化工原理第八章 吸收
化工原理重要概念和公式

《化工原理》重要概念第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同。
主要操作费溶剂再生费用,溶剂损失费用。
解吸方法升温、减压、吹气。
选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小。
相平衡常数及影响因素m 、 E 、 H 均随温度上升而增大, E 、 H 与总压无关, m 反比于总压。
漂流因子P/P Bm 表示了主体流动对传质的贡献。
( 气、液 ) 扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关。
传质机理分子扩散、对流传质。
气液相际物质传递步骤气相对流,相界面溶解,液相对流。
有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结果为k ∝ D ,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k ∝ D 0.5 。
传质速率方程式传质速率为浓度差推动力与传质系数的乘积。
因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应。
传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力。
当 mky<<kx 时,为气相阻力控制;当 mky>>kx 时,为液相阻力控制。
低浓度气体吸收特点① G 、 L 为常量,② 等温过程,③ 传质系数沿塔高不变。
建立操作线方程的依据塔段的物料衡算。
返混少量流体自身由下游返回至上游的现象。
最小液气比完成指定分离任务所需塔高为无穷大时的液气比。
NOG 的计算方法对数平均推动力法,吸收因数法,数值积分法。
第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据 ( 原理 ) 是液体中各组分挥发度的不同。
主要操作费用塔釜的加热和塔顶的冷却。
双组份汽液平衡自由度自由度为 2(P 一定, t ~ x 或 y ; t 一定, P ~ x 或 y) ; P 一定后,自由度为 1 。
泡点泡点指液相混合物加热至出现第一个汽泡时的温度。
化工原理-5-第八章-气体吸收

课后习题
P70页 5、6、7 下周上课前交
8.4.4填料塔的设计型计算和操作型分析 无论是设计型问题还是操作型问题,其求解的方法都是通过联立 求解全塔物料衡算和填料层高度计算式以及相平衡关系式。下面 分别讨论: 一、填料塔的设计型计算 设计型计算的特点:给定进口气体的溶质浓度yb、进塔混合气的 流率G、相平衡关系及分离要求,计算达到指定的分离要求所需 要的塔高度。 要完成设计型计算还要解决以下问题: ①确定传质系数; ②气液两相流向的选择,通常采取逆流操作; ③吸收剂进口浓度的确定; ④吸收剂用量的确定。
* 故: yb yb yb 0.05 0.14 0.224 0.01864
m 2 .s
* y a y a y a 4 10 4 0.14 0.002 0.00372
0.01864 0.00372 y m 9.258 10 3 0.01864 ln 0.00372
H 1.1508 4.96 5.65m
二、填料塔的操作型计算
特点:塔设备已给定(对填料塔高度h已知),基本类型有:
①校核现有的塔设备对指定的生产任务是否适用,如已知T、 P、H、G、L、xa、yb,校核ya是否满足要求; ②考察某一操作条件改变时,吸收结果的变化情况或为达到 指定的生产任务应采取的措施。如对给定的吸收塔,若气体处 理量增加(其余条件不变),分析ya、yb的变化趋势或此时应 采取什么措施才有可能使ya保持不变。
G y ya L
mG m 2G mG 1 y b mx a L y a L xa L 1 ln mG y a mx a 1 L
最后整理得:
mG y b mx a mG 1 ln 1 mG L y a mx a L 1 L L A ,A称为吸收因数 引入概念:令 mG 其几何意义为:操作线斜率L/G与平衡线斜率m之比;而 N OG
化工原理--第八章 气体吸收

第八章气体吸收1.在温度为40℃、压力为101.3kPa 的条件下,测得溶液上方氨的平衡分压为15.0kPa 时,氨在水中的溶解度为76.6g (NH 3)/1000g(H 2O)。
试求在此温度和压力下的亨利系数E 、相平衡常数m 及溶解度系数H 。
解:水溶液中氨的摩尔分数为76.6170.07576.610001718x ==+由*p Ex=亨利系数为*15.0kPa 200.00.075p E x ===kPa 相平衡常数为t 200.0 1.974101.3E m p ===由于氨水的浓度较低,溶液的密度可按纯水的密度计算。
40℃时水的密度为992.2ρ=kg/m 3溶解度系数为kPa)kmol/(m 276.0kPa)kmol/(m 180.2002.99233S ⋅=⋅⨯==EM H ρ2.在温度为25℃及总压为101.3kPa 的条件下,使含二氧化碳为3.0%(体积分数)的混合空气与含二氧化碳为350g/m 3的水溶液接触。
试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。
已知操作条件下,亨利系数51066.1⨯=E kPa ,水溶液的密度为997.8kg/m 3。
解:水溶液中CO 2的浓度为33350/1000kmol/m 0.008kmol/m 44c ==对于稀水溶液,总浓度为3t 997.8kmol/m 55.4318c ==kmol/m 3水溶液中CO 2的摩尔分数为4t 0.008 1.4431055.43c x c -===⨯由54* 1.6610 1.44310kPa 23.954p Ex -==⨯⨯⨯=kPa气相中CO 2的分压为t 101.30.03kPa 3.039p p y ==⨯=kPa <*p故CO 2必由液相传递到气相,进行解吸。
以CO 2的分压表示的总传质推动力为*(23.954 3.039)kPa 20.915p p p ∆=-=-=kPa3.在总压为110.5kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。
《化工原理》第八章 吸收

中一
Y A mX A
(8-11)
第二节 吸收过程的相平衡关系
(3)吸收平衡线 表明吸收过程中气、液相平衡关系 的图线称吸收平衡线。在吸收操作中,通常用图来表示。
图8-2吸收平衡线
第二节 吸收过程的相平衡关系
式(8-10)是用比摩尔分数表示的气液相平衡关系。 它在坐标系中是一条经原点的曲线,称为吸收平衡线,如 图8-2(a)所示;式(8-11)在图坐标系中表示为一条经 原点、斜率为m的直线。如图8-2(b)所示。 (4)相平衡在吸收过程中的应用 ①判断吸收能否进行。由于溶解平衡是吸收进行的极 限,所以,在一定温度下,吸收若能进行,则气相中溶质 的实际组成 Y A 必须大于与液相中溶质含量成平衡时的组 成 Y ,即YA Y 。若出现 YA Y 时,则过程反向进行,为 解吸操作。图8-2中的A点,为操作(实际状态)点,若A Y 点位于平衡线的上方, A Y 为吸收过程;点在平衡线上,
yB 1 yA
(3)比质量分数与比摩尔分数的换算关系
WA mA nAM A M XA A mB nB M B MB
(8-3)
第二节 吸收过程的相平衡关系
M 式中 M 、B 分别为混合物中、组分的千摩尔质量, kg/kmol 。 在计算比质量分数或比摩尔分数的数值时,通常以在 操作中不转移到另一相的组分作为组分。在吸收中,组分 是指吸收剂或惰性气,组分是指吸收质。 2.质量浓度与物质的量浓度 质量浓度是指单位体积混合物内所含物质的质量。对 于组分,有 m V (8-4) 式中 A ——混合物中组分的质量浓度,㎏/m3; V ——混合物的总体积,m3。
二、气液相平衡关系
吸收的相平衡关系,是指气液两相达到平衡时,被吸 收的组分(吸收质)在两相中的浓度关系,即吸收质在吸 收剂中的平衡溶解度。 1.气体在液体中的溶解度 在恒定的压力和温度下,用一定量的溶剂与混合气体 在一密闭容器中相接触,混合气中的溶质便向液相内转移, 而溶于液相内的溶质又会从溶剂中逸出返回气相。随着溶 质在液相中的溶解量增多,溶质返回气相的量也在逐渐增 大,直到吸收速率与解吸速率相等时,溶质在气液两相中 的浓度不再发生变化,此时气液两相达到了动平衡。平衡 p A 表示; 时溶质在气相中的分压称为平衡分压,用符号 溶质在液相中的浓度称为平衡溶解度,简称溶解度;它们 之间的关系称为相平衡关系。
化工原理吸收教案

化工原理吸收教案第八章吸收第一节概述一、基本概念:吸收:利用各组分的不同溶解度分离气体混合物的单元操作。
二、吸收过程如下三、吸收操作的应用四、吸收操作分类五、吸收:溶质a从气相转移到液相;脱吸传质:溶质a从液相转移到气相;除了制取溶液产品等少数情况只需单独进行吸收外,一般都需要对吸收后的溶液继续脱吸,使溶剂再生,能够循环使用,同时也得到有价值的溶质。
六、吸收与解吸的操作流程吸收剂的选择:高溶解性和良好的选择性第二节吸收的基本理论溶解度曲线:当溶质的平衡气体和液体含量分别用分压和浓度表示时,该平衡曲线也称为溶解度曲线;1.低温有利于吸收;2.高压有利于吸收图9-3293k时几种气体在水中的溶解度曲线亨利定律在一定的温度和平衡状态下,稀溶液中气体溶质在气相中的平衡分压与其在液相中的摩尔分率成正比;用公式表示;p*=ex1亨利系数e与温度t有关↑ E↑, 溶解度↓, 这不利于吸收。
2可溶性气体e<不溶性气体e溶质在液相中的含量用摩尔浓度表示时(x=ca/c):P*=Ca/h可溶性气体h>>不溶性气体h溶质的平衡气、液相组成均用摩尔分率表示:y=mx亨利定律适用于低浓气体。
六、思考题工程中如何从吸收剂中释放溶质?第二节、吸收传质速率方程(一)双膜理论1、气液两相之间存在稳定的相界面,两侧各有一个停滞膜,a以分子扩散的方式通过此两膜;2.在相界面,气液两相处于平衡状态;3、两相之间传质阻力全部集中在滞流膜内。
(一)相间传质速率方程1.气膜吸收速率方程以分压表示推动力kg―以分压差为推动力dp(p?pi)?千克(p?pi)?(P?PI)/(1/kg)气相传质系数,na?rtzgpbmkmol/m2?s千帕;kg?dprtzgpbm表示为摩尔分数差na=ky(y-yi)=(y-yi)/(1/ky)KY——由摩尔分数差驱动的气相传质系数,KMOL/m2?s2.液膜吸收速率方程以摩尔浓度表示推动力dcna?(ci?c)?吉隆坡(ci?c)?(ci?c)/(1/kl)zlcsm吉隆坡?Dczlcsmkl——摩尔浓度差驱动的液相传质系数,M/S;以摩尔分率表示推动力na=kx(xi-x)=(xi-x)/(1/kx)kx―以摩尔分数差为推动力的液相给质系数,kmol/m2?s;3.界面浓度Na=kg(p-pi)=KL(ci-c)的平衡关系:pi=f(ci)作图确定界面浓度在低浓度的情况下,亨利定律适用,Yi=MXI和ky(y-yi)=kx(xi-x)联立,可解出界面浓度yi与xi4.总吸收系数及总吸收速率方程1)、以p-p*表示总推动力的总吸收速率方程na=kg(p-p*)=(p-p*)/(1/kg)气相吸收速率方程:娜娜?千克(p?pi)?(P?PI)/(1/kg)液相吸收速率方程:na?kl(ci?cl)?(ci?cl)/(1/kl)平衡关系符合亨利定律:不??吉隆坡(ci?c)??klh(pi?p*)?(Pi?P*)/(1/hkl)根据串联工艺的特点:111??kgkghkl1/对易溶气体,h值很大,1/hkl<<1/kgkg?kg;传质阻力主要集中在气膜中,吸收过程称为“气膜控制”。
《化工原理》第八章-吸收章练习

mG L
) 1
1
mG ] L
L
1
1 0.926
ln[(1
0.926) 1
1 0.9
0.926]
6.9
H OG
H OL
mG L
1.2 0.926
1.11m
H=HOGNOG=1.11×6.9=7.66m
(2) 当NOG→∞时,由于
mG 1 , x2=0
L
y2min=mx2=0, ηmax=100%
mG ] L
L
↑;不变
二、作图题
以下各小题y~x图中所示为原工况下的平衡线与操 作线,试画出按下列改变操作条件后的新平衡线 与操作线:
1.吸收剂用量增大
2.操作温度升高
1.吸收剂用量增大
2.操作温度升高
3.吸收剂入口浓度降低
3.吸收剂入口浓度降低
三、用清水逆流吸收除去混合物中的有害气体, 已知入塔气体组成,y1=0.1,η=90%,平衡关系: y=0.4x,液相传质单元高度HOL=1.2m,操作液气 比为最小液气比的1.2倍。试求:
8.GL m , y2min=mx2=0;
L m,
G
x1
y1 m
y2
y1
L ( y1 Gm
x2 )
0.1 0.1 1.5 2
0.025
9. L m
G
,NOG
y1 y2 ym
y1 y2 y2 mx2
1
9
10.N OG
1 1 mG
ln[(1
mG ) L
y1 y2
mx 2 mx 2
8.设计时,用纯水逆流吸收有害气体,平衡关系 为y=2x,入塔y1=0.1,液气比(L/G)=3,则出塔气 体浓度最低可降至 ,若采用(L/G)=1.5,则出 塔气体浓度最低可降至 。
化工原理-第8章 气体吸收

8.3 扩散和单相传质
① 溶质由气相主体传递到两相界面,即气相内的物质传递;
② 溶质在相界面上的溶解,由气相转入液相,即界面上发生 的溶解过程
③ 溶质自界面被传递至液相主体,即液相内的物质传递。 通常,第②步即界面上发生的溶解过程很容易进行,其阻力很小
( 传质速率 小,
=
传质推动力 传质阻力
)故认为相界面上的溶解推动力亦很
8.1概述
①溶剂应对被分离组分(溶质)有较大的溶解度,或者说在 一定的温度与浓度下,溶质的平衡分压要低。这样,从平衡角度 来说,处理一定量混合气体所需溶剂量较少,气体中溶质的极限 残余浓度亦可降低;就过程数率而言,溶质平衡分压↓,过程推 动力大,传质数率快,所需设备尺寸小。
②溶剂对混合气体中其他组分的溶解度要小,即溶剂应具备 较高的选择性。若溶剂的选择性不高,将同时吸收混合物中的其 他组分,只能实现组分间某种程度的增浓而不能实现较为完全的 分离。
⑷工业吸收流程(见旧讲稿) 由流程图可见,采用吸收操作实现气体混合物的分离必须解决下 列问题: ①选择合适的溶剂,使能选择性比溶解某个(或某些)被分离组 分; ②提供适当的传质设备(多位填料塔,也有板式塔)以实现气液 两相的接触,使被分离组分得以从气相转移到液相(吸收)或气相 (解吸);
8.1概述
注意:此时并非没有溶质分子继续进入液相,只是任何瞬间 进入液相的溶质分子数与从液相逸出的溶质分子数恰好相等,在 宏观上过程就象是停止了。这种状态称为相际动平衡,简称相平 衡。
8.2.1平衡溶解度
⑴溶解度曲线
对 单 组 分 物 理 吸 收 的 物 系 , 根 据相律 ,自 由度数F 为F=CΦ+2=3-2+2=3(C=3,溶质A,惰性组分B,溶剂S,Φ=2,气、液两 相),即在温度 t ,总压 p ,气、液相组成共4个变量中,由3个自 变量(独立变量),另1个是它们的函数,故可将平衡时溶质在气
新版化工原理习题答案(08)第八章--气体吸收[1]
![新版化工原理习题答案(08)第八章--气体吸收[1]](https://img.taocdn.com/s3/m/95b35717a8956bec0975e3a5.png)
第八章 气体吸收1. 在温度为40 ℃、压力为101.3 kPa 的条件下,测得溶液上方氨的平衡分压为15.0 kPa 时,氨在水中的溶解度为76.6 g (NH 3)/1 000 g(H 2O)。
试求在此温度和压力下的亨利系数E 、相平衡常数m 及溶解度系数H 。
解:水溶液中氨的摩尔分数为76.6170.07576.610001718x ==+ 由 *p Ex =亨利系数为*15.0kPa 200.00.075p E x ===kPa 相平衡常数为 t 200.0 1.974101.3E m p === 由于氨水的浓度较低,溶液的密度可按纯水的密度计算。
40 ℃时水的密度为992.2ρ=kg/m 3溶解度系数为 kPa)kmol/(m 276.0kPa)kmol/(m 180.2002.99233S ⋅=⋅⨯==EM H ρ2. 在温度为25 ℃及总压为101.3 kPa 的条件下,使含二氧化碳为3.0%(体积分数)的混合空气与含二氧化碳为350 g/m 3的水溶液接触。
试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。
已知操作条件下,亨利系数51066.1⨯=E kPa ,水溶液的密度为997.8 kg/m 3。
解:水溶液中CO 2的浓度为 33350/1000kmol/m 0.008kmol/m 44c == 对于稀水溶液,总浓度为 3t 997.8kmol/m 55.4318c ==kmol/m 3 水溶液中CO 2的摩尔分数为4t 0.008 1.4431055.43c x c -===⨯ 由 54* 1.6610 1.44310kPa 23.954p Ex -==⨯⨯⨯=kPa气相中CO 2的分压为t 101.30.03kPa 3.039p p y ==⨯=kPa < *p故CO 2必由液相传递到气相,进行解吸。
以CO 2的分压表示的总传质推动力为*(23.954 3.039)kPa 20.915p p p ∆=-=-=kPa3. 在总压为110.5 kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理第八章吸收8.1 概述一、吸收的目的和依据目的:(1)回收有用物质;(2)脱除有害物质组分;(3)制备溶液。
依据:混合气体中各组分在溶剂中溶解度的差异。
二、吸收的流程溶质——A;惰性组分——B;溶剂——S。
吸收过程的主要能耗在解吸上。
三、溶剂的选择:技术方面:溶解度要高,选择性要强,对温度要敏感,容易解吸。
经济及安全方面:不易挥发,较好的化学稳定性;价廉、易得;无毒、不易爆易燃。
四、吸收的分类:物理吸收与化学吸收等温吸收与非等温吸收单组份吸收与多组分吸收低浓度吸收(直线)与高浓度吸收(曲线)8.2 相际传质过程8.2.1 单相传质速率方程()()A G A Ai G i K P P K P y y →=-=-气相主体界面:N()A y i K P y y =-Ny G K PK =,G K ——气相传质分系数,P ——总压。
()()A L Ai A L i k C C k C x x →=-=-总界面液相主体:N()A x i k x x =-Nx L k C k =总,L k ——液相传质分系数,C 总——总浓度。
8.2.2 界面浓度亨利定律适用时,有解析法:()();A y i x i i i i i k y y k x x y x y mx =-=-⎫⎬=⎭N 联立求解得、图解法:画图8.2.3 相际传质速率方程假设亨利定律适用,1、以气相分压(*)A A P P -表示总推动力()()A G A Ai L Ai A K P P k C C =-=-N111=+G G LK k Hk 2(*)/()A G A A G K P P K kmol m s Pa =-⋅⋅N ,——气相总传质系数2、以液相浓度(*)A A C C -表示总推动力(*)A G A A K C C =-N11=+L L GH K k k /L K m s ——液相总传质系数比较之,有=G L K HK3、以气相摩尔分率(*)y y -表示总推动力2(*)/(A y y K y y K kmol m s =-⋅N ——气相总传质系数,)11=+y y x m K k k =P y G K K4、以液相摩尔分率(*)x x -表示总推动力2(*)/(A x x K x x K kmol m s =-⋅N ——液相总传质系数,)111=+x x yK k mk =m ,=C x y x M L K K K K8.2.4 传质阻力分析1、传质阻力111=+G G L K k Hk ,11=+L L GH K k k ,11=+y y x m K k k ,111=+x x y K k mk 相际传质总阻力=气相(膜)阻力+液相(膜)阻力(界面处无阻力)2、气相阻力控制(气膜控制:总阻力=气相阻力)条件:111or G L y xm K Hk k k ??, (易溶气体的H 很大、m 很小) 结论:y y G G i Ai AK k K k x xC C ≈≈≈≈强化方法:增加气相的湍动程度3、液相阻力控制(液膜控制:总阻力=液相阻力)条件:111or L G x yH K k k mk ??, (溶气体的H 很小、m 很大) 结论:x x L L iAi AK k K k y y P P ≈≈≈≈强化方法:增加液相的湍动程度8.3 低浓度气体吸收的计算8.3.1 特点低浓度:110%y 不大于1、(/)G L kmol s 、为常量(传递忽略不计)2、等温吸收3、x y k k 、为常数,11=+y x y y xmk k K k k ,和均是物性和流量的函数 8.3.2 物料衡算1221Gy Lx Gy Lx +=+ 1212()()G y y L x x -=-121211()=100%100%G y y y yGy y η--⨯=⨯吸收率:21=-y y η出口组成:(1)8.3.3 操作线和推动力1、逆流操作:22Gy Lx Gy Lx +=+操作线方程:22)L L y x y x G G =+-(或11)L L y x y x G G =+-(。
其中,LG为液气比。
操作线上任一点描述了吸收塔内对应截面的组成操作线在平衡线之上——吸收操作 操作线在平衡线之下——解吸操作操作线与平衡线之间的距离反应了推动力的大小: 垂直距离——气相推动力*y y y =-V 水平距离——液相推动力*x x x =-V改变操作线与平衡线的办法: ① 增大LG,使操作线上移; ② 增大体系的P 和降低体系的T ,使m ↓,平衡线下移。
2、并流操作22Gy Lx Gy Lx +=+操作线方程:22)L L y x y x G G =-++(或11)L L y x y x G G=-++(逆流时:推动力沿塔分布均匀;在两相进出口组成相同的情况下,逆流时的平均推动力大于并流。
故,传质中:逆流优于并流。
8.3.4 吸收剂用量的确定1212()()=G y y L x x -=-,气相所失液相所得在吸收条件中:12G y y 、、——由生产任务确定;2x ——由工艺条件决定;1L x 、——经选择决定最小液气比:min LG()。
定义:针对一定的分离任务,塔内某截面处吸收推动为0,达到分离程度所需塔高无穷大时的液气比。
最小液气比:12min12*L y y G x x -=-() 亨利定律适用时,1*y x m =,即有:12min 12L y y y G x m-=-() 当122min10=L y y x m y G mη-==时,() 对于平衡曲线为特殊形状时,如图所示,以切点计算最小液气比。
操作液气比:H LG⎧↑→↓→↓↑⇒⎨↑⎩推动力完成一定的任务的设备费()解吸回收困难、操作费故,需均衡考虑设备费与操作费。
一般情况下:min = 1.12L L G G:()()8.3.5 填料层高度的计算一、基本计算式:(*)A y k y y =-N 气液两相传质 223/a Ω设——塔截面积,m ——有效比表面积,m m()A Gdy Ldx dG ==传递量 A A A dG N dA N adV N a dH ===Ω A Gdy N a dh Ldx ∴=Ω=(*)(*)y x k a y y dh Gdyork a x x dh Ldx ∴Ω-=Ω-=,**y x G dy L dx dh dh k a y y k a x x==Ω-Ω-最终积分式:1212**y OG OGy y x OL OLx x G dyH H N k a y y L dxH H N k a x x==Ω-==Ω-⎰⎰习惯上,将x y k k a 、和结合起来33y x kmolk a m skmolk a m s 的单位——气相体积总传质系数的单位•?—液相体积总传质系数二、传质单元数和传质单元高度1、传质单元数NTU12*y OG y dyN y y =-⎰——气相总传质单元数12*x OL x dxN x x=-⎰——液相总传质单元数 12y G y idyN y y =-⎰——气相传质单元数 12x OL x i dxN x x=-⎰——液相传质单元数 意义:以OG N 为例:1212*(*)y OG y m dy y y N y y y y -===--⎰组成变化平均推动力OG OL N N 、反映了吸收分离过程的难易程度 OG N 越大,吸收越难进行,反之亦然OG N 影响的因素:物系的相平衡关系,及进、出口组成一个传质单元=1OG N ()的意义: 1*(*)bay b aOG y mdy y y N y y y y -===--⎰(*)b a m y y y y ∴-=-如果气体流经一段填料层,其溶质组成变化()b a y y -,恰好等于该段填料层内平均推动力(*)m y y -时,则该段填料层为一个传质单元。
2、传质单元高度 HTUOG y GH K a =Ω——气相总传质单元高度,m OL x LH K a =Ω——液相总传质单元高度,mG y GH k a =Ω——气相传质单元高度,m L x LH k a =Ω——液相传质单元高度,m 1y K a ——传质的阻力——传质面积意义:OG OL H H 、为完成一个传质单元所需的填料层高度,反应了设备效能的高低,,OG OL H H ↓↑、设备效能影响因素:填料特性、流体物料、操作条件 其他:变化范围小,0.15 1.5m :OG OL H H 、随G 、L 的变化影响较小0.70.80.30.20.70.80.30.2,,y OG y x OL x Gk a G H G k a Lk a L H L k a ∝=∝Ω∝=∝Ω::::气膜控制:液膜控制:三、传质单元数的计算1、平衡线为直线(1)对数平均推动力法12(*)OG my y N y y -=-操作线y-x 为直线。
假设平衡线y*-x 也为直线。
*y y y -=∆12*y OG y dyN y y =-⎰(*)()y y y x y y k y b∴∆=-=∆+:为直线令则()dy kd y =∆1212y y K y y -=∆-∆1122121211211222()ln *ln y y OG y y y y dy d y y y y y y N k y y y y y y y y ∆∆-∆-∆∆-∆∴====∆-∆∆-∆∆∆⎰⎰ 令1212ln m y y y y y ∆-∆∆=∆∆ 12OG m y y N y -∴=∆同理,有12OL mx xN x -=∆ 1212ln m x x x x x ∆-∆∆=∆∆ 注意:对数平均推动力法适用于平衡线与操作线均为直线的情况,平衡线可不过原点。
逆流、并流操作皆可。
(2)吸收因数法 *()()y g x x f y =⇒= 假设平衡线:*y mx = 逆流操作线:22()L L y x y x G G=+- 22()Gx y y mx L ∴=-+ 令/1,L L G mGA S mG m A L =====操作线的斜率平衡线的斜率 A S Ω——吸收因数(对比:塔截面因数)——解吸因数积分得:12221=ln[(1)]OG y mx N s s Sy mx --+-讨论: (1)1mGS A L==反应了吸收推动力的大小: OG OG LS N GLA N G↑⇒↓⇒↓⇒↑↑⇒↑⇒↑⇒↓推动力(解吸因数)推动力(吸收因数)为增大吸收推动力,应使1.Lm S G><,即 实际操作时,取0.70.8S =:S=1时,平衡线P 操作线,推动力处处相等12122211=OG y y y yN y mx y mx --=--(2)1222y mx y mx --反映了溶质吸收率的高低,其越大,OG N ↑ (3)吸收因数法适用于平衡线过原点,且逆流操作的情况。