(第六部分)曲面积分习题解答
曲面积分习题解答

0
0
1 4r2 2 1 9 1 t 1 8 14
t dt
16
2 5
t5
2
2 3
t3
2
9
1
149
30
解: dS 1 zx2 z2y d 2d
由对称性, zxdS 2D x x2 y2 dxdy
2
2
d
3 42 2 8
7 证明面密度为1的圆锥体的侧面Σ1绕其对称轴的转动 惯量I1与其底面Σ2绕此轴的转动惯量I2之比为常数:
I1 I2 csc (θ是圆锥的半顶角)。
解 1 : z cot x2 y2 ,
dS 1 cot x
2
x2 y2 cot y
I 1 1 ,
1 11 2z 2dv
2
2 d
1
rdr
1 zdz 2
1
r r3
dr
0
0
r
0
2
因为Σ1在yoz,zox上的投影为零,所以
1 xdydz 1 ydzdx 0
0
0
83
03
解 Iz
x2 y2 0dS 0a
D
x2 y2 a2 x2 y2
d
0a
2
d
0
a 0
r2 rdr a2 r2
20a
0
2 a3 sin3 tdt
20a4
2 3
4 3
0
a
4
解
x2 y2 z2 dydz 2 xdv 0
曲线曲面积分部分难题解答

曲线、曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分):解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫ ⎝⎛+=dy y y y xyds l 22201..21+=⎰⎰(令t y tan =)()()t td t sec sec .1sec 21222arctan 0-=⎰ |2arctan35sec 31sec 5121⎥⎦⎤⎢⎣⎡-=t t .151355+=(ⅱ)解:()⎰+l ds yx 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx xds y xOA;.20,,0:≤≤⎩⎨⎧==x x x y OA()()[]()dy y y ds y xAB 210222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y.10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.212222=++=+⎰⎰dy yds y xBO,.10,,0:≤≤⎩⎨⎧==y y y x BO.3535+=++=⎰⎰⎰OAABOBI(ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l ()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt at a t a s d y x l2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+πdt t a⎰=π20222sin2.24dt t a⎰=π2022sin2.22cos 22sin2202202|a t a t d t a=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l()().22,s i n .c o s s i n,c o s c o s :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b aba[].433222222b a b a++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by ax l 上,其密度().,y y x =μ求它的总质量.解:不妨假设.b a >⎰⎰==14l lyds ds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l ()()()().cos sincos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=dt t b t a t b yds M l 222220cos sinsin 441+==⎰⎰π()()t d t ba ab cos cos422222⎰---=π()du u b a a b 222214---=⎰()du u b a a b 222214--=⎰duu ba aba b ⎰---=22222224π(公式)|102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u ba au ba au ba ab a b.arcsin..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b ab a ba ab 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明:()().max .P f L dsP f lP l∈≤⎰证明:由第一型曲线积分的定义()()ini id ls P f ds P f ∆=∑⎰=→.lim1故()()ini id ls P f dsP f ∆=∑⎰=→.lim1()ini id s P f ∆=∑=→.lim1()ini id sP f ∆≤∑=→.lim1()ini lp d sP f ∆≤∑=∈→.m a x lim1().m a x .P f L lP ∈=4.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+lyx dyy x dxy x解:π2~0:,.sin ,cos :t t a y t a x l ⎩⎨⎧==,所以,()()⎰+--+lyx dyy x dxy x 22()()()()dtat a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos.22022ππ-=-=⎰dt aa5.(P202,第7题)(ⅱ)设点().0,1A 则()()dyyx dx y xL2222-++⎰()()dyyx dx y xOA2222-++=⎰()()dyyx dx y xAB2222-+++⎰.1~0:,,:x x x x y OA ⎩⎨⎧==()()()()[]321022222222=-++=-++⎰⎰dxxxxxdy yx dx y xOA;.2~1:,,2:x x x x y AB ⎩⎨⎧=-=()()()()()()()[]d xx xx xdy yx dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x原式.343232=+=(ⅲ)()dz x yzdydx zy l ⎰-+-2222 ()[]d t t t t t ttt⎰-+-=102232643.2 (2)[].351527323|10571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dt t t6.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明: ()).max ...P L d P f lP l∈≤⎰证明:()()()().(.)|(||||c o s ((,)|lllf P d r fP d s f P f P d s τττ=≤⎰⎰⎰()()||max lP llf P ds f P ds ∈≤≤⎰⎰().m ax .P lL f P ∈≤7.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内那部分面积;(ⅱ)圆锥面22yx z +=被圆柱面x y x 222=+截下的那一部分;(ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分. 解:(ⅰ)222:b y x D xy ≤+.将曲面方程化为:z ∑=d S d x d d x d y==. dxdy yx a a S S xyD ⎰⎰--==22222上⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122bbra a ra a r d r d πθπ极().422b a a a --=π(ⅱ)x y x D xy 2:22≤+. 由曲面方程22:yx z +=∑,得,2122dxdy dxdy y z x z dS =⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂+=.().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz 面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22ya x -=,则,22ya y yx --=∂∂,0=∂∂zx dydzya a dydz z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.dydz ya a S S yzD ⎰⎰-==22188 ⎰⎰--=22228ya adz ya a dy .882a adz a ==⎰8.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面;(ⅱ)()dS y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++=其中 ,0:1=z S d x d y dS =1,()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++110222111111dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-10110211111| 212ln -=;,0:2=x S d y d z dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++1102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||110-=+-+-=y y;,0:3=y S d z d x dS =3,同上()321S dSx y =++⎰⎰1ln 2-;,1:4y x z S --= d x d y dS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-10101021113113|().212ln 33211ln 321113|1010⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x ; ()⎰⎰++Sy x dS21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中 ,0:1=z S d x d y dS =1,()()r d r r d d x d y y xdS y xaD S xy.42222221⎰⎰⎰⎰⎰⎰=+=+πθ 24a π=;,:2h z S = d x d y dS =2,()()r d r r d d x d y y xdS y xaD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a yx S =+其向yoz面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22ya yyx --=∂∂,0=∂∂zx ,所以,d y d z ya a d y d z z x yxdS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=()()dydz ya a yya dS y xyzD S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz ya dy a 022312..2arcsin433|h a ayh a aπ==或者()..22..32232233h a ah a dS a dS y xS S ππ===+⎰⎰⎰⎰()⎰⎰++Sy x dS21()++=⎰⎰122S dSyx()++⎰⎰222S yx()dSy xS ⎰⎰+322().22223344h a ah a a a+=++=ππππ (ⅲ)由积分区域的对称性,及被积函数的奇偶性知(对称性同三重积分)()dS z y x S⎰⎰+++=⎰⎰dSx SdS y S⎰⎰().0=+++⎰⎰dS z y x S9.(P210,第3题)证明泊松公式()()d uc b a uf dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面=++cz by ax 的单位法线向量.则222cb a cz by ax u ++++=(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面=++cz by ax 的距离). ()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为 1222=++w v u(因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.) 得: ()22221u w v -=+当u 固定时,1222=++w v u 表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -=';112222uw v u E u u u-='+'+'=;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv =故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du cb a u f π10(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量. 解:由对称性 ()dSy x J S ⎰⎰+=1228其中2221:yx a z S--=,则d S d x d d x d y==. 因此 ()d x d yyx a a y x S S xyD ⎰⎰--+==222221.88 r d r ra rd a a.8022220⎰⎰-=πθ极()r d r r a aara a.4022222⎰-+-=πr d r r a a a.4022⎰--=πr d rra aa.140223⎰-+π()22022.2ra d r a a a--=⎰π()220223.12ra d ra a a---⎰π.384a π=11(P217,第1题)沿圆锥面()122≤=+z yx S的下侧,求曲面积分S d r S.⎰⎰,其中{}.,,z y x r =解:⎰⎰⎰⎰++=SSzdxdyydzdx xdydz Sd r .''x y z z z ===,[(')(')0xyx y D x z y z dxdy =--+-+=⎰⎰12(P217,第2题)沿椭球面1222222=++cz by ax 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx x dydz解:把S 分割为21,S S 两个部分.其中,222211:by ax c z S --=(上侧);222221:by ax c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by ax D xy故dxdyby ax c zdxdy xyD S ⎰⎰⎰⎰--=2222111变量代换:⎩⎨⎧==.s i n,c o sθθbr y ar x由二重积分的换元法drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,, ⎩⎨⎧≤≤≤≤'.20,10:πθr D所以=⎰⎰1S zdxdy drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111dr r rd cab ⎰⎰-=πθ201211dr r rd cab ⎰⎰-=πθ201211所以,().212111|12212πππcab rcabrd rcab =⎥⎦⎤⎢⎣⎡--=---=⎰由轮换对称性,知:πabc xdzdy S4=⎰⎰;.4πbac ydzdx S=⎰⎰故⎰⎰⎪⎪⎭⎫⎝⎛++Sz dxdy ydzdx xdydz +=⎰⎰Szdxdy +⎰⎰S xdzdy ⎰⎰S ydzdx+=πc ab4πabc4().44222222ac c b b a abc b ac ++=+ππ13(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-()()dxdy b y a x R c dxdy zxyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221变量代换: ⎩⎨⎧+=+=.sin ,cos θθr b y r a x()()[]r d r rR c d x d y b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.()()r r r y ry xr x r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,, ⎩⎨⎧≤≤≤≤'.20,0:πθR r D=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()drr rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R rR c c R⎰-+-+=02222222πrdr r R c rdr c RR⎰⎰-+=0222222ππ()rdr r RR⎰-+0222π()()|||0222023220222132.222RRR rR r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cRRc πππ++= 同理()()dxdy b y a x R c dxdy z xyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221.2344322R cR R c πππ-+-==⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cRdxdy z S π=⎰⎰;由轮换对称性,知:=⎰⎰Sdydz x 2338aRπ;=⎰⎰Sdzdx y 2.383bR π故.222⎰⎰++Sdxdy z dzdx y dydz x ⎰⎰=Sdydzx 2⎰⎰Sdzdxy 2⎰⎰Sdxdyz 2().383c b a R ++=π14(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中 ()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此=⎰⎰Sxyzdxdy+⎰⎰1S xyzdxdy⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy⎰⎰-xyD dxdyxy 0. c b a ydy xdx c a b.422⎰⎰==(后可用奥高公式)15(P225第2题)求()()dy m y e dx my y eI xxL-+-=⎰cos sin ,(m 为常数)其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆 周.(提示:作辅助线后用格林公式). 解:cos ,cos xxP Q e y m e y yx∂∂=-=∂∂.221...428A OO A D DQ P a dxdy m dxdy m m a x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰. 所以,2220.888AOOAma ma ma I πππ⋂==-=-=⎰⎰(因为,⎰⎰==OAadx 0.00)16(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx xl求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx xl故有12f f yx∂∂=∂∂即 ()()x f x x f x '+=34化简,得 ()()241xx f xx f =+'(1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c ex e x f dx xdx x 1214().1134xcx c xx+=+=代入条件()21=f ,得 .1=c ().13xx x f +=17(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,= 在闭区域D 上具有连续的二阶偏导数且记2222yu xu u ∂∂+∂∂=∆证明: ⎰⎰⎰∆=∂∂Dludxdyds nu()()y n yu x n xu nu ,cos ,cos ∂∂+∂∂=∂∂表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有 ()()y x n ,,τ=,()().,,x y n τπ-= 故 ()()y x n ,c o s ,c o s τ=,()().,cos ,cos x y n τ-=()()ds x y uy xu ds nul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yu dyx ul⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u y x u x=⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰Ddxdy y u x u 2222.⎰⎰∆Dudxdy18(P226第7题)在第6题的假设和记号下,证明:.22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂证明:仿上题 ()()ds x y uy xu u ds nu ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系) dx yu udy xu ul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u u y u y u x u u x u x u 2222....dxdy y ux u u dxdy y u x u DD⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222 udxdyu dxdy y u x u DD∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22移项,即得 .22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂19(P227第9题)计算高斯(Gauss)积分 ()(b a I ⎰=,其中l 为简单(光滑)闭合曲线,r 为不在l 上的点()b a ,到l 上动点()y x ,的向量,而n 为l 上动点()y x ,处的法向量.解:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有 ()()y x n ,,τ=,()().,,x y n τπ-= 又设()(){}y n x n n ,cos ,,cos 0= ,{}b y a x r --=,,则()()()()()()().,c o s .,c o s.,c o s ,c o s 22b y a x y n b y x n a x n r n r -+--+-==⎪⎭⎫ ⎝⎛=故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]ds y n b y x n a x b y a x b a I l ,cos ,cos .1,22-+--+-=⎰()()()()()()[]ds x b y y a x b y a x l,cos ,cos .122ττ----+-=⎰()()()().22⎰-+----=l b y a x dx b y dy a x记 ()()(),,22b y a x by y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y yP -+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xo y 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD .则在'εD 由格林公式可得:)()()()⎰-+----lb y a x dxb y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dya x I 22()()⎰---=εεl dxb y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x .20(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向.解一:由斯托克斯公式d x d y yx zx yz z y x d x d y d z d x d y d z 2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=n ,.31,33,330⎭⎬⎫⎩⎨⎧-=n ) ()()()dSdxdy dz y x dy z x dx y z I l⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdy dz y x dy z x dx y z I l2其中,.1:22≤+yx D xy所以,.22π-=-=⎰⎰dxdy I xyD .21(P238第2题)证明式(14-31),并由此求下面的曲线积分:()();).1(2,11,22⎰-xxdy ydx ()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx解:(一)要证式(14-31)成立,即要证若平面区域D 内保守力场()(){}y x Q y x P f ,,,=有位势()y x u ,,则对D 内的任意两点()()222111,,,y x M y x M ,有 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰事实上,因为()(){}y x Q y x P f ,,,=为保守力场,故()()dy y x Q dx y x P l,.+⎰在D 内与路径无关,而只取决于路径的起点、终点.令 ()()()()()dy y x Q dx y x P y x v y x y x ,.,,,11+=⎰ (1)则可证明()y x v ,也是f 在D 内的一个势函数.故()()C y x v y x u ≡-,, ,对任意()D y x ∈,成立 (2)取()()11,,y x y x =,并注意到()0,11=y x v (因为沿闭合曲线的积分为零),得()()()111111,,,y x u y x v y x u C =-=(2)式中再取()()22,,y x y x =,并注意到(),0,11=y x v 得()()C y x v y x u =-2222,, 即 ()()()()().,,3,,11222222y x u y x u C y x u y x v --============又由(1)式,注意到()y x v ,的记号,得 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰(二)()()⎰-2,11,22).1(xxdy ydx中,()2,xy y x P =,().1,2xxx y x Q -=-=因为 xQ xyP ∂∂==∂∂21,().0,,2≠∈x R y x所以,2xxdyydx -是某一个函数()y x u ,的全微分.故可取()()()⎰-=y x xxdyydx y x u ,0,12,dy x dx yx⎰⎰⎪⎭⎫⎝⎛-+=110.x y -=所以()()()().2321121,22,12,11,22-=⎪⎭⎫⎝⎛---=-=-⎰u u xx d y yd x ()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx 中,()()().,,,,,,,,xy z y x R zx z y x Q yz z y x P ===因为xQ z yP ∂∂==∂∂;yR x zQ ∂∂==∂∂;.zP y xR ∂∂==∂∂ ().,,3R z y x ∈所以,+yzdx xydz zxdy +是某一个函数()z y x u ,,的全微分. (二)现取()()()xydz zxdy dx yz z y x u z y x ++=⎰,,0,0,0,,取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M最后沿平行于z 轴的直线到点(),,.M x y z 于是()⎰⎰⎰++=zyxxydz dy x dx z y x u 0.00,, .xyz =所以()()()().03,2,11,1,61,1,63,2,1=-=++⎰u u x y d z z x d y y z d x22(P238第5题)验证下列方程我全微分方程,并求通解:()();04332).1(=-++dy y x dx y x ()().03223).2(2222=+-++-dyyxy xdx yxy x解:()();04332).1(=-++dy y x dx y x这里,()()y x y x Q y x y x P 43,,32,-=+=.因为,xQ yP ∂∂==∂∂3,是全微分方程.故:()()()()()dyy x dx y x y x u y x 4332,,0,0-++=⎰()()dyy x dxx yx⎰⎰-++=04302[]||020223yx yxy x-+=.2322y xy x -+=通解为:cyxy x =-+2223.()().03223).2(2222=+--+-dyyxy xdx yxy x这里,()().32,,23,2222y xy x y x Q y xy x y x P -+-=+-=. 因为,xQ y x yP ∂∂=+-=∂∂22,所以方程是全微分方程.故:()()()()()dy yxy x dx y xy x y x u y x 22,0,0223223,+--+-=⎰()()dy y xy x dx xyx⎰⎰-+-+=22023203[]||03223yxyxy y x x-+-+=.3223y xyy x x -+-=因此,所求方程的通解为:.3223c y xy y x x =-+-.23(P238第6题)设函数()y x u u ,=在凸区域(即包含区域内任意两点间的连线)2R ⊂Ω内连续可微分且K gradu ≤(常数).证明:对于Ω内任意两点B A ,,都有 ()()().,.B A d K B u A u ≤- 其中()B A d ,表示点B A ,之间的距离.证明:由于Ω为凸区域,故线段AB 整个属于Ω.设点B 的坐标为()000,,z y x ,点A 的坐标为()111,,z y x ,且令.,,010101z z z y y y x x x -=∆-=∆-=∆ 考虑一元函数()()z t z y t y x t x u t f ∆+∆+∆+=000,, ().10≤≤t (1)显然, ()()()().1,0A u f B u f == (2) 且()t f 在[]1,0上可微,并且 ()()x z t z y t y x t x u t f x ∆∆+∆+∆+'='.,,000 ()y z t z y t y x t x u y ∆∆+∆+∆+'+.,,000()z z t z y t y x t x u z ∆∆+∆+∆+'+.,,000 (3) 于是,由微分学中值定理知()()()()()ξf f f B u A u '=-=-01 ()()=3 ()x z z y y x x u x ∆∆+∆+∆+'.,,000ξξξ ()y z z y y x x u y ∆∆+∆+∆+'+.,,000ξξξ ()z z z y y x x u z ∆∆+∆+∆+'+.,,000ξξξ()..,,000BA z z y y x x gradu ∆+∆+∆+=ξξξ (4) 由(4)式可知 ()()(z z y y x x gradu B u A u ,,000∆+∆+∆+=-ξξξ ()().,..,,000B A d K z z y y x x gradu ≤∆+∆+∆+≤ξξξ 24(P238第7题)求向量场⎪⎭⎫⎝⎛=x y grad f arctan沿下列曲线l 的环量:(ⅰ)l 为圆周()()12222=-+-y x ;l 为圆周422=+y x (分为左、右半圆周分别计算).解: ⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛=x y y x y x x y grad f arctan ,arctan arctan.,2222⎭⎬⎫⎩⎨⎧++-=y x xyx y(ⅰ)2222.yx xdy yx ydx r d f ll+++-=⎰⎰(格林公式)d x d y y x y y y x x x D⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂=2222()().02222222222=⎥⎥⎦⎤⎢⎢⎣⎡+--+-=⎰⎰dxdy yxxy yx x y D(ⅱ)⎰⎰+-=llyx ydx xdy r d f 22.[].22.241412ππ==-=⎰lydx xdy25(P238第9题)证明: ()f gradu f urot f u rot ⨯+=. 解:设()()(){}z y x R z y x Q z y x P f ,,,,,,,,=,则()()(){}.,,,,,.,,,z y x uR z y x Q u z y x uP uf =()()()()()()⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y uP x uQ x uR z uP z uQ yuR f rot ,, ,,{⎪⎭⎫⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂⎪⎭⎫⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=x u R x R u z u P zPu z uQ zQ u y u R y R u },⎪⎪⎭⎫⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂y u P y P u x u QxQ u⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R u ,,⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+y u P x u Q z u P x u R z u Q yu R ,.f gradu f urot ⨯+= 26(P246第1题)利用奥-高公式计算下列各曲面积分:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz ,沿球面()()()2222R c z b y a x =-+-+-外侧;(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333,沿正方体()10,10,10≤≤≤≤≤≤z y x 外表面;(ⅲ)()()()[]d S z n z y n y x n x S⎰⎰++,cos ,cos ,cos 222,沿锥面()hz yx S≤=+22的下侧;(ⅳ),3dxdy z S⎰⎰沿上半球面222yx a z --=的上侧.解:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz (奥-高公式)()()()⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=dv z z y y xx .434.3333R R dv ππ===⎰⎰⎰Ω(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333(奥-高公式)()()()x d y d zd z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=333()⎰⎰⎰Ω++=d x d y d zzy x 2223=3 (ⅲ)若取h z S =:1(上侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥-高公式,便得:()()()[]d S z n z y n y x n xS S ⎰⎰+++1,cos ,cos ,cos 222dxdyz dzdx y dydz x S S 2221++=⎰⎰+ (奥-高公式)()()()x d y d z d z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=222 ()⎰⎰⎰Ω++=dxdydz z y x 2⎰⎰⎰Ω=zdxdydz 2(=⎰⎰⎰Ωxdxdydz0=⎰⎰⎰Ωydxdydz)dz z rdrd hhr⎰⎰⎰=πθ202()drrhrd h⎰⎰-=πθ2022212 .24πh=所以 ()()()[]d Sz n z y n y x n xS⎰⎰++,cos ,cos ,cos 222d x d yz d z d x y d y d z xhS 222212++-=⎰⎰π =-=⎰⎰dxdy hhxyD 222π.2.22222πππhh h h=-=(ⅳ),3dxdy z S⎰⎰沿上半球面222yx a z --=的上侧.若取0:1=z S (下侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥—高公式,便得:dxdyz S S ⎰⎰+13x d y d z d z ⎰⎰⎰Ω=23()ρρϕρϕϕθππd d d a⎰⎰⎰=20222c o s s i n 3.5251.cos 31.655203|a a πϕππ=⎥⎦⎤⎢⎣⎡-=dxdyz S⎰⎰3dxdya S ⎰⎰-=10525π .525a π=27(P246第2题)设S 为光滑封闭曲面,c 为常向量.证明:().0,c o s=⎰⎰dS c n S()P n n =为S 上点P 处的单位外法向量证明:设{},cos ,cos ,cos γβα=n {}.,,321c c c c =()232221321cos cos cos .,cos c c c c c c c n ++++==γβα()⎰⎰⎰⎰++++=SSdxdy c dzdx c dydzc c c c dS c n 3212322211,cos (奥-高公式).0=28(P246第3题)证明等式().,c o s 21dS n r rdxdydz S⎰⎰⎰⎰⎰=Ω其中S 为包围空间有界区域3R ⊂Ω的光滑封闭曲面,n 为曲面S 上动点()z y x P ,,处的单位外法向量,r 为连接定点()()S M c b a M ∉00,,与动点P 处的向量,0r P M =证明:设{},cos ,cos ,cos γβα=n {}.,,c z b y a x r ---=()()()()()()()222cos cos cos ..,cos c z b y a x c z b y a x n r n r -+-+--+-+-==γβα()()()()()()()⎰⎰⎰⎰-+-+--+-+-=S Sc z b y a x dxdyc z dzdx b y dydz a x dS n r 22221,cos 21()()()()()[];23222221c z b y a x c z b y xf -+-+--+-=∂∂()()()()()[];23222222c z b y a x c z a x yf -+-+--+-=∂∂()()()()()[].23222223c z b y a x b y a x zf -+-+--+-=∂∂()()()[]()()()[]232222223212c z b y a x c z b y a x zf yf xf -+-+--+-+-=∂∂+∂∂+∂∂()()().22222rc z b y a x =-+-+-=。
第九章--曲线积分与曲面积分习题解答(详解)

为了便于计算,利用 的参数方程
于是
习题9-2
1设 为 面内一直线 ( 为常数),证明
。
证明:设 是直线 上从点 到点 的一段,其参数方程可视为
,( ),
于是
。
2计算下列对坐标的曲线积分:
(1) ,其中 为上半椭圆 ,其方向为顺时针方向;
解
.
(2) ,其中 为抛物线 上从点 到点 的一段弧。
解将曲线 的方程 视为以 为参数的参数方程 ,其中参数 从 变到 。因此
。
习题9-6
1.求曲线积分 ,其中 是圆 的上半圆周,取顺时针方向.
解令 , ,则 在整个 面内恒成立,因此,曲线积分 在整个 面内与路线无关。故可取沿 轴上的线段 (如右图所示)积分,即 ,于是, ,有
.
2证明下列曲线积分在整个 面内与路径无关,并计算积分值:
(1) ;
解令 , ,则 在整个 面内恒成立,因此,曲线积分 在整个 面内与路径无关。为了计算该曲线积分,取如右图所示的积分路径,则有
解由高斯公式, ,于是
其中 是由平面 及三个坐标面围成的立方体区域。则
。
(2) ,其中 为柱面 及平面 及 所围成的空间闭区域 的整个边界曲面的外侧。
解这里 , , ,由高斯公式得
。
(3) ,其中 为曲面 及平面 ﹑ 所围成的空间区域的整个边界的外侧。
解这里 , , ,用高斯公式来计算,得
,
其中 是曲面 及平面 所围成的空间闭区域.
解容易求得法向量: ,又速度场为 ,故
.
这里 .
习题9-5
1.利用曲线积分求下列平面曲线所围成图形的面积:
(1)星形线 ( );)
解
。
(2)圆 ,( );
曲线曲面积分部分难题解答

曲线曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)⎰lxyds ,l 为抛物线x y 22=上从原点)0,0(O 到点)2,2(A 的弧⋂OA ;(ⅱ)()⎰+l ds yx 22,l 为联结点)0,0(O 、)0,2(A 和)1,0(B 的三角形围线;(ⅲ)⎰+lsd y x 22,l 为圆周()022>=+a ax y x ;(ⅳ)()⎰++l ds zy x 222,l 为螺线()0,sin ,cos >===b bt z t a y t a x 的 一段弧()π20≤≤t ;(ⅴ)⎰l zds ,l 为曲线()⎩⎨⎧>===0,2222a ax y z y x 上从点)0,0,0(O 到)2,,(a a a A 的一段弧.解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫⎝⎛+=所以dy y y y xyds l2221..21+=⎰⎰(令t y tan =) tdtt 332arctan 0sec .tan21⎰= ()t td t sec sec .tan21222arctan 0⎰=()()t td t sec sec .1sec21222arctan 0-=⎰()()⎥⎦⎤⎢⎣⎡+---=⎥⎦⎤⎢⎣⎡-=315153155121sec 31sec 5121352arctan35|t t.15135515255315521+=⎥⎦⎤⎢⎣⎡+-=(ⅱ)解:()⎰+l ds yx 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx xds y xOA;,其中:.20,,0:≤≤⎩⎨⎧==x xx y OA()()[]()dy y y ds y xAB21222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y其中:.10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.22212222==++=+⎰⎰⎰dy y dy yds y xBO,其中:.10,,0:≤≤⎩⎨⎧==y y y x BO所以.3535+=++=⎰⎰⎰OAABOBI(ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt at a t a s d y x l2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+π()dt t a⎰+=π202cos 124dt t a⎰=π20222sin2.24dt t a⎰=π2022sin2.22cos 22sin2202202|a t a t d t a=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l 则()().22,s i n .c o s s i n,c o s c o s :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l ()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b aba[].433222222b a b a++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by ax l 上,其密度().,y y x =μ求它的总质量.解:不妨假设.b a >⎰⎰==14l lydsds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l ()()()().cos sincos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=所以dt t b t a t b yds M l 222220cos sinsin 441+==⎰⎰π()dt t b a a t b 222220cos sin 4--=⎰π()()t d t b a a b cos cos 4202222⎰---=π()du u b a a b 222214---=⎰()du u b a a b 222214--=⎰duu ba aba b ⎰---=22222224π(公式)|102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u ba au ba au ba ab a b ()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=21arcsin .2.42222222222ba aab a b a a b a b.arcsin..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b ab a ba ab 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明:()().max .P f L dsP f lP l∈≤⎰证明:由第一型曲线积分的定义()()ini id ls P f dsP f ∆=∑⎰=→.lim1故()()ini id ls P f dsP f ∆=∑⎰=→.lim1()ini id s P f ∆=∑=→.lim1()ini id sP f ∆≤∑=→.lim1()ini lp d sP f ∆≤∑=∈→.m a x lim1().m a x .P f L lP ∈=4.(P202,第4题)从原点()0,0O 到点()2,1A 沿下列不同路径分别计算第二型曲线积分.⎰⋂-OAydx xdy(1).⋂OA 为直线段;(2).⋂OA 为抛物线22x y =上的弧;(3).⋂OA 为从点()0,0O 经点()0,1B 到点()2,1A 的折线⋂OBA . 解: (1) .1~0:,,2:x xx x y OA ⎩⎨⎧==⋂[].022.1=-=-⎰⎰⋂dxx x ydx xdy OA(2).1~0:,,2:2x x x x y OA ⎩⎨⎧==⋂[].323224.|10312==-=-⎰⎰⋂xdxx x x ydx xdy OA(3).220=+=+=+⎰⎰⎰⋂OBBAOAydx xdy其中,.1~0:,.,0:x x x y OB ⎩⎨⎧==();000.1=-=-⎰⎰dxx ydx xdy OB其中,.2~0:,.,1:y y y x BA ⎩⎨⎧== ().20.12=-=-⎰⎰dyy ydx xdy BA5.(P202,第5题)计算曲线积分 .⎰+lxdy ydx(1).l 为从点()0,a 点()0,a -的上半圆周()022>-=a xa y ;(2). l 为从点()0,a 点()0,a -的直线段()0>a ; (3). l 为逆时针方向的圆周.222a y x =+ 解: (1).~0:,sin ,cos :πt t a y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+πcos .cos sin .sin ==⎰dt t aπ22cos 02sin 2|02=πt a.(2).~:,,0:a a x x x y l -⎩⎨⎧==().00.0=+=+⎰⎰-dxx xdy ydxaal(3).2~0:,sin ,cos :πt ta y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+π20cos .cos sin .sin ==⎰dt t aπ2022cos 02sin 2|202=πt a.6.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+lyx dyy x dxy x解:π2~0:,.sin ,cos :t t a y t a x l ⎩⎨⎧==,所以,()()⎰+--+lyx dyy x dxy x 22()()()()dtat a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos.22022ππ-=-=⎰dt aa7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)()()dy xy y dx xy x l⎰-+-2222,l 为抛物线()112≤≤-=x x y ;(ⅱ)()()dy y x dx yx l ⎰-++2222,l 为折线()2011≤≤--=x x y ;(ⅲ)()dz x yzdy dx zy l ⎰-+-2222,l 的参数方程为().10,,3,2≤≤⎪⎩⎪⎨⎧===t t z t y t x ;解:(ⅰ).1~1:,:2-⎩⎨⎧==x xy x x l()()dy xy y dx xy xl⎰-+-2222()()[]d x x x x xxx x⎰--+-=1124222..2.2[].151454324|10531142-=⎥⎦⎤⎢⎣⎡-=-=⎰-x x dx x x (ⅱ)设点().0,1A 则()()dyyx dx y xL2222-++⎰()()dyyx dx y xOA2222-++=⎰()()dyyx dx y xAB2222-+++⎰其中 .1~0:,,:x x x x y OA ⎩⎨⎧==故()()()()[]d x xxxxdy yx dx y xOA⎰⎰-++=-++1022222222.32322|10312===⎰x dx x ;其中.2~1:,,2:x x x x y AB ⎩⎨⎧=-=故()()()()()()()[]d x x xx xdy yx dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x所以原式.343232=+=(ⅲ)()dz x yzdydx zy l ⎰-+-2222()[]d t t t t t ttt⎰-+-=102232643.2 (2)[].351527323|1571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dttt8.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明:()).max ...P L d P f lP l∈≤⎰证明:设()()(){}.,21P f P f P f =由第二型曲线积分的定义及柯西不等式()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f rd P f 121..lim.故()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f d P f 121..lim.()()[]∑=→∆+∆≤ni i i iid y P f xP f 121..lim()()()()2212221.limi i ni i i d y x P f P f ∆+∆+≤∑=→)()()221.limi ini id y x P ∆+∆=∑=→)()())⎰∑=→=∆+∆≤li ini d ds P y x P .max .max lim221)P L =m a .9.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内的那部分面积;(ⅱ)圆锥面22yx z +=被圆柱面x y x 222=+截下的那一部分;(ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分.解:(ⅰ)画出示意图222:b y x D xy ≤+. 将曲面方程化为:z ∑=2z zx y∂∂=-=-∂∂,所以,d S d x d d x d y==. 因此d x d yyx a a S S xyD ⎰⎰--==22222上 ⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122bbra a ra a r d r d πθπ极().422b a a a --=π(ⅱ)画出示意图x y x D xy 2:22≤+. 由曲面方程22:yx z +=∑,得,22yx x xz +=∂∂,22yx y yz +=∂∂,所以,,2122d x d y d x d y y z x z dS =⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂+=.因此().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz 面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22ya x -=,则,22ya y yx --=∂∂,0=∂∂zx ,所以,d y d zya a d y d z z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.因此d y d zya a S S yzD ⎰⎰-==22188 ⎰⎰--=22228ya a dz ya a dy .882a a d z a==⎰10.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面;(ⅱ)()dS y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++= 其中,0:1=z S dxdy dS =1,()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++110222111111dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010211111|()212ln 211ln 2111|1010-=-+=⎪⎭⎫ ⎝⎛-+=⎰x dx x ;,0:2=x S d y d z dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++1102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=102102111211()2ln 11ln 12||110-=+-+-=y y;,0:3=y Sd z d x dS =3,()()()dzx dx dzdx x y x dSxD S zx⎰⎰⎰⎰⎰⎰-+=++=++1102221101113()()dx x x dx x x⎰⎰⎪⎪⎭⎫ ⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=x x;,1:4y x z S --= d x d ydS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-1011021113113|().212ln 33211ln 321113|110⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x;所以()⎰⎰++Sy x dS21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中,0:1=z S d x d y dS =1,()()r d r r d d x d y y xdS y xaD S xy.420222221⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2h z S = d x d y dS =2,()()r d r r d d x d y y xdS y xaD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a yx S =+其向yoz面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22ya y yx --=∂∂,0=∂∂zx ,所以,d y d z ya a d y d z z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.因此()()d y d zya a yya dS y xyzD S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz ya dy a22312..2arcsin433|h a ayh a aπ==或者()..22..32232233h a ah a dS a dS y xS S ππ===+⎰⎰⎰⎰所以()⎰⎰++Sy x dS21()++=⎰⎰122S dSyx()++⎰⎰222S yx()dSy xS ⎰⎰+322().22223344h a ah a a a+=++=ππππ (ⅲ)由积分区域的对称性,及被积函数的奇偶性知,显然()dS z y x S⎰⎰+++=⎰⎰dSx SdS y S⎰⎰().0=+++⎰⎰dS z y x S11.(P210,第3题)证明泊松公式()()d uc b a uf dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面0=++cz by ax 的单位法线向量.则 222cb a cz by ax u ++++=(1)(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面0=++cz by ax 的距离).则()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为 1222=++w v u (2) (因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.)由(2)式可得: ()22221u w v -=+ (3)当u 固定时,(3)式其实就表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -='于是,;112222uw v u E u u u-='+'+'=;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv = (4)故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du cb a u f π12(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量. 解:由公式 ()dSy xJ S⎰⎰+=22由对称性()dSy x J S ⎰⎰+=1228其中2221:yx a z S--=,则2z z x y∂∂=-=-∂∂,所以,d S d x d d x d y==. 因此()d x d yy x a a y x S S xyD ⎰⎰--+==222221.88 r d r ra rd a a.8022220⎰⎰-=πθ极()r d r r a aara a.4022222⎰-+-=πr d r r a a a.4022⎰--=πr d rra aa.140223⎰-+π()22022.2ra d r a a a--=⎰π()220223.12ra d ra a a---⎰π()|232232.2araa -=π|2232.2ara a --π434aπ-=44aπ+ .384a π=13(P217,第1题)沿圆锥面()122≤=+z yx S的下侧,求曲面积分S d r S.⎰⎰,其中{}.,,z y x r =解:⎰⎰⎰⎰++=SSzdxdyydzdx xdydzS d r .化为第一型曲面积分计算.S 的向下的法向量{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++=-''=1,,1,,2222yx y yx x z z n y x,所以{}.c o s ,c o s ,c o s21,2,22222γβα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++==yx yyx x n 故⎰⎰⎰⎰++=SSzdxdyydzdx xdydzSd r . ()⎰⎰++=SdSz y x γβαcos .cos .cos .⎰⎰⎪⎪⎪⎭⎫⎝⎛-+++=SdSz yx y yx x222222222⎰⎰⎪⎪⎭⎫ ⎝⎛-+=SdS z y x 2222(根据第一型曲面积分的计算方法) ⎰⎰=⎪⎪⎭⎫⎝⎛+-+=xy D dxdy y x y x .0222222214(P217,第2题)沿椭球面1222222=++cz by ax 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx xdydz解:把S 分割为21,S S 两个部分.其中,222211:by ax c z S --=(上侧);222221:by ax c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by ax D xy故dxdyby ax c zdxdy xyD S ⎰⎰⎰⎰--=2222111作变量代换: ⎩⎨⎧==.s i n,c o s θθbr y ar x由二重积分的换元法drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,10:πθr D所以=⎰⎰1S zdxdy drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111dr r r d cab ⎰⎰-=πθ201211dr r rd cab ⎰⎰-=πθ201211所以,().212111|12212πππcab rcabrd rcab =⎥⎦⎤⎢⎣⎡--=---=⎰(1)同理 dxdy by ax c zdxdy xyD S ⎰⎰⎰⎰----=2222112.2112222πcab dxdy by ax c xyD =--=⎰⎰(2)所以=⎰⎰Szdxdy +⎰⎰1S zdxdy .42πcab zdxdy S =⎰⎰(3)由轮换对称性,知:πa bc x dzdy S4=⎰⎰;.4πbac ydzdx S=⎰⎰故⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx xdydz +=⎰⎰Szdxdy +⎰⎰Sxdzdy ⎰⎰Sydzdx+=πc ab4πabc4().44222222ac c b b a abc b ac ++=+ππ15(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-故()()dxdy b y a x R c dxdy zxyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221作变量代换:⎩⎨⎧+=+=.s i n ,c o sθθr b y r a x由二重积分的换元法()()[]r d r rR c d x d y b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.其中 ()()r r r y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,0:πθR r D所以=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()drr rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R rR c c R⎰-+-+=02222222πrdr r R c rdr c RR⎰⎰-+=0222222ππ()rdr r RR⎰-+0222π()()|||0222023220222132.222R RR r R r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cRRc πππ++=(1)同理()()dxdy b y a x R c dxdy z xyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221[]rdr rR c D 222⎰⎰'---=()dr r rR c d R⎰⎰⎥⎦⎤⎢⎣⎡---=πθ20222()rdr rR c R2222⎰---=π()r dr r R rR c c R⎰-+---=02222222πrdr r R c rdr cR R⎰⎰-+-=0222222ππ()rdr r RR⎰--0222π()()|||0222023220222132.222R RR r R r R c r c ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-=πππ.2344322R cRRc πππ-+-=(2)所以=⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cRdxdy z S π=⎰⎰; (3)由轮换对称性,知:=⎰⎰Sdydz x 2338aRπ;=⎰⎰Sdzdx y 2.383bR π故.222⎰⎰++Sdxdy z dzdx y dydz x⎰⎰=Sdydzx2⎰⎰Sdzdxy 2⎰⎰Sdxdyz2().383c b a R ++=π16(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此=⎰⎰Sxyzdxdy+⎰⎰1S xyzdxdy⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy⎰⎰-xyD dxdyxy 0.c b a yd y x d x c ab.422⎰⎰==17(P225第1题)利用格林公式计算下面的曲线积分(l 的方向为正方向): (ⅰ)()dy xy dx y x l22+-⎰,l 为圆周()222a y x =+;(ⅱ)()()dy y x dx y x l--+⎰,l 为椭圆⎪⎪⎭⎫ ⎝⎛=+12222b ya x ; (ⅲ)()xdy dx y l+-⎰,l 为曲线()1=+y x ;(ⅳ)()()dy y y e dx y e x lx sin cos 1---⎰,l 为区域().sin 0,0x y x D <<<<π;18(P225第2题)求()()dy m y e dx my y eI xxL-+-=⎰cos sin ,(m 为常数)其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆 周.(提示:作辅助线后用格林公式).解:cos ,cos xxP Q e y m e y yx∂∂=-=∂∂.所以,由格林公式:221...428A OO A D DQ P a dxdy m dxdy m m a x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰. 所以,2220.888AOOAma ma ma I πππ⋂==-=-=⎰⎰(因为,⎰⎰==OAadx 0.00)19(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx xl故有xQ yP ∂∂=∂∂即()()x f x x f x '+=34 化简,得()()241xx f xx f =+' (1)(1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x e x f dx xdx x 1214[]()cdx xx c e x e x x +=+=⎰⎰-3ln 2ln 414().1134xcx c xx+=+=(2)代入条件()21=f ,得 .1=c故().13x x x f +=20(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,= 在闭区域D 上具有连续的二阶偏导数且记 2222yu xuu ∂∂+∂∂=∆证明:⎰⎰⎰∆=∂∂Dludxdy ds nu其中()()y n yu x n xu nu ,cos ,cos ∂∂+∂∂=∂∂表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有()()y x n ,,τ=,()().,,x y n τπ-= 故()()y x n ,c o s ,c o s τ=,()().,cos ,cos x y n τ-=()()ds x y u y xu ds nul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yu dy xul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫⎝⎛∂∂∂∂=Ddxdy y u y x u x=⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰Ddxdy y u x u 2222.⎰⎰∆Dudxdy21(P226第7题)在第6题的假设和记号下,证明:.22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂证明:仿上题 ()()ds x y uy xu u ds nu ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系) dx yu udy xu ul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u u y u y u x u u x u x u 2222....dxdy y ux u u dxdy y u x u DD⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222udxdyu dxdy y u x u DD∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22移项,即得 .22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂22(P227第8题)格林第二公式 若函数()y x u u ,=和()y x v v ,=都满足第6题中的假设,证明: dsvun v n udxdy vuv u lD⎰⎰⎰∂∂∂∂=∆∆证明:我们有 ()()ds x y u y xu v ds nu vl l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ (由两型曲线积分之间的联系)dx yu vdy xu vl⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u v y x u v x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u v y u y v x u v x u x v 2222....⎰⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DDdxdy y u x u v dxdy y v y u x v x u 22.. ...⎰⎰⎰⎰∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DDudxdy v dxdy y v y u x v x u (1)由轮换对称性,知 dsnv ul⎰∂∂ ...⎰⎰⎰⎰∆+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=DDvdxdy u dxdy y v y u x v x u (2)于是ds n v u n uv ds vun v n ul l⎰⎰⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=⎰⎰⎰⎰DDudxdy v dxdy y v y u x v x u ..⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂-⎰⎰⎰⎰DD vdxdy u dxdy y v y u x v x u ..()⎰⎰∆-∆=Ddxdyv u u v .dxdy vuv u D⎰⎰∆∆=23(P227第9题)计算高斯(Gauss)积分 ()(b a I ⎰=,其中l 为简单(光滑)闭合曲线,r 为不在l 上的点()b a ,到l 上动点()y x ,的向量,而n 为l 上动点()y x ,处的法向量.解:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有()()y x n ,,τ=,()().,,x y n τπ-= 又设()(){}y n x n n ,cos ,,cos 0= ,{}b y a x r --=,,则()()()()()()().,c o s .,c o s .,c o s ,c o s 2200b y a x y n b y x n a x n r n r -+--+-==⎪⎭⎫ ⎝⎛= 故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]ds y n b y x n a x b y a x b a I l ,cos ,cos .1,22-+--+-=⎰()()()()()()[]ds x b y y a x b y a x l,cos ,cos .122ττ----+-=⎰()()()().22⎰-+----=l b y a x dx b y dya x记 ()()(),,22b y a x by y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y yP -+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xo y 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD . 则在'εD 由格林公式可得:)()()()⎰-+----lb y a x dxb y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dya x I 22()()⎰---=εεl dxb y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x .24(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式d x d y yx zx yz z y x d x d y d z d x d y d z 2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=n ,.31,33,33⎭⎬⎫⎩⎨⎧-=n ) ()()()dSdxdy dz y x dy z x dx y z I l⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdydz y x dy z x dx y z I l2其中,.1:22≤+y x D xy所以,.22π-=-=⎰⎰dxdy I xyD .25(P238第1题)下面的向量场是否为保守场?若是,并求位势:u(){};sin cos 2,sin cos 2122y x x y x y y x f --=解:(1)这里()x y y x y x P sin cos 2,2-=,().sin cos 2,2y x x y y x Q -=因为xQ x y y x yP ∂∂=--=∂∂sin 2sin 2,()2,R y x ∈所以{}y x x y x y y x f sin cos 2,sin cos 222--=是定义在全平面上的保守场.所以,()+-dx x y y x sin cos22()dyy x x y sin cos 22-是某一个函数()y x u ,的全微分.故可取()()()()()dyy x x y dx x y y x y x u y x sin cos 2sin cos 2,2,0,02-+-=⎰()()dyy xx y dx x x yx⎰⎰-+-=0202sin cos 2sin 00cos 2[]||0222c o s c o s yx yx x y x++=()[]2222c o s c o s xy x x yx -++=.cos cos 22y x x y +=则,所求的位势为().cos cos ,22c y x x y c y x u ++=+(){}.sin ,cos ,222z y ex z xef yy--=--解:这里()()().sin ,,,cos ,,,2,,2z y z y x R e x z z y x Q xez y x P yy-=-==--。
§10_曲线积分和曲面积分习题与答案

第十章 曲线积分和曲面积分(A )1、计算下列对弧长的曲线积分 1)ds y x n L)(22+⎰,其中:)20(sin ,cos :π≤≤==t t a y t a x L2),xds L⎰其中围成及为由2x y x y L == 3),2yzds x T⎰其中T 为折线ABCD ,这里A ,B ,C ,D 依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2) 4),)(22ds y x L+⎰其中L :)20(),cos (sin ),sin (cos π≤≤-=+=t t t t a y t t t a x2 、计算下列对坐标的曲线积分 1),)(22dx y x L-⎰其中L 是2x y =上从(0,0)到(2,4)的一段弧2),xydx L⎰其中L 是222)(a y a x =+-及x 轴围成的在第一象限内的区域的整个边界(逆时针向) 3),ydz dy dx T+-⎰其中T 为有向闭折线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1) 4)dy xy y dx xy x L)2()2(22-+-⎰,其中L 是2x y =上从点(-1,1)到(1,1)的一段弧3、利用格林公式,计算下列曲线积分 1),)635()42(dy x y dx y x L-+++-⎰其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界 2),)2sin ()sin 2cos (222dy ye x x dx e y x xy x y x x x L -+-+⎰其中L 为正向星形线)0(323232>=+a a y x3),)3sin 21()cos 2(2223dy y x x y dx x y xy L+-+-⎰其中L 为抛物线22y x π=上由(0,0)到()1,2π的一段弧4、验证下列dy y x Q dx y x P ),(),(+在整个xoy 面内是某个),(y x u 的全微分,并求这样的),(y x u1)dy y x dx y x )2()2(+++2)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++5 、计算下列对面积的曲面积分 1)⎰⎰∑++,)342(ds z y x 其中∑为平面1432=++zy x 在第一卦限中的部分 2)⎰⎰∑++,)(ds xz yz xy 其中∑为锥面22y x z +=被柱面ax y x 222=+所截得的有限部分6 、计算下列对坐标的曲面积分 1)⎰⎰∑,22zdxdy y x 其中∑是球面2222R z y x =++的下半部分的下侧 2)⎰⎰∑++,yzdzdx xydydz xzdxdy 其中∑是平面1,0,0,0=++===z y x z y x 围成区域的整个边界曲面的外侧7 、利用高斯公式计算曲面积分 1)⎰⎰∑++,333dxdy z dzdx y dydz x 其中∑为球面2222a z y x =++的外侧 2)⎰⎰∑++,zdxdy ydzdx xdydz 其中∑为界于3,0==z z 之间的圆柱体922≤+y x 的整个表面的外侧8 、 求下列向量的散度1)k xy z j xz y i yz x A )()()(222+++++=ϖ 2)k xz j xy i e A xy)cos()cos(2++=ϖ9、求下列向量场A 的旋度1)k x y j z x i y z A )2()3()32(-+-+-=ϖ2)j y x z i y z A )cos ()sin (--+=ϖ(B)1、一段铁丝成半圆形22x a y -=,其上任一点处的线密度的大小等于该点的纵坐标,求其质量. 2、 把xdy ydx x L-⎰2化为对弧长的曲线积分,其中L 为2x y =从点A (-1,1)到B (1,1)的弧段. 3、把xzdz yzdy xyzdx ++⎰Γ化成对弧长的曲线积分,其中Γ为曲线32,,t z t y t x ===0()1≤≤t 一段弧.4、求心形线t a t a y t a t a x 2sin sin 2,2cos cos 2-=-=所围图形的面积.5、求dy y xy x ye dx y xy x e y x x L)322()23(22222-++++++⎰,其中:L 为21x y -=从A (1,0)到B (0,1).6、 把⎰⎰∑++Rdxdy Qdzdx Pdydz 化为对面积的曲面积分,其中1)∑是平面632=+-z y x 在第二卦限部分上侧2)∑是222y x a z --=上侧7 、,2)()(22 zdxdy dzdx zx y dydz yz x +-+-⎰⎰∑其中∑为锥面)0(122≥+-=z y x z 的上侧. 8、dz y x dy x z dx z y )()()(222222-+-+-⎰Γ,其中Γ为柱面122=+y x 与平面1=++z y x 的交线,从z 轴正向看Γ为逆时针方向.(C )1、 计算,)()()(dz y x dy x z dx z y I L -+-+-=⎰其中:L :⎪⎩⎪⎨⎧=+=+,1222hz a x a y x (),0,0>>h a从X 轴正向看去L 为逆时针. 2、 已知曲线积分,)3(33dy x x dx y I L-+=⎰其中L 为)0(222>=+R R y x 正向,求(1) R 为何值时0=I ; (2) 求I 的最大值. 3 、计算=I [][][]dxdy z z y x f dzdx y z y x f dydz x z y x f +++++⎰⎰∑),,(),,(2),,(,其中:),,(z y x f 连续,∑为1=+-z y x 在第Ⅳ卦限部分的上侧.第十章 曲线积分和曲面积分习 题 答 案(A )1、1)122+n aπ 2))12655(121-+ 9)3( )21(2)4(232ππ+a 2、1)1556- 2)32a π- 3)21 4)1514-3、 12)1 0)2 4)32π 4、2221221)1y xy x ++ y x x y cos sin )222+ 5 、614)1 421564)2a 6 、71052)1R π 81)2 7、 5512)1a π π81)2 8、 z y x divA 222)1++= )sin(2)sin()22xz xz xy x yedivA xy--=9、k j i rotA 642)1++= j i rotA +=)2(B )1、提示:222:,2x a y L a yds m L-===⎰,上半圆22a2、提示:222412sin ,411cos ,2tan ,2,:xx xx x y x y L +=+==='=αααds xx y ds xx xxyx xdy ydx x LL L22222241)2()412411(+-=+-+=-⎰⎰⎰3、提示:,3,2,1,,,232t z t y x t z t y t x t t t ='='='===42342429413cos ,9412cos ,9411cos t t t tt t tt ++=++=++=γβα,⎰⎰⎰++=++++=++Γds tt xyzds tt xz t tyz xyz xzdz yzdy xyzdx 424229416941324、2621a ydx xdy s L π=-=⎰ 5、连OA ,OB ,(O (0,0)),使OA ,OB ,L 构成41圆周,τ于是⎰⎰⎰∂∂-∂∂=Dd y P x Q στ)(=0而1,1)3(,13210210-=∴-=-===⎰⎰⎰⎰⎰L B O AO dy y dx x 6、{},3,2,1)1-=h ϖ143cos ,142cos ,141cos =-==γβαds R Q P ds R Q P )32(141)cos cos cos (⎰⎰⎰⎰∑∑+-=++=γβα 2),,2222z y z z x yx a xz y x -=-=---=,1,,⎭⎬⎫⎩⎨⎧=z y z x h ϖ,,,cos 222222222⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++++=z y x z z y x y z y x x α ⎰⎰⎰⎰∑∑++++=ds zy x R Q P z y x 222(。
第十章(第六部分)曲面积分习题解答

第十章 曲线积分与曲面积分(第六部分)曲面积分习题解答一、对面积的曲面积分1.计算曲面积分⎰⎰∑++dS y x z )342(,其中∑为平面1432=++zy x 在第一卦限中的部分. 分析 因为∑:1432=++z y x ,可恒等变形为∑:y x z 3424--=,又因被积函数y x z 342++与∑形式相同,故可利用曲面方程来简化被积函数,即将4342=++y x z 代入,从而简化计算。
解 平面∑方程的为)321(4yx z --=(如图), ∑在xoy 面上的投影区域xy D :0,0,132≥≥≤+y x yx ;34,2-=∂∂-=∂∂y z x z ,面积元素 dxdy dxdy y z x z dS 361122=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 从而⎰⎰⎰⎰⋅=++∑xyD dxdy dS y x z 3614)342( 61432213614=⋅⋅⋅=. 2. 计算曲面积分⎰⎰∑+dS y x |)|(,其中∑为1||||||=++z y x .解 由对称性可知,0=⎰⎰∑xd S ,由轮换对称性和代入技巧知,⎰⎰⎰⎰⎰⎰∑∑∑=++=dS dS z y x dS y 31|)||||(|31||,再由曲面积分的几何意义知,34238=⋅=⎰⎰∑dS ,所以,334|)|(=+⎰⎰∑dS y x .y二、对坐标的曲面积分1.计算曲面积分⎰⎰∑dydz x 2.其中∑为球面2222R z y x =++在第一卦限部分的上侧。
分析 由于∑不是封闭曲面,且只是对坐标z y ,的曲面积分,故直接计算即可。
解 因∑:222z y R x --=取前侧,且∑在yoz 面上的投影区域为0 ,0 , :222≥≥≤+z y R z y D yz .于是得 ⎰⎰∑dydz x 2dydz z y R yzD ⎰⎰--=)(222⎰⎰⋅-θ=πRrdr r R d 02220 )(402228141212R r r R Rπ=⎥⎦⎤⎢⎣⎡-π=. 2. 计算曲面积分⎰⎰∑++=ydzdx xdydz zdxdy I .其中∑是柱面122=+y x 被平面0=z 及3=z 所截得的在第一卦限内的部分的前侧。
曲面积分-习题课2共35页文档

解 设(X,Y,Z)为上任意,一 则点 得 出的方程为
xX yYzZ1 22 由点O到平面的距离公式,得
(x, y,z)
1 x2 y2 z2 44
设 S为椭球 x2面 y2z21的上半部 22
由z 1 x2 y2
22
一、教学要求
1. 了解两类曲面积分的概念及高斯 Gauss) 斯托克斯(Stokes)公式, 并会 、 计算两类曲面积分.
2.了解散度、旋度的概念及其计算 方法.
3. 会用曲面积分求一些几何量与物 理量.
理论上的联系
1.定积分与不定积分的联系
b
a f ( x ) d F x ( b ) F ( a )( F ( x ) f ( x ))
牛顿--莱布尼茨公式
2.二重积分与曲线积分的联系
D( Q x P y)dx d L Py dQ xd (沿 y L 的)正向
格林公式
3.三重积分与曲面积分的联系
( P x Q y R z)d v P d Q yd d R zzd dx xd
高斯公式
4.曲面积分与曲线积分的联系
z
x
,
x
x2 y2
2 1
22
得
z
y
y 2 1 x2 y2
22
dS 1x z2 yz2dxdy 4 x2 y2 dxdy 2 1 x2 y2 22
所以
dS 4x2 y2 dxdy
z dS
S (x, y,z)
1 (4x2y2)dxdy
4 Dxy
2 1 x2 y2
22
(x, y,z)
(1 ) 若P,Q,R在闭曲面 所围成的空间 中域
曲线积分与曲面积分习题答案.pdf

解: Dxy {( x, y) | x y 1, x 0, y 0} , z 1 x y , dS 3dxdy
原式 = (2 x y 2(1 x y)) 3dxdy
D xy
13 3(
x
1 x2)dx
53
02
2
6
1
1x
3 dx (2 y) dy
1.利用斯托克斯公式计算下列曲线积分:
(1) x 2 y3dx dy zdz , 为 xOy 面内圆周 x2 y 2 a 2 逆时针方向;
解:取 为平面 z 0的下侧被 围成的部分, D 为 在 xOy 面上的投影
区域。 由 Stokes 公式,得
dydz dzdx dxdy
原式 =
x
y
z
x2 y3 1
x 2 ydx xy2 dy ,其中 L 为 x2 y 2 6x 的上半圆周从点 A(6,0)
L
到点 O (0,0) 及 x 2 y 2 3x 的上半圆周从点 O(0,0) 到点 B(3,0) 连成的弧
AOB;
uuur 解:连直线段 AB,使 L 与 BA 围成的区域为 D,由 Green 公式,得
第十一章 曲线积分与曲面积分
第三节 Green 公式及其应用
1.利用 Green 公式,计算下列曲线积分:
(1) xy 2dy x2 ydx ,其中 L 为正向圆周 x2 y 2 9 ;
L
解:由 Green 公式,得
?xy2dy x2 ydx
L
(x2
y2 )dxdy
2
2d
0
D
3 r 3dr
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 曲线积分与曲面积分(第六部分)曲面积分习题解答一、对面积的曲面积分1.计算曲面积分⎰⎰∑++dS y x z )342(,其中∑为平面1432=++zy x 在第一卦限中的部分. 分析 因为∑:1432=++z y x ,可恒等变形为∑:y x z 3424--=,又因被积函数y x z 342++与∑形式相同,故可利用曲面方程来简化被积函数,即将4342=++y x z 代入,从而简化计算。
解 平面∑方程的为)321(4yx z --=(如图), ∑在xoy 面上的投影区域xy D :0,0,132≥≥≤+y x yx ;34,2-=∂∂-=∂∂y z x z ,面积元素 dxdy dxdy y z x z dS 361122=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 从而 ⎰⎰⎰⎰⋅=++∑xyD dxdy dS y x z 3614)342( 61432213614=⋅⋅⋅=. 2. 计算曲面积分⎰⎰∑+dS y x |)|(,其中∑为1||||||=++z y x .解 由对称性可知,=⎰⎰∑xdS ,由轮换对称性和代入技巧知,⎰⎰⎰⎰⎰⎰∑∑∑=++=dS dS z y x dS y 31|)||||(|31||,再由曲面积分的几何意义知,34238=⋅=⎰⎰∑dS ,所以,334|)|(=+⎰⎰∑dS y x.y二、对坐标的曲面积分1.计算曲面积分⎰⎰∑dydz x 2.其中∑为球面2222R z y x =++在第一卦限部分的上侧。
分析 由于∑不是封闭曲面,且只是对坐标z y ,的曲面积分,故直接计算即可。
解 因∑:222z y R x --=取前侧,且∑在yoz 面上的投影区域为0 ,0 , :222≥≥≤+z y R z y D yz .于是得 ⎰⎰∑dydz x 2dydz z y R yzD ⎰⎰--=)(222⎰⎰⋅-θ=πRrdr r R d 02220 )( 402228141212R r r R Rπ=⎥⎦⎤⎢⎣⎡-π=. 2. 计算曲面积分⎰⎰∑++=ydzdx xdydz zdxdy I .其中∑是柱面122=+y x 被平面0=z 及3=z 所截得的在第一卦限内的部分的前侧。
分析 本题为计算对坐标的组合积分,但由于∑不是封闭曲面,且其中的三个曲面积分化为二重积分计算又比较容易(因为∑为柱面,在xoy 坐标面上的投影0=dxdy ),故直接计算即可。
解 因∑在xoy 坐标面上的投影0=dxdy ,所以0=⎰⎰∑zdxdy ;又∑在yoz 、zox 坐标面上的投影区域为:30 ,10 :≤≤≤≤z y D yz ; 30 ,10 :≤≤≤≤z x D zx .⎰⎰∑++=ydzdx xdydz zdxdy I⎰⎰⎰⎰∑∑+=ydzdx xdydz⎰⎰⎰⎰-+-=zxyzD D dzdx x dydz y 2211⎰⎰-=3 0 1 0212dz dx x 3412⋅π⋅=π=23.3. 计算曲面积分⎰⎰∑++-+=dxdy z y dzdx z y x dydz xz I )2()(2222.其中∑为上半球体222a y x ≤+,2220y x a z --≤≤的表面外侧。
分析由于 为封闭曲面,所以可采高斯公式计算。
解 本题中,2xz P =,22z y x Q -=,z y R 22+=.积分曲面∑为封闭曲面,设∑所围成的空间闭区域为Ω(如图),则Ω:222a y x ≤+,2220y x a z --≤≤;或 Ω:a r ≤≤0,20π≤ϕ≤,π≤θ≤20.于是由Gauss 公式,得⎰⎰⎰Ω∂∂+∂∂+∂∂=dxdydz zR y Q x P I )(⎰⎰⎰Ω++=dxdydz y x z )(222⎰⎰⎰ϕ⋅ϕθ=ππadr r r d d 02220 2 0sin 552a π=. 注 若将本题中的积分曲面∑改为上半球面222y x a z --=的上侧,则由于∑不是封闭曲面,又不是平面块,采用下述方法计算较为简便,现计算如下:补平面块)( ,0 :222a y x z ≤+=∑'取下侧,则∑与∑'构成一封闭曲面,且取外侧(如图所示)。
在封闭曲面∑'+∑上应用Gauss 公式,得⎰⎰∑'+∑++-+dxdy z y dzdx z y xdydz xz )2()(2222⎰⎰⎰Ω∂∂+∂∂+∂∂=dv z Ry Q x P )(⎰⎰⎰Ω++=dv y x z)(222⎰⎰⎰ϕ⋅ϕθ=ππadr r r d d 0 2220 2 0sin 552a π=.又 ⎰⎰∑'++-+dxdy z y dzdx z y x dydz xz )2()(2222⎰⎰∑'+=dxdy z y )2(2222a dxdy xyD π-=-=⎰⎰.故 ⎰⎰⎰⎰∑'+∑∑'++-+-=dxdy z y dzdx z y x dydz xz I )2()( )(2222)2(5225a a π--π=)5(5232a a +π=.yy4. 计算曲面积分⎰⎰∑+++++=dxdy z z y x f dzdx y z y x f dydz x z y x f I ]),,([]),,(2[]),,([其中) , ,(z y x f 为连续函数,∑是平面1=+-z y x 在第四卦限部分的上侧。
分析 由于x z y x f P +=),,(,y z y x f Q +=),,(2,z z y x f R +=),,(,其中) , ,(z y x f 未知,而积分曲面∑为平面块,故可考虑利用两类曲面积分之间的关系,把给定的第二型曲面积分转化为第一型曲面积分计算。
解 ∑(如图所示)在xoy 面上的投影区域01 ,10 :≤≤-≤≤y x x D xy .∑的方向余弦为31cos =α,31cos -=β,31cos =γ,故 ⎰⎰∑++β++α+=z z y x f y z y x f x z y x f I ),,([cos ]),,(2[cos ]),,({[⎰⎰⎰⎰∑∑=+-=dS dS z y x 31)(31 21331===⎰⎰⎰⎰xyxyD D dxdy dxdy . 注 在本题中,若用定义直接计算,由于被积函数中含有未知函数) , ,(z y x f ,那么转化成三个二重积分后,下一步计算二重积分就很难进行了。
一般情况下,若被积函数中含有抽象函数,通常不采用直接计算的方法,而是采用将第二型曲面积分转化为第一型曲面积分或Gauss 公式的方法来处理。
5. 设)(u f 具有连续导数,计算曲面积分dxdy z z y f y dzdx y z y f z dydz x I ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎰⎰∑33311其中∑为由22y x z +=和2=z 所围成区域的外侧。
分析 令3x P =,31y z y f z Q +⎪⎭⎫ ⎝⎛=,31z z y f y R +⎪⎭⎫ ⎝⎛=,由于被积函数含有抽象函数⎪⎭⎫⎝⎛z y f ,如果直接计算很难求出。
考虑到∑为封闭曲面,而且y)(3222z y x zR y Q x P ++=∂∂+∂∂+∂∂, 因此可考虑应用高斯公式计算。
解 令 3x P =,31y z y f z Q +⎪⎭⎫ ⎝⎛=,31z z y f z R +⎪⎭⎫⎝⎛=,则 23x x P =∂∂,2231y z y f z y Q +⎪⎭⎫ ⎝⎛'=∂∂,2231z z y f z z R +⎪⎭⎫ ⎝⎛'-=∂∂, 应用高斯公式,得⎰⎰⎰Ω∂∂+∂∂+∂∂=dxdydz z R y Q x P I )(⎰⎰⎰Ω++=dxdydz z y x )(3222 在柱面坐标系下,Ω:2≤≤ρz ,20≤ρ≤,π≤θ≤20. 计算得⎰⎰⎰Ω++=dxdydz z y x I )(3222⎰⎰⎰ρπ+ρρρθ=2222 0 2 0 )(3dz z d d⎰ρρ-ρ-+ρρπ=20 332)31382(6d ⎰ρρ-ρ+ρπ=2 0 43)486(2d20524)54423(2ρ-ρ+ρπ=π=5144.6.计算曲面积分⎰⎰∑++++=23222)(z y x zdxdyydzdx xdydz I ,其中∑为曲面911625122)()(-+-=-y x z )(0≥z 的上侧。
分析 由于23222)(z y x xP ++=,23222)(z y x yQ ++=,23222)(z y x zR ++=,有252222222)(z y x x z y x P ++-+=∂∂,252222222)(z y x y z x y Q ++-+=∂∂,252222222)(z y x z x y z R ++-+=∂∂,从而0=∂∂+∂∂+∂∂zR y Q x P ,故可考虑用高斯公式。
但是曲面不封闭,且三个偏导数在),,(000点不连续,所以,需要补面去掉奇点。
解 补有向曲面0, :22221>=++∑z r z y x ,r 足够小,使1∑完全包含于∑y内,取下侧,补有向曲面0z :2=∑,取位于小圆222 r y x =+与椭圆9)1(16)2(122-+-=y x 之间部分,取下侧,则21∑+∑+∑构成封闭曲面,且方向为外侧。
设由21∑+∑+∑所围成的空间闭区域为Ω. 应用高斯公式,得⎰⎰∑+∑+∑++++2123222)(z y x zdxdyydzdx xdydz 0=∂∂+∂∂+∂∂=⎰⎰⎰Ωdxdydz z R y Q x P )(. 为计算⎰⎰⎰⎰∑∑++=++++113232221)(zdxdyydzdx xdydz r z y x zdxdy ydzdx xdydz ,再补面2223,0:r y x z ≤+=∑,取上侧,用高斯公式⎰⎰⎰⎰⎰Ω'∑+∑-=++dxdydz zdxdy ydzdx xdydz 33132rπ-=.而03=++⎰⎰∑zdxdy ydzdx xdydz ,所以,323311r zdxdy ydzdx xdydz π-=-=++⎰⎰⎰⎰⎰⎰∑∑+∑∑,π2)(123222-=++++⎰⎰∑z y x zdxdy ydzdx xdydz .又 0)(223222=++++⎰⎰∑z y x zdxdyydzdx xdydz , 因此,ππ2)2(0=--=I .7. 求力k x j z i y F ++=沿有向闭曲线Γ所作的功,其中Γ为平面1=++z y x 被三个坐标面所截成的三角形的整个边界,从z 轴正向看去,沿顺时针方向。
解 由已知 ⎰Γ++=xdz zdy ydx W .取∑为平面1=++z y x 的下侧被Γ所围成的部分,按斯托克斯公式,有 2333==-=++-=⎰⎰⎰⎰⎰⎰∑∑xyD dxdy dxdy dxdy dzdx dydz W .(注:本资料素材和资料部分来自网络,仅供参考。