液体中高 强度超声波产生的小气 泡的形成、 泡的形成、长大与内向 破裂等现象的学科。 破裂等现象的学科。
17
一、制粉新技术 这些超声波气泡的破裂,产生很强的局部加热而在 这些超声波气泡的破裂 产生很强的局部加热而在 冷液中形成“热点” 瞬时温度约为 瞬时温度约为5000℃,压力约 冷液中形成“热点”,瞬时温度约为 ℃ 压力约 1GPa,持续时间约 亿分之一秒。 持续时间约10亿分之一秒 持续时间约 亿分之一秒。 粗略而形象地说, 粗略而形象地说,上述这些数据相当于太阳的表 面温度,大洋底部的压力,闪电的时间。 面温度,大洋底部的压力,闪电的时间。当气泡破 裂时, 裂时,气泡内所含金属的易挥发化合物分解成单个 金属原子,而后聚集为原子簇。 金属原子,而后聚集为原子簇。这些原子簇含有几 百个原子,直径约为2 百个原子,直径约为2~3nm。 。
氯冶金新技术及应用

氯冶金新技术及应用氯冶金是一种利用氯化物作为原料进行冶金过程的技术。
它在提高资源利用率、降低能耗和环境污染等方面具有明显的优势,因此得到了广泛的应用。
下面将详细介绍氯冶金的新技术及应用。
首先,氯冶金的新技术之一是电解氯化铝法生产铝金属。
传统的铝冶炼方法主要是以氧化铝为原料进行电解制铝,但该方法存在能耗高、环境污染等问题。
而电解氯化铝法是将氯化铝作为原料,经过电解反应得到铝金属。
相比传统方法,电解氯化铝法不仅能够降低能耗,还能够减少环境污染,并且可以充分利用废弃物氯化铝的资源。
其次,氯冶金的另一项新技术是氯化钛法生产钛金属。
传统的钛冶炼方法主要是通过氟化物法或氯气法制备钛金属,但这些方法存在工艺复杂、设备投资大等问题。
而氯化钛法是将氯化钛矿石与金属钠或金属镁等进行反应,然后通过升华和提纯等过程得到钛金属。
相比传统方法,氯化钛法不仅能够节约能源,降低生产成本,还能够减少环境污染。
此外,氯冶金还有一项新技术是电解氯化镁法生产镁金属。
传统的镁冶炼方法主要是通过热还原法制备镁金属,但该方法存在能耗高和环境污染等问题。
而电解氯化镁法是将氯化镁溶液直接电解制备镁金属。
相比传统方法,电解氯化镁法的能耗约为传统方法的一半,同时能够减少废气、废水和固体废物排放。
此外,氯冶金技术还可以应用于废弃物处理和资源回收领域。
通过氯冶金技术,可以对废弃物中的金属进行有效分离和提取,实现废弃物的有效利用和资源回收。
例如,废旧锌碱电池中的氯化锌可以通过氯冶金技术回收,制备新的锌金属或其他锌化合物;废旧电子产品中的氯化铜、氯化铅等可以通过氯冶金技术进行回收和再利用。
总的来说,氯冶金作为一种新兴的冶金技术在提高资源利用率、降低能耗和环境污染等方面具有很大的潜力。
随着研究的深入和技术的不断创新,氯冶金技术将会得到更广泛的应用,并为工业生产和环境保护做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁科技大学
材料与冶金学院
班级:冶金2010-6班姓名:冉君
学号:120103202023
冶金新技术
一、炼焦新技术
抗碎强度(M40)、耐磨强度(M100)
高炉炼铁需要的焦炭是在炼焦炉生产的。
将炼焦所用煤粉(含焦煤、气煤、肥煤、瘦煤、气肥煤等)送入焦炉的热化室,供入燃料加热、燃烧,在还原气氛下去除挥发、焦油、保留碳成分炼制红热的焦炭出炉。
我国焦炭的年产量1.2-1.3亿吨,居世界第一,占世界总产量的三分之一,其中有百分之四十到五十是由土法炼焦生产,故质量差,主要表现在抗碎强度强度、焦炭含灰份指标差距大。
对当今大型高炉高强度大喷煤的操作,要求焦炭在高温下不易被co2所侵蚀而造成焦炭在高温下强度下降,故用焦炭的反应性和反应后强度采作为评价焦炭高温强度的重要指标。
1、提高焦炭质量的新技术
采用高挥发弱粘结性或中等粘结性煤作为炼焦的主要配煤组分。
将煤粉碎至一定细度后,用机械捣固成煤饼,送进焦炉炭化室内炼焦。
2、煤调湿技术(CMC)
装炉煤水分控制工艺简称煤调湿,是将炼焦煤料在装炉前除掉一部分水分,保持装炉煤水分稳定的一项技术。
与煤干燥的区别是煤干燥没有严格的水分控制措施,干燥后水分随来煤水分的变化而改变。
3、干熄焦技术(CDQ)
干熄焦技术“干熄焦”是相对于用水熄灭炽热焦炭的湿熄焦而言的,其基本原理是利用冷的惰性气体(燃烧后的废气)在干熄炉中与炽热红焦炭换热从而冷却红焦。
特点为:
(1)回收红焦显热
出炉红焦的显热约占焦炉能耗的35%-40%,这部分能量相当于炼焦煤能量的5%。
采用干熄焦可回收约80%的红焦显热,平均每熄1t焦炭可回收3.9MPa450℃蒸汽0.45t,甚至更高些。
干熄焦节能占焦炉总节能量的50%以上。
(2)减少环境污染
炼焦车间采用湿法熄焦,每熄1t红焦就要将0.5t含有大量酚、氰化物、硫化物及粉尘的蒸汽抛向天空,严重地污染了大气及周围的环境,这部分污染占炼
焦污染的三分之一。
干熄焦产生蒸汽可用于发电,因此避免了生产等量蒸汽的锅炉对大气的污染(5-6t蒸汽需要1t动力煤),尤其减少了so2、co2向大气的排放。
对规模为100万t/a的焦化厂而言,采用干熄焦,每年可减少8~10万t动力煤燃烧对大气的污染。
(3)投资和能耗较高
干熄焦与湿熄焦相比,焦炭M40提高3~8个百分点,M10改善0.3~0.8分百分点,这对降低炼铁成本,提高生铁产量极为有利,尤其对采用喷煤粉技术的大型高炉效果更加明显。
因此,公认大型高炉采用干熄焦的焦炭可使焦比下降2%,高炉生产能力提高1% 。
在保持原焦碳质量不变的条件下,采用干熄焦可以降低强粘结性的焦、肥煤配入量10~20个百分点,有利于保护资源,降低炼焦成本。
(4)投资和能耗较高
干熄焦与湿熄焦相比,确实存在着投资高,能耗高的问题。
干熄焦投资在200元/t焦左右(合理配置干熄焦装置并实现设备国产化后可降低到140元/t焦),而湿熄焦投资不超过10元/t焦。
干熄焦本身能耗为22Wh/t焦,而湿熄焦为2Wh/t 左右。
干熄焦带来的经济效益,环境效益和节能效果完全可以抵消其投资高和本身能耗带来的不足。
二、铁水预处理脱硫
2、1 ( 1) 脱硅的主要目的是脱磷,在氧化脱磷时,由于SiO2比P2O5更稳定,Si 比P 优先氧化。
因此在铁水硅质量分数较高( > 0. 2%) 时,将有一部分脱磷剂用于硅的氧化而使脱磷反应滞后,脱磷剂用量增加。
降低铁水硅含量对脱磷有利。
通常,用苏打脱磷时,容易形成低熔点的渣,铁水中硅质量分数最好低于0. 1%; 对于用石灰剂脱磷,为促进石灰熔解和增加渣的流动性,铁水硅质量分数控制在0. 1% ~ 0. 15%为宜。
( 2) 减少转炉石灰用量、渣量和铁损。
在铁水含0. 11%P 和0. 025%S 的条件下,铁水硅质量分数从0. 6% 下降到0. 15% 时,炼钢石灰消耗量可以从42 kg /t 减少到18 kg /t,渣量从110 kg /t 减少
到42 kg /t,而且吹炼平稳没有喷溅,金属收得率提高0. 5% ~ 0. 7%。
( 3) 对于含钒和含铌等特殊铁水,预脱硅可为富集V2O5和Nb2O5等创造条件。
2. 2 基本反应
铁水脱硅用的氧化剂有气体( 氧气或空气) 和固体( 铁磷、烧结矿、铁精矿粉、铁矿石) 氧化剂。
脱硅的基本反应如下:
[Si]+ O2( g) = SiO2( S) ,ΔGφ = - 821 780 + 221. 16T ( J /mol) [Si]+ 2 /3Fe2O3( S) = SiO2( S) + 4 /3Fe( L) ,ΔGφ = - 287 800 + 60. 38T [Si]+ 1 /2Fe3O4 = SiO2( S) + 3 /2Fe( L) ,ΔGφ = - 275 860 + 156. 49T [Si]+ 2( FeO) = SiO2( S) + 2Fe( L) ,ΔGφ = - 356 020 + 130. 47T 可以看出,在标准状态下,气体脱硅剂与固体脱硅剂相比,使用气体脱硅剂脱硅反应更易进行。
由于脱硅反应产物中有SiO2,故在固体脱硅剂中加入一定量的CaO 等碱性氧化物,有利于促进脱硅反应的进行。
尽管脱硅反应均为放热过程,但从生产实践和热平衡计算可知,用气体脱硅剂能使熔池温度升高,用固体脱硅剂因其熔化吸热,使熔池温度下降。
试验表明,当脱硅量均为0. 4% 时,用浸入式喷枪吹氧脱硅可使熔池温度升高120℃,表面加Fe3O4一次氮气搅拌脱硅使熔池温度下降50℃,故通过调节氧与固体脱硅剂用量的比例,可以实现脱硅时铁水温度的调节。
2. 3 脱硅方法和特征
2. 3. 1 高炉铁水沟连续脱硅法
高炉铁水沟脱硅处理的优点是脱硅不占用时间,处理能力大,温降少,渣铁分离方便; 缺点是脱硅剂的利用率低和工作条件较差。
该法的关键在于选择脱硅剂的加入方式,确保脱硅渣的流动性和铁水沟耐火材料寿命。
高炉铁水沟中脱硅剂的加入方式有:
( 1) 自然投入法向铁水流表面投入脱硅剂,并利用铁水沟内铁水落差进行搅拌。
( 2) 气体搅拌法在自然投入法的基础上,向铁水表面吹压缩空气加强搅拌,以促进脱硅反应的进行。
( 3) 液面喷吹法依靠载气将脱硅剂喷向铁水表面。
( 4) 铁水内喷吹法将耐火材料喷枪浸入铁水内,利用载气向铁水中喷吹脱硅剂。
试验表明: 脱硅效果按自然投入法、气体搅拌法、喷吹法递增。
2. 3. 2 在混铁车或铁水包中喷粉脱硅法
这种脱硅法的优点是脱硅反应氧的利用率高,工作条件较好,并可克服高炉出铁时铁水硅含量的波动,处理后铁水硅含量稳定; 缺点是易发生喷溅,且温降较大。
日本JFE 开发出在混铁车上进行铁水预处理时,减少铁水包炉口铁水喷溅的新方法,见图3。
图3 JFE 新开发的混铁车预处理铁水方法示意图
该技术可以提高铁水预处理反应效率,降低铁水损失,具体方法是:
( 1) 将浸入式氧枪插入铁水包内的铁水中,喷吹氧气或用载气载入固体脱氧剂,进行铁水脱硅或脱磷处理时,用红外线摄影仪监视来自铁水包炉口的喷溅物,检测到喷出物中含有铁水时,要提枪使氧枪的浸入深度变浅,或减少向铁水中喷吹的气体流量。
( 2) 在规定时间内,未检测到喷出物中含有铁水时,要降枪使浸入式氧枪的浸入深度增加,或者加大向铁水中喷吹气体的流量。
( 3) 浸入式氧枪的浸入深度和气体流量可以自动地控制。
采用此方法,可以定量地控制喷溅物的成分,将浸入式氧枪的浸入深度和吹入铁水中的气体流量调整到最佳状态,避免过吹,与传统的方法相比,可以提高铁水预处理用氧气和固体脱氧剂的利用效率。