八年级上学期十月份月考数学试题

合集下载

重庆市育才中学校2023-2024学年八年级上学期10月月考数学试卷

重庆市育才中学校2023-2024学年八年级上学期10月月考数学试卷

重庆市育才中学2023-2024学年八年级上学期数学月考同步练习(10月份)一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图图片是公能中学初一年级班徽设计比赛的四幅作品,其中是轴对称图形的是()A.B.C.D.2.(4分)下列四个图形中,线段BE是△ABC中AC边上的高的图形是()A.B.C.D.3.(4分)下列长度的三条线段首尾顺次相接能组成三角形是()A.1,2,3 B.2,4,7 C.3,4,8 D.2,3,44.(4分)如图,△ABC≌△BAD,如果AB=6,BD=5,AD=4,则AC的长是()A.6 B.5 C.4 D.不能确定5.(4分)若一个n边形从一个顶点最多能引出5条对角线,则n是()A.5 B.8 C.9 D.106.(4分)一副三角板按如图所示叠放在一起,则图中∠α的度数是()A.60°B.65°C.70°D.75°7.(4分)下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形三条角平分线交点在三角形的外部C.三角形的三条高都在三角形内部D.三角形的一条中线将三角形分成两个面积相等的三角形8.(4分)如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<199.(4分)如图,在四边形ABCD中,BD平分∠ABC,且AD=CD,若∠CBD=α,则∠ADC一定等于()A.3αB.90°+2αC.135°﹣2αD.180°﹣2α10.(4分)有两个整数x,y,把整数对(x,y)进行操作后可得到(x+y,y),(x﹣y,y),(y,x)中的某一个整数对,将得到的新整数对继续按照上述规则操作下去,每得到一个新的整数对称为一次操作.若将整数对(2,32)按照上述规则进行操作,则以下结论正确的个数是()①若m次操作后得到的整数对仍然为(2,32),则m的最小值为2;②三次操作后得到的整数对可能为(2,﹣30);③不管经过多少次操作,得到的整数对都不会是(﹣3,18).A.3个B.2个C.1个D.0个二.填空题(共8小题,满分32分,每小题4分)11.(4分)起重机的吊臂中有三角形结构,这是利用了三角形的.12.(4分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.13.(4分)如图,∠1是六边形ABCDEF的一个外角.若∠1=70°,则∠A+∠B+∠C+∠D+∠E的度数为.14.(4分)如图所示,将△ABC沿着DE翻折,B点落到了B′点处.若∠1+∠2=80°,则∠B′=.15.(4分)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=12cm2,则阴影部分的面积为.16.(4分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE =.17.(4分)已知关于x的不等式组的整数解仅有4个,则a的取值范围是.18.(4分)一个两位自然数m,若各位数字之和小于等于9,则称为“完美数”.将m的各个数位上的数字相加所得的数放在m的前面,得到一个新数m′,那么称m′为m的“前置完美数”;将m的各个数位上的数字相加所得的数放在m的后面,得到一个新数m n,那么称m n为m的“后置完美数”.记,例如:m=12时,m′=312,m n=123,.请计算F(32)=;已知两个“完美数”m=10a+b(6≤a≤9,0≤b≤9),n=10x+y(1≤x≤9,0≤y≤9),若F(m)是一个完全平方数,且2m+F(n)﹣8y=140,则n的最大值为.三.解答题(共8小题,满分78分)19.(10分)已知:如图,E,B,F,C四点在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:ED=AC.20.(8分)尺规作图并完成证明:如图,点C是BD上一点,AB=CD,BC=DE,∠BAE=∠DEA.(1)尺规作图:作∠ACE的平分线,交AE于点F;(2)证明:CF⊥AE证明:∵,∴AB∥DE,∴.在△ABC和△CDE中,∵,①∴△ABC≌△CDE(SAS).∴.又∵CF是∠ACE的角平分线,∴CF⊥AE().21.(10分)如图所示,在平面直角坐标系中,已知A(1,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,并作出关于y轴对称的△A1B1C1;(2)已知P为y轴上一点,若△ACP的周长最小,则点P的坐标为,周长为.22.(10分)某校开展了“美丽校园”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:校园安全,D:卫生保洁”四个主题活动,每个学生限选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图.(1)本次随机调查的学生人数是人;被调查学生中,选择C主题的人数是人,请补全条形统计图;(2)在扇形统计图中,“D”主题对应扇形的圆心角为度;(3)若该校共有3000名学生,试估计该校参与“文明礼仪”主题的学生人数.23.(10分)计算(1)一个等腰三角形的一边长为8cm,周长为30cm,求其它两边的长.(2)一个多边形的内角和是外角和的3倍,求它的边数.24.(10分)新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,某汽车专卖店销售甲、乙两种型号的新能源汽车,某月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)某公司准备向该汽车专卖店购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?从公司节约的角度考虑,你会选择哪种购车方案?25.(10分)如图,在△ABC中,AB=BC,∠ABC=90°,D是边AC上一点,连接DB,过点C作CE⊥BD交BD于点E.(1)如图1,若∠DBC=4∠DCE,BE=2,求AC的长;(2)如图2,在EC上截取EF=EB,连接AF交BD于点G,求证:CF=2EG;26.(10分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO =∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动,点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.重庆市育才中学2023-2024学年八年级上学期数学月考同步练习(10月份)(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图图片是公能中学初一年级班徽设计比赛的四幅作品,其中是轴对称图形的是()A.B.C.D.【答案】D2.(4分)下列四个图形中,线段BE是△ABC中AC边上的高的图形是()A.B.C.D.【答案】C3.(4分)下列长度的三条线段首尾顺次相接能组成三角形是()A.1,2,3 B.2,4,7 C.3,4,8 D.2,3,4【答案】D4.(4分)如图,△ABC≌△BAD,如果AB=6,BD=5,AD=4,则AC的长是()A.6 B.5 C.4 D.不能确定【答案】B5.(4分)若一个n边形从一个顶点最多能引出5条对角线,则n是()A.5 B.8 C.9 D.10【答案】B6.(4分)一副三角板按如图所示叠放在一起,则图中∠α的度数是()A.60°B.65°C.70°D.75°【答案】D7.(4分)下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形三条角平分线交点在三角形的外部C.三角形的三条高都在三角形内部D.三角形的一条中线将三角形分成两个面积相等的三角形【答案】D8.(4分)如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19【答案】D9.(4分)如图,在四边形ABCD中,BD平分∠ABC,且AD=CD,若∠CBD=α,则∠ADC一定等于()A.3αB.90°+2αC.135°﹣2αD.180°﹣2α【答案】D10.(4分)有两个整数x,y,把整数对(x,y)进行操作后可得到(x+y,y),(x﹣y,y),(y,x)中的某一个整数对,将得到的新整数对继续按照上述规则操作下去,每得到一个新的整数对称为一次操作.若将整数对(2,32)按照上述规则进行操作,则以下结论正确的个数是()①若m次操作后得到的整数对仍然为(2,32),则m的最小值为2;②三次操作后得到的整数对可能为(2,﹣30);③不管经过多少次操作,得到的整数对都不会是(﹣3,18).A.3个B.2个C.1个D.0个【答案】A二.填空题(共8小题,满分32分,每小题4分)11.(4分)起重机的吊臂中有三角形结构,这是利用了三角形的稳定性.【答案】见试题解答内容12.(4分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=130°.【答案】130.13.(4分)如图,∠1是六边形ABCDEF的一个外角.若∠1=70°,则∠A+∠B+∠C+∠D+∠E的度数为610°.【答案】610°.14.(4分)如图所示,将△ABC沿着DE翻折,B点落到了B′点处.若∠1+∠2=80°,则∠B′=40°.【答案】见试题解答内容15.(4分)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=12cm2,则阴影部分的面积为3cm2.【答案】见试题解答内容16.(4分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE=4.【答案】见试题解答内容17.(4分)已知关于x的不等式组的整数解仅有4个,则a的取值范围是11≤a<13.【答案】11≤a<13.18.(4分)一个两位自然数m,若各位数字之和小于等于9,则称为“完美数”.将m的各个数位上的数字相加所得的数放在m的前面,得到一个新数m′,那么称m′为m的“前置完美数”;将m的各个数位上的数字相加所得的数放在m的后面,得到一个新数m n,那么称m n为m的“后置完美数”.记,例如:m=12时,m′=312,m n=123,.请计算F(32)=23;已知两个“完美数”m=10a+b(6≤a≤9,0≤b≤9),n=10x+y(1≤x≤9,0≤y≤9),若F(m)是一个完全平方数,且2m+F(n)﹣8y=140,则n的最大值为45.【答案】23,45.三.解答题(共8小题,满分78分)19.(10分)已知:如图,E,B,F,C四点在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:ED=AC.【答案】证明△ABC≌△DEF20.(8分)尺规作图并完成证明:如图,点C是BD上一点,AB=CD,BC=DE,∠BAE=∠DEA.(1)尺规作图:作∠ACE的平分线,交AE于点F;(2)证明:CF⊥AE证明:∵∠BAE=∠DEA,∴AB∥DE,∴∠B=∠D.在△ABC和△CDE中,∵,①BC=DE∴△ABC≌△CDE(SAS).∴CE=CA.又∵CF是∠ACE的角平分线,∴CF⊥AE(等腰三角形的三线合一).【答案】∠BAE=∠DEA,∠B=∠D,BC=DE,CE=CA,等腰三角形的三线合一.21.(10分)如图所示,在平面直角坐标系中,已知A(1,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,并作出关于y轴对称的△A1B1C1;(2)已知P为y轴上一点,若△ACP的周长最小,则点P的坐标为(0,),周长为+.【答案】(0,),+.22.(10分)某校开展了“美丽校园”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:校园安全,D:卫生保洁”四个主题活动,每个学生限选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图.(1)本次随机调查的学生人数是60人;被调查学生中,选择C主题的人数是18人,请补全条形统计图;(2)在扇形统计图中,“D”主题对应扇形的圆心角为54度;(3)若该校共有3000名学生,试估计该校参与“文明礼仪”主题的学生人数.【答案】(1)60,18;(2)54;(3)750人.23.(10分)计算(1)一个等腰三角形的一边长为8cm,周长为30cm,求其它两边的长.(2)一个多边形的内角和是外角和的3倍,求它的边数.【答案】其它两边的长为11cm,11cm或8cm,14cm;八边形24.(10分)新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,某汽车专卖店销售甲、乙两种型号的新能源汽车,某月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)某公司准备向该汽车专卖店购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?从公司节约的角度考虑,你会选择哪种购车方案?【答案】(1)每辆甲型车的售价为20万元,每辆乙型车的售价为15万元;(2)有两种方案:①购买甲种型号的新能源汽车5辆,购买乙种型号的新能源汽车3辆;②购买甲种型号的新能源汽车6辆,则购买乙种型号的新能源汽车2辆;从公司节约的角度考虑,选择购买甲种型号的新能源汽车5辆,购买乙种型号的新能源汽车3辆费用较少.25.(10分)如图,在△ABC中,AB=BC,∠ABC=90°,D是边AC上一点,连接DB,过点C作CE⊥BD交BD于点E.(1)如图1,若∠DBC=4∠DCE,BE=2,求AC的长;(2)如图2,在EC上截取EF=EB,连接AF交BD于点G,求证:CF=2EG;(3)如图3,若CD=CB,AC=8,点M是直线BC上一动点,连接MD,将线段MD绕点D顺时针旋转90°得到线段M′D,点P是线段BC的中点,点Q是线段BD上一个动点,连接PQ,M′Q,当PQ+M′Q最小时,请直接写△PBQ的面积.【答案】(1)4;(3)2.26.(10分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO =∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动,点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.【答案】(2)8。

八年级(上)10月份月考数学试题

八年级(上)10月份月考数学试题

八年级上数学十月份月考试题【考试说明】1.考试范围:八年级上册第一章——第四章的平行四边形的判定;2.分值分布:分值所占比例大概为:勾股定理20%;实数40%;平移与旋转10%;四边形30%一、选择题(共12小题,12336⨯=分)1、实数9的算术平方根为( )A .3BC. D .3±2、在101001.0-,7,41,π-0中,无理数的个数是( ) A .1个B .2个C .3个D .4个.3、判断下列几组数据中,不可以作为直角三角形的三条边的是( )AB .0.3,0.4,0.5C .1,2,3D .8,15,17 4、下列图形中,不能由图形M 经过一次平移或旋转得到的是( )5、下列说法正确的是( ) A .只有正数才有平方根 B .带根号的数都是无理数 C .不带根号的数都是有理数 D .任何数都有立方根6、下列计算或化简过程中错误的个数有( )10=±;②=3==;347=+=;A .3个B .2个C .1个D .0个 7、下列条件中,不能判定一个四边形为平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边平分且相等C .两组对边分别平行D .对角线互相平分8、如右图,数轴上点N 表示的数可能是( )A .10B .5 CDABCDM9、如图,一架25分米的梯子,斜立在一竖直的墙上,•这时梯的底部距墙底端7分米, 如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑( ) A .9分米 B .15分米 C .5分米 D .8分米 10、如图所示,AB 、CD 、EF 互相平行,AE 、GI 、BF 互相平行, 则图形中有( )个平行四边形A .5B .7C .8D .911、如图,四边形ABCD 中,∠B =90°,且AB =BC =2, CD =3,DA =1,则∠DAB 的度数( )A .90°B .120°C .135°D .150° 12、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是 ( ) A .3:4 B .5:8 C .9:16 D .1:2二、填空题(共4小题,4312⨯=分)13、如图所示,已知两个小正方形的面积分别为1和5,则最大的正方形的面积S = ; 14、比较大小:213- 2115、在平行四边形ABCD 中,已知∠A +∠C =140°,则∠B = ; 16、已知长方形的长AD =10,AB =8,将它沿着AE 折叠,使得D 点恰好落在BC 边上,则1CD E S =△ ;三、计算与作图(44622⨯+=分)17、计算题:(1(2)(3(3(4)2(2IBEE1DA18、将△ABC 绕C 点顺时针旋转90°, (1)请画出△11A B C (3分) (2)求1BB 的长度(3分)四、说理解答(共30分)19、已知某数有两个平方根,分别为35a -与1a +,实数b2=,求a b -(6分)20、如图,在平行四边形ABCD 中,AD ⊥DB ,且BC =3,CD =5 (1)求四边形ABCD 的面积;(3分)(2)连接AC 与BD 交于O 点,试求出AC 的长度(3分)21、在四边形ABCD 中,AD ∥BC ,且AD =2BC ,取AD 的中点E ,并连接BE ,CE 。

山东日照港中学2024年八年级上学期10月月考数学试卷

山东日照港中学2024年八年级上学期10月月考数学试卷

2024-2025学年度上学期八年级单元检测数学试题第I 卷一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是( )A. 三角形不稳定性B. 三角形的稳定性C. 四边形的不稳定性D. 四边形的稳定性2. 如图,用三角板作ABC 的边AB 上的高线,下列三角板的摆放位置正确的是( )A B.C. D.3. 已知三条线段的长分别是3,7,m ,若它们能构成三角形,则整数m 的最大值是( )A. 11B. 10C. 9D. 74. 如图,在ABC 和ABD △中,已知AC AD =,则添加以下条件,仍不能判定ABC ABD △≌△的是( )的.A. BC BD =B. ABC ABD ∠=∠C. 90C D ∠=∠=°D. CAB DAB ∠=∠5. 如图,点F ,A ,D ,C 在同一直线上,EF BC ∥,且EF BC =,DE AB ∥.已知3,11,AD CF ==则AC 的长为()A. 5B. 6C. 7D. 6.56. 在下列条件中:①A B C ∠+∠=∠,②::1:2:3A B C ∠∠∠=,③90AB ∠=°−∠,④12A B C ∠=∠=∠,⑤23A B C ∠=∠=∠中,能确定ABC 是直角三角形的条件有( ) A. 2个 B. 3个 C. 4个 D. 5个7. 如图,小林从P 点向西直走 12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了96米回到点P . 则α=( )A. 30°B. 45°C. 60°D. 90°8. 窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.如图是从某窗棂样式结构图案上摘取的部分.已知//385BC DE ∠°,,则1234∠∠∠∠+++的度数是( )A. 320°B. 265°C. 245°D. 225°9. 如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF 、FD 、DE ,若36DEF S =△,则ABC S ( )A. 1B. 2C. 3D. 410. 如图,在ABC ,AB AC =,D 为BC 上的一点,28BAD ∠=°,在AD 的右侧作ADE ,使得AE AD =,DAE BAC ∠=∠,连接CE 、DE ,DE 交AC 于点O ,若CE AB ∥,则DOC ∠的度数为( )A. 124°B. 102°C. 92°D. 88°二、填空题 (本题共5小题,每小题3分,共15分. )11. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_____根木条.12. 如图,正八边形和正五边形按如图方式拼接在一起,则CAB ∠=______°.13. 如图,在ABC 中,AD 是高线,AE BF 、是角平分线,它们相交于点5070O BAC C EAD ∠=°∠=°∠,,,度数为_________.为14. 如图,在 3×3的方格图中,每个小方格的边长都为1,则1∠与2∠的关系是__________________.15. 如图,在平面直角坐标系中,将直角三角形的直角顶点放在点()3,3P 处,两直角边分别与坐标轴交于点A 和点B ,则OA OB +的值为___________.三、解答题:(本题共 8 小题,解答应写出文字说明、证明过程或演算步骤. 共75分) 16. 如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求C ∠的度数.17. 如图,F 、C 是AD 上两点,且AF CD =,点E 、F 、G 在同一直线上,且BC GF ,BC EF =.求证:ABC DEF ≌△△18. 如图,在ABC 和DCB △中,AC 与BD 相交于点O ,AB DC =,AC BD =.求证:ABO DCO △≌△.19. 已知一个多边形的内角和与外角和相加等于2160°.(1)求这个多边形的边数及对角线的条数.(2)这个多边形剪去一个角后,所形成的新多边形有几条边?内角和是多少?20. 在ABC 中, A B C ∠∠∠,,的对边分别为a , b , c .(1)化简代数式:a b c b a c +−+−−=; (2)若AB AC AC =,边上的中线BD 把ABC 的周长分为15和6两部分,求底边BC 的长. 21. 如图,在ABC 中.(1)如果7cm AB =,5cm AC =,BC 是能被3整除的偶数,求这个三角形的周长.(2)如果BP 、CP 分别是∠和ACB ∠的角平分线.①当50A ∠=°时,求BPC ∠的度数.②当A n ∠=°时,求BPC ∠的度数.22. 如图1,一张三角形ABC 纸片,点D 、E 分别是ABC 边上两点.研究(1):如果沿直线DE 折叠,使A 点落在CE 上,则BDA ′∠与A ∠的数量关系是 ;研究(2):如果折成图2的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系还成立吗?若成立,请说明理由; 若不成立,直接写出他们的关系.研究(3):如果折成图3的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系是 .23. 如图,在ABC 和CDE 中,AC BC =,CD CE =,ACB DCE ∠=∠,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上时,可以得到图中一对全等三角形,即_____≌_____; (2)当点D 不直线BC 上时,如图2位置,且ACB DCE α∠=∠=.①求证:AD BE =;②求EMD ∠的大小(用含α的代数式表示).的在。

内蒙古自治区巴彦淖尔市第二中学2024—2025学年八年级上学期10月考数学试题

内蒙古自治区巴彦淖尔市第二中学2024—2025学年八年级上学期10月考数学试题

内蒙古自治区巴彦淖尔市第二中学2024—2025学年八年级上学期10月考数学试题一、单选题1.观察下列图形,是轴对称图形的是( )A .B .C .D . 2.一个多边形的内角和是它的外角和的4倍.这个多边形是( )A .六边形B .九边形C .八边形D .十边形 3.如图,ABC V 的三边AC ,BC ,AB 的长分别是10,15,20,点O 是ABC V 三条角平分线的交点,则::OAB OBC OAC S S S △△△的值为( )A .3:4:5B .5:3:2C .2:3:4D .4:3:2 4.已知点(,2)A a 与点(3,)B b 关于y 轴对称,则2+a b 的值为( )A .7-B .7C .1-D .15.如图,,45,35,40ABC DBE C D ABD ∠=︒∠=︒∠=︒V V ≌,则ABE ∠的度数是( )A .60°B .65°C .70°D .75°6.若等腰三角形的周长为14,其中一边长为2,则该等腰三角形的底边长为( ) A .2 B .10 C .2或10 D .4或6 7.如图,在ABC V 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若112BAC ∠=︒,则EAF ∠为( )A .38°B .42°C .44°D .48°8.如图,ABC V 中,AB AC =,DE 是AB 的垂直平分线,垂足为D ,交AC 于E ,若12c m BC =,BCE V 的周长为20cm ,则AB 的长为( )A .5cmB .6cmC .7cmD .8cm9.如图,将Rt ABC △沿BC 方向平移得到Rt DEF △,若10c m AB =,6cm BE =,4cm DH =,则图中阴影部分面积为( )A .247cmB .248cmC .249cmD .250cm10.如图,ABC V 中,点E 、F 分别是BA BC 、延长线上一点,ABC ∠、EAC ∠的角平分线BP AP 、交于点P ,连接PC ,过点P 作PM BE ⊥,PN BC ⊥垂足分别是点M 、N ,则下列结论中正确的个数( )①CP 平分ACF ∠;②PC AP =;③AM CN AC +=;④2180ABC APC ∠+∠=︒.A .1个B .2个C .3个D .4个二、填空题11.在等腰ABC V 中,AB AC =,D 是BC 的中点,且顶角120BAC ∠=︒,则C ∠为.12.如图,线段AD ,CE 分别是△ABC 中边BC ,AB 上的高.若AD =10,CE =9,AB =12,则BC 的长是13.如图,在ABC V 中,BD 是ABC V 的高,BE 是ABC V 的角平分线,80ABC ∠=︒,12DBE ∠=︒,则A ∠的度数是.14.如图,A B C D E F ∠+∠+∠+∠+∠+∠=.15.工人师傅常用角尺平分一个任意伯.作法如下:如图所示,AOB ∠是一个任章角,在边OA ,OB 上分别取OM ON =, 移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是AOB ∠的平分线.这种作法的依据是.16.如图,在ABC V 中,AB BC <,BP 平分ABC ∠,AP BP ⊥于P 点,连接PC ,若ABC V 的面积为4,则BPC V 的面积为.三、解答题17.如图所示,在平面直角坐标系xOy 中,ABC V 的三个顶点坐标分别为()1,1A ,()4,2B ,()2,3C .(1)在图中画出ABC V 关于x 轴对称的图形111A B C △;(2)在图中,若()24,2B -与点B 关于一条直线成轴对称,则这条对称轴是__________,此时C 点关于这条直线的对称点2C 的坐标为__________;(3)求111A B C △的面积.18.公路1l 异侧、2l 同侧有两个村庄A 、B ,如图,高速公路管理处要建一处服务区,按照设计要求,服务区到两个村庄A 、B 的距离必须相等,到两条公路1l ,2l 的距离也必须相等,请在图中标出服务区C 的位置.(不写做法,保留作图痕迹)19.如图,在△ABC 中.(1)画出BC 边上的高AD ;(2)若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数.20.如图,在ABC V 中,D 是BC 的中点,DE AB ⊥于E ,DF AC ⊥于点F ,且B E C F =.求证:AD 平分BAC ∠.21.(1)如图1,A 是线段DE 上一点,90,,,BAC AB AC BD DE CE DE ∠=︒=⊥⊥.求证:DE BD CE =+.(2)若点A 在ED 的延长线上,其余条件与(1)相同,如图2,线段,,DE BD CE 之间又有怎样的数量关系?请说明理由.22.如图,ABC V 中,11AB =,5AC =,BAC ∠的平分线AD 与边BC 的垂直平分线DG 相交于点D ,过点D 分别作DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,求BE 的长度.23.在ABC V 中,20cm 16cm AB BC ==,,点D 为线段AB 的中点,动点P 以2cm/s 的速度从B 点出发在射线BC 上运动,同时点Q 以 cm/s a (0a >且2a ≠)的速度从C 点出发在线段CA 上运动,设运动时间为x 秒.(1)若AB AC =,P 在线段BC 上,求当a 为何值时,能够使BPD △和CQP V 全等?(2)若70C ∠=︒,当CPQ ∠的度数为多少时,CPQ V 为等腰三角形?(请直接写出答案,不必写出过程)。

八年级上10月月考数学试卷有答案

八年级上10月月考数学试卷有答案

八年级上10月月考数学试卷有答案八年级(上)第一次月考数学试卷考试范围:三角形及全等三角形的判定出题人:何清燕审题人:陈慧考试时间:90分钟满分:100分班级:考号:姓名:一、单选题(共12题;共36分)1、下列各组数中不可能是一个三角形的边长的是()A、5,12,13B、5,7,7C、5,7,12D、101,102,1032、下列图中具有稳定性的是()3、下列说法中不正确的是()A、三角形按边分可分为不等边三角形、等腰三角形B、等腰三角形的内角可能是钝角或直角C、三角形外角一定是钝角D、三角形的中线把三角形分成面积相等的两部分4、如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A的度数为().A、84°B、94°C、48°D、96°5、如果仅用一种正多边形进行镶嵌,下列正多边形:正五边形、正方形、正六边形、正八边形、正三角形中不能构成平面镶嵌的有()个.A、2B、3C、4D、56、一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A、6条B、7条C、8条D、9条7、如图,某同学把三角形玻璃打碎成三片,现在他要去配一块完全一样的,你帮他想一想,带()片去.A、①B、②C、②和①D、③8、如图所示,CE平分∠ACD,∠B=45°,∠ACE=50°,则∠A等于()A、45°B、50°C、55°D、95°9、如图,在四边形ABCD中,∠1=∠2,∠A=60°,则∠ADC=()A、65°B、60°C、110°D、120°10、如图,如果AD∥BC,AD=BC,AC与BD相交于O点,则图中的全等三角形一共有()A、3对B、4对C、5对D、6对11、下列叙述中,正确的有()①三角形的一个外角等于两个内角的和;②一个五边形最多有3个内角是直角;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④△ABC中,若∠A=2∠B=3∠C,则这个三角形ABC为直角三角形.A、0个B、1个C、2个D、3个12、如图,∠ABC=∠ACB,AD、BD、CD分别平分△A BC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC= ∠BAC.其中正确的结论有()A、2个B、3个C、4个D、5个二、填空题(每题3分,共8题;共24分)13、已知三角形的两边长分别为5和7,则第三边长x的范围是________.14、已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=________.15、已知等腰三角形的两边长分别为2cm和4cm,则它的周长为.16、已知直角三角形的两直角边长分别为5和12,斜边长为13,则它的斜边上的高为.17、如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为20cm2,则△BEF的面积是________ cm2.18、如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE=________cm.19、如图所示,△ABC≌△AD E,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,∠DEF的度数是________.20、如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC的度数.三、解答题(共4题;共40分)21、(本题8分)如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.22、(本题10分)如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.23、(本题10分)如图,已知AC=BD,BC=AD.求证:∠A=∠B.24F是DE的中点,∠D=∠E,∠DFN=∠EFM.求证:DM=EN.参考答案一、选择题:1.C2.C3.C4.A5.A6.A7.D8.C9.D 10.B 11.B 12.B二、填空题:6013. 2<x<12 14.8 15.10cm 16.1317.5 18.7 19.35° 20.24°三、解答题:21、解:由三角形的外角性质知:∠ADF=∠B+ ∠BAC,故∠B+ ∠BAC+∠DAF=90°;①在△ABC 中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+ ∠B+ ∠BAC=90°,②②﹣①,得:∠DAF= (∠C﹣∠B)=20°22、证明:∵BF=EC(已知),∴BF+FC=EC+CF,即BC=EF ,在△ABC 和△DEF 中,,∴△ABC≌△DEF(AAS ),∴AC=DF(全等三角形对应边相等)23、证明:连接CD∵在△ACD 和△BDC 中,⎪⎩⎪⎨⎧===)(公共边DC CD BCAD BD AC ∴△A CD ≌△BDC (SSS )∴∠A =∠B24、证明:∵点F 是DE 的中点,∴DF=EF,又∵∠DFN=∠EFM,∴180°﹣∠DFN=180°﹣∠EFM,∴∠DFM=∠EFN,在△DFM和△EFN中,,∴△DFM≌△EFN(ASA)∴DM=EN.(以上答案仅供参考,解答题答案不唯一)。

人教版八年级数学上册10月月考试卷附答案

人教版八年级数学上册10月月考试卷附答案

人教版八年级数学上册10月月考试卷附答案一、选择题(共7小题;共42分)1. 下列各组数分别表示三条线段的长度,不能组成三角形的是A. ,,B. ,,C. ,,D. ,,2. 下列说法中错误的是A. 三角形三条角平分线都在三角形的内部B. 三角形三条中线都在三角形的内部C. 三角形三条高都在三角形的内部D. 三角形三条高至少有一条在三角形的内部3. 如图,的角平分线,相交于点,,则A. B. C. D.4. 下列图形中有稳定性的是A. 平行四边形B. 正方形C. 长方形D. 直角三角形5. 三角形的三条高线的交点在三角形的一个顶点上,则此三角形是A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形6. 下列条件中,不能判定三角形全等的是A. 三条边对应相等B. 两边和一角对应相等C. 两角和其中一角的对边对应相等D. 两角和它们的夹边对应相等7. 如图,在方格纸中,以为一边作,使之与全等,从,,,四个点中找出符合条件的点,则点有A. 个B. 个C. 个D. 个二、填空题(共7小题;共42分)8. 已知一个多边形的内角和与外角和之比为,则它的边数是.9. 是的中线,,,和的周长的差是.10. 如图,是的角平分线,于点,若,,则的度数是.11. 如图,已知,,,则.12. 如图所示,,,的大小关系是(用“”将它们连接起来).13. 点,,,在同一直线上,且,.请你只添加一个边相等或角相等的条件(不再加辅助线),使.你添加的条件是:.。

辽宁省大连市金州区联考2023-2024学年八年级上学期10月月考数学试题 (含解析)

辽宁省大连市金州区联考2023-2024学年八年级上学期10月月考数学试题 (含解析)

2023-2024学年八年级(上)月考试卷(十月份)八年级数学一、选择题(本题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项正确)1.下列长度的三条线段能组成三角形的是( )A .3,3,6B .3,4,7C .4,6,11D .5,6,92.下列图形中具有稳定性的是( )A .三角形B .四边形C .五边形D .六边形3.中,作边上的高,以下各图作法正确的是( )A .B .C .D .4.如图,在中,点D 是边上一点,点E 是边上一点,且,,,则的度数是( )A .B .C .D .5.如图,,垂足为C ,,,则的度数是( )A .B .C .D .6.用尺规作一个角等于已知角的依据是( )A .B .C .D .7.若一个多边形的内角和是它的外角和3倍,则这个多边形是( )A .六边形B .七边形C .八边形D .七边形8.如图,下列条件能判定的一组是( )A .B .ABC V 90BAC ∠>︒AB ABC V AB AC DE BC ∥40B ∠=︒80A ∠=︒AED ∠40︒50︒60︒70︒BC AE ⊥CD AB ∥50A ∠=︒BCD ∠40︒50︒60︒70︒SAS SSS AAS ASA MBC DEF V V ≌AB DE AC DF C F ==∠=∠,,,,==∠=∠AC DF BC EF A DA .B .二、填空题(本题共6小题,每小题11.如图,12.等腰三角形的周长为1313.如图,14.如图,15.一个多边形的内角和为16.如图,在中,则的度数为 °35︒40︒8ABC ADE AD =V V ≌,ABC ADE △≌△E F CE ∠=∠=,1260ABC V B ∠=MPN ∠三、解答题(本题共4小题,其中17题6分,18、19、20题各8分,共30分)17.尺规作图(不写作法,保留作图痕迹)已知,(1)作一个角等于;(2)作的平分线.18.如图,,,.求证.19.如图,C 是的中点,,.求证:.20.如图,在四边形中,,平分,平分.求证.四、解答题(本题共2小题,其中21题8分,22题10分,共18分)21.如图,,,,,垂足分别为D ,E ,,.求的长.AOB ∠AOB ∠AOB ∠52B ∠=︒8ACB A ∠=∠+︒60ACD ∠=︒AB CD P AB AD CE =A BCE ∠=∠CD BE =ABCD 90B D ∠=∠=︒AE BAD ∠CF BCD ∠BAE CFD ∠=∠90ACB ∠=︒AC BC =AD CE ⊥BE CE ⊥ 1.7cm DE =0.8cm BE =AD22.(1)如图1,的外角和的平分线交于点.用等式表示与的数量关系;(2)如图2,的平分线和的外角的平分线交于点.用等式表示与的数量关系,并证明.五、解答题(本题共3小题,23、24题各11分,25题12分,共34分)23.如图,点C 在线段上,,.(1)求证;(2)求证.24.如图,,的角平分线交于点F .(1)求证;(2)求证;(3)用等式表示线段之间的数量关系,并证明.25.如图,,F 是的中点,连接并延长交于点G .ABC V CBD ∠BCE ∠F F ∠A ∠ABC ∠ABC V ACG ∠H A ∠H ∠AB A B DCE ∠=∠=∠CE CD =ACD BEC ≌△△AD BE AB +=60A ∠=︒ABC V BD CE ,2BFC DFC ∠=∠EF DF =BE BC CD ,,AD AB AE AC AD AB AE AC ⊥⊥==,,,DE FA BC(1)用等式表示线段与的数量关系,并证明;(2)写出线段与的位置关系,并证明.BC AF AG BC参考答案1.D【分析】根据三角形的任意两边的和大于第三边,任意两边之差小于第三边,只要把三边代入,看是否满足即可.【详解】解:A 、,不能构成三角形,不合题意;B 、,不能构成三角形,不合题意;C 、,不能构成三角形,不合题意;D 、,能构成三角形,符合题意.故选:D .【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.2.A【分析】三角形具有稳定性,其它多边形不具有稳定性,据此解答.【详解】解:三角形具有稳定性,四边形、五边形、六边形不具有稳定性;故选:A.【点睛】本题考查了三角形的稳定性和多边形的不稳定性,熟知三角形具有稳定性是关键.3.C【分析】根据三角形的高的定义对各个图形观察后即可解答.【详解】根据三角形的高的定义,边上的高是过点C 向作垂线段,观察各图形,A ,B ,D 都不符合三角形的高的定义,只有C 符合三角形的高的定义,故选:C .【点睛】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,熟练掌握概念是解题的关键.4.C【分析】先根据平行线的性质求出的度数,再根据三角形内角和定理求出的度数即可.【详解】解:∵∴∵∴故选:C .【点睛】本题考查的是平行线的性质及三角形内角和定理,熟练掌握平行线的性质是解题的关键.5.A336+=347+=4611+<56+>9AB AB CD ADE ∠AED ∠DE BC∥40ADE B ∠=∠=︒80A ∠=︒180180408060AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒【分析】根据平行线的性质求出,再根据垂直的定义和角的和差关系列式计算.【详解】解:∵,,∴,∵,即,∴,故选:A .【点睛】本题考查了平行线的性质,熟知两直线平行,同位角相等,内错角相等,同旁内角互补是解题的关键.6.B【分析】根据作一个角等于已知角的作法和步骤解答.【详解】如图,在和中,,,故选B .【点睛】本题考查尺规作图的应用,熟练掌握用直尺和圆规作一个角等于已知角的方法和步骤是解题关键.7.C【分析】首先设此多边形是n 边形,由多边形的外角和为,即可得方程,解此方程即可求得答案.【详解】解:设此多边形是n 边形,∵多边形的外角和为,∴,解得:.∴这个多边形是八边形.故选:C .【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意多边形的外角和为,n 边形的内角和等于.8.DACD ∠CD AB ∥50A ∠=︒180********ACD A ∠=︒-∠=︒-︒=︒BC AE ⊥90ACB ∠=︒1309040BCD ACD ACB ∠=∠-∠=︒-︒=︒ODC V O D C '''V OD O D OC O C DC D C =''⎧⎪=''⎨⎪=''⎩(SSS)ODC O D C ∴'''V V ≌360︒()18023360n -=⨯360︒()18023360n -=⨯8n =360︒()2180-︒gn【分析】根据三角形全等的判定方法逐一分析即可得到答案.【详解】解:A 、,不能确定全等,不符合题意;B 、,不能确定全等,不符合题意;C 、,不能确定全等,不符合题意;D 、,能确定全等,符合题意;故选:D .【点睛】本题考查了全等三角形的判定方法,判定两个三角形全等的一般方法有:、、、、,注意、不能判定两个三角形全等.9.B【分析】根据角平分线上的点到角的两边距离相等可得点P 到的距离为6,再根据垂线段最短解答.【详解】∵点P 在的平分线上,点P 到边的距离为6,∴点P 到的距离为6,∵点Q 是边上的任意一点,∴.故选:B【点睛】本题考查角平分线的性质,熟记角平分线上的点到角的两边距离相等是本题的关键.10.B【分析】先根据三角形的内角和定义得出,根据“三线合一”得出,进而求证,则,最后根据三角形的外角定理即可求解.【详解】解:∵,,∴,∵是的角平分线,,∴,,又∵∴∴∵,,∴,∴,∴,故选:B .AB DE AC DF C F ==∠=∠,,SSA ,,==∠=∠AC DF BC EF A D SSA A D B E C F ∠=∠∠=∠∠=∠,,AAA A D C F AC DF ∠=∠∠=∠=,,ASA SSS SAS AAS HL ASA SSA AAA BA ABC ∠BC BA BA 6PQ ≥18095ACD B CAB ∠=︒-∠-∠=︒,AC AE CAD EAD =∠=∠()SAS CAD EAD V V ≌95ACD AED ∠=∠=︒30CAB ∠=︒55B ∠=︒18095ACD B CAB ∠=︒-∠-∠=︒AD ABC V CE AD ⊥CAF EAF ∠=∠90AFC AFE ∠=∠=︒AF AF=()ASA CAF EAF ≌V V ,AC AE =AD AD =CAD EAD ∠=∠,AC AE =()SAS CAD EAD V V ≌95ACD AED ∠=∠=︒40BDE AED B ∠=∠-∠=︒【点睛】本题主要考查了全等三角形的判定和性质,三角形的内角和,三角形的外角定理,解题的关键是熟练掌握相关知识点并灵活运用.11.3【分析】根据全等三角形的性质解答本题即可【详解】解:∵,∴,∵,∴故答案为:3【点睛】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.12.3【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【详解】解:当腰是3时,则另两边是3,7,而,不满足三边关系定理,因而应舍去.当底边是3时,另两边长是5,5,则该等腰三角形的底边为3,故答案为:3.【点睛】本题考查了等腰三角形定义和三角形的三边关系定理的应用,从边的方面考查三角形,涉及分类讨论的思想方法.13.30【分析】先由得出,再根据三角形内角和定理得出,然后由求解即可.【详解】解:∵∴∵∴∴故答案为:30.【点睛】本题考查全等三角形的性质,三角形内角和定理,熟练掌握全等三角形的性质、三角形内角和定理是解题的关键.14.(答案不唯一).【分析】根据全等三角形的判定方法即可解决问题.【详解】解:在和中,∵,ABC ADE △≌△6AB AD ==5AE =853BE AB AE =-=-=337+<ABC ADE △≌△30B D ∠=∠=︒70BAC ∠=︒CAD BAC BAD ∠=∠-∠ABC ADE△≌△30B D ∠=∠=︒80C ∠=︒180180308070BAC B C ∠=︒-∠-∠=︒-︒-︒=︒704030CAD BAC BAD ∠=∠-∠=︒-︒=︒AE DF =ACE △DBF V E F CE BF ∠=∠=,(2)如图所示,【点睛】本题考查了基本作图,作一个角等于已知角,作角平分线,掌握以上作图是解决本题的关键.18.见解析【分析】根据三角形的内角和定理和已知条件可得∠【详解】证明:∵A在和中,∴,∴,,∴.在△CFG 和△CFD 中,∴,∴,∴.(3)∵,∴.∴.【点睛】本题考查了角平分线的定义,三角形内角和,以及全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答本题的关键.25.(1),见解析(2),见解析【分析】(1)延长至H ,使,连接.证明.得到,推出.再证明,得到,由此得到结论.(2)由得到,推出,进而得到,证得.【详解】(1)证明:延长至H ,使,连接.BFE △BFG V ,,,BE BG ABD CBD BF BF =⎧⎪∠=∠⎨⎪=⎩SAS BFE BFG V V ≌()60BFG BFE DFC ∠=∠=∠=︒EF GF =1206060CFG BFC BFG DFC ∠=∠-∠=-︒=︒=∠,,,CFG DFC CF CF BCE ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩ASA CFG CFD V V ≌()GF DF =EF DF =BFE BFG CFG CFD V V V V ≌,≌BE BG CD CG ==,BE CD BG CG BC +=+=2BC AF =AG BC ⊥AF FH AF =EH ()SAS AFD HFE V V ≌ADF HEF HE AD ∠=∠=,HE AB =()SAS HEA BAC V V ≌BC AH =2BC AF =HEA BAC V V ≌HAE C ∠=∠90HAE CAG ∠+∠=︒90AGB ∠=︒AG BC ⊥AF FH AF =EH∵F 是的中点,∴.在和中,∴.∴,∴.∴.∵,∴.∵,,∴.∴.∵,∴.在和中,∴.∴.∵,∴.(2).证明:∵,DE DF EF =AFD △HFE V ,,,DF EF AFD HFE AF HF =⎧⎪∠=∠⎨⎪=⎩()SAS AFD HFE V V ≌ADF HEF HE AD ∠=∠=,//EF AD 180HEA DAE ∠∠=︒+AD AB AE AC ⊥⊥,9090DAB EAC ∠=︒∠=︒,360DAE BAC EAC DAE ∠+∠+∠+∠=︒9090DAB EAC ∠=︒∠=︒,180BAC DAE ∠+∠=︒BAC HEA ∠=∠HE AD AD AB ==,HE AB =HEA △BAC V ,,,HE AB HEA BAC AE AC =⎧⎪∠=∠⎨⎪=⎩()SAS HEA BAC V V ≌BC AH =AF FH =2BC AH AF FH AF AF AF ==+=+=AG BC ⊥HEA BAC V V ≌∴.∵,,∴.∴.【点睛】此题考查了全等三角形的判定和性质,倍长中线法正确三角形全等,正确掌握三角形全等的判定定理是解题的关键.HAE C ∠=∠180HAE EAC CAG ∠+∠+∠=︒90EAC ∠=︒90HAE CAG ∠+∠=︒90AGB C CAG HAE CAG ∠=∠+∠=∠+∠=︒。

山东省济南市历城第三中学2024—2025学年上学期八年级10月月考数学试题

山东省济南市历城第三中学2024—2025学年上学期八年级10月月考数学试题

山东省济南市历城第三中学2024—2025学年上学期八年级10月月考数学试题一、单选题1.小青坐在教室的第4列第3行,用()4,3表示,小明坐在教室的第3列第1行应当表示为( )A .()1,3B .()3,1C .()1,1D .()3,3 2.如图,在平面直角坐标系xOy 中,被一团㙠水覆盖住的点的坐标有可能是( )A .(2,4)-B .(2,4)-C .(2,4)--D .(2,4) 3.在平面直角坐标系中,点(4,3)A -到x 轴距离为( )A .4B .4-C .3D .3-4.下列图象中,表示y 是x 的函数的有( )A .①②③④B .①④C .①②③D .②③ 5.在平面直角坐标系中,点(1,2)P -关于y 轴对称的点的坐标是( )A .(1,2)B .(1,2)--C .(1,2)-D .(2,1)- 6.已知()()121,,1,y y -是直线3y x =-+上的两点,则12,y y 的大小关系是( ) A .12y y > B .12y y < C .12y y = D .无法确定7.在一次“寻宝”游戏中,寻宝人已经找到两个标志点A (1-,2)和B (2,1),则藏宝处点C 的坐标应为( )A .(1,1-)B .(1,0)C .(1-,1)D .(0,1-) 8.在平面直角坐标系中,若点()25,4A a a --在x 轴上.则点A 的坐标为( )A .30,2⎛⎫ ⎪⎝⎭B .()5,1-C .()30,D .()03,9.一次函数23y x =-+的图象向上移2个单位长度后,与y 轴相交的点坐标为( ) A .()0,5 B .()0,1 C .()5,0 D .()1,010.将第一象限的“小旗”各点的横坐标保持不变,纵坐标分别乘以1-,符合上述要求的图形是( )A .B .C .D .11.关于一次函数1y x =+,下列说法正确的是( )A .图象经过第一、二、三象限B .图象与x 轴交于点(01),C .函数值y 随自变量x 的增大而减小D .当1x >-时,0y <12.已知点A 的坐标为(1,2),直线AB ∥x 轴,且AB =5,则点B 的坐标为( )A .(5,2)或(4,2)B .(6,2)或(-4,2)C .(6,2)或(-5,2)D .(1,7)或(1,-3)13.声音在空气中传播的速度(简称声速)v (m /s )与空气温度t (C ︒)满足一次函数的关系(如下表所示),则下列说法错误的是( )A .温度越高,声速越快B .当空气温度为20C ︒时,声速为342m /sC .声速v (m /s )与温度t (℃)之间的函数关系式为33305v t =+D .当空气温度为40C ︒时,声速为350m /s14.直线y ax b =+经过第一、二、四象限,则直线y bx a =+的图像只能是图中的( )A .B .C .D .15.一次函数332y x =-+的图像如图所示,当30y -<<时,x 的取值范围是( )A .4x >B .02x <<C .04x <<D .24x <<16.某航空公司规定,旅客乘机所携带行李的质量()kg x 与其托运费用y (元)的关系如图所示的一次函数图象确定,那么旅客可免费携带行李的最大质量为( )A .30kgB .25kgC .20kgD .18kg17.平面直角坐标系中,点A (3,3),B (2,1),经过点A 的直线a ∥x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .()0,1-B .()1,2--C .()2,1--D .()2,318.如图,已知点A 的横坐标为3-,过点A 作x 轴的垂线交x 轴于点B ,连接AO ,现将ABO V 沿AO 折叠,点B 落在第一象限的B '处,AB '边所在直线交y 轴于点C ,交x 轴于点D ,若C 的坐标为()0,5,则点A 的坐标为( )A .()3,6-B .()3,7-C .()3,8-D .()3,9-19.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,54t =或154. 其中正确的结论有( )A .1个B .2个C .3个D .4个20.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如 1,0 , 2,0 , 2,1 ,()3,2,()3,1,()3,0,()4,0,……,根据这个规律探索可得第2024个点的坐标是( )A .()63,5B .()63,6C .()64,7D .()64,6二、解答题21.在平面直角坐标系中,已知点()2,27M m m --,点(),3N n .(1)若点M 在x 轴上,求m 的值和点M 坐标;(2)若点M 到x 轴,y 轴距离相等,求m 的值;(3)若MN y ∥轴,且2MN =,求n 的值.22.如图,ABC V 中,点()()()2,1,3,4,5,2A B C ---.在所给直角坐标系中解答下列问题:(1)在图中画出ABC V 关于y 轴对称的111A B C △;(2)111A B C △的面积是.(3)在x 轴上找一点P ,使得1PA PB +的值最小,则点P 的坐标为.23.某公司要印刷产品宣传材料.甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.(1)分别写出两印刷厂的收费y (元)与印制数量x (份)之间的关系式;(2)印制800份宣传材料时,选择哪家印刷厂比较合算?(3)该公司拟拿出3000元用于印制宣传材料,找哪家印制厂印制宣传材料能多一些? 24.如图,已知点A 的坐标为(-3,-4),点B 的坐标为(5,0).(1)求证:OA =OB .(2)求△AOB 的面积.(3)求原点O 到AB 的距离.25.甲、乙两人同时从同一公路上的A 、B 两地同时出发前往C 地,两人离A 地的路程()km y 与行驶的时间()h x 之间的函数图像如图所示.(1)分别求出y 甲、y 乙与x 之间的函数表达式;(2)甲追上乙用了多少时间?(3)乙出发多久和甲相距5km .26.阅读理解:在平面直角坐标系中,()111,P x y ,()222,P x y ,如何求12PP的距离.如图,在12Rt PP Q △,()()2222212122121PP PQ P Q x x y y =+=-+-,所以12PP =.因此,我们得到平面上两点()111,P x y ,()222,P x y 之间的距离公式为12PP =(1)已知点()2,6P ,()3,6Q --,试求P 、Q 两点间的距离;(2)已知点(),5M m ,()1,2N 且5MN =,求m 的值;(3)的最小值.27.如图,正比例函数2y x =的图象与一次函数y kx b =+的图象交于点(),4A m ,一次函数图象与y 轴的交点为()0,2C ,与x 轴的交点为D .(1)求一次函数解析式;(2)一次函数y kx b =+的图象上是否存在一点P ,使得3ODP S =△,若存在,求出点P 的坐标;若不存在,说明理由;(3)如果在一次函数y kx b =+的图象存在一点Q ,使OCQ △是等腰三角形,请直接写出点Q 的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5页,共6页 第6页,共6页
密 封 线 学校 班级 姓名 学号
密 封 线 内 不 得 答 题
八年级月考数学试题(2020.10)
一.选择题(4分*15个=45分) 1. 下列说法中正确的是( )
A.已知c b a ,,是三角形的三边,则2
2
2
c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方 C.在Rt△ABC 中,∠C=90°,所以222c b a =+ D.在Rt△ABC 中,∠B=90°,所以222c b a =+
2. 如图,已知正方形B 的面积为144,如果正方形C 的面积为169,那么正方形A 的面积为( )
A.313
B.144
C.169
D.25
3.在Rt△ABC 中,∠ACB=90°,若AC =5 cm ,BC =12 cm ,则斜边上的高CD 的长为( ) A.6 cm B.8.5 cm C.
1360cm D.13
30
cm 4. 下列满足条件的三角形中,不是直角三角形的是( )
A.三内角之比为1︰2︰3
B.三边长的平方之比为1︰2︰3
C.三边长之比为3︰4︰5
D.三内角之比为3︰4︰5 5. 在实数 0,
中,无理数有,,,,,9
1
2574.0312π-
( ) A .1个 B .2个 C.3个 D.4个
6. 设a 是实数,且0<a <1,则在a 2
,a ,a ,
a
1
这四个数中( ) A .a 1最大,a 2
最小 B .a 最大、a
1最小
C .a 2最大,a 最小
D .a 最大,a 2
最小
7. 若直角三角形的三边长为6,8,m ,则2
m 的值为( )
A .10
B .100
C . 28
D .100或28
8.若实数m ,n 满足240m n -+-=,且m ,n 恰好是等腰△ABC 的两条边的边长,
则△ABC 的周长是( )
A .12
B .8
C .10
D .10或8
9. 16的平方根是( ) A .4 B .-4 C .±4 D .±2 10. 下列说法中不正确的是( ) A .
是2的平方根
B .
是2的平方根
C .2的平方根是
D .2的算术平方根是
11. 一个正数的两个平方根分别是2a-1与 -a+2,则a 的值为( ) A .-1 B .1 C .-2 D .2
12. 下列语句中 ①4是16的算术平方根,即164±=②4是16的算术平方根,即164=③-7是49的算术平方根,即2(7)7-= ④7是(-7)2
的算术平方根,即2(7)7-=.其中正确的是( )
A .①③
B .②③
C .②④
D .①④
13. 下列运算中,错误的是( ) ①12
5
1144251
=,②4)4(2±=-,③22222-=-=-, ④
20
9
5141251161=+=+ (A) 1个 ( B) 2个 (C) 3个 (D) 4个
14. 在平面直角坐标系中,点P (2,-3)关于x 轴的对称点的坐标是( )
A. (-2,3)
B.(2,3)
C. (-2,-3)
D.(-3,2)
15. 若点P 在第四象限,且点P 到x 轴、y 轴的距离分别为4,3,则点P 的坐标为( )
A. (4,-3)
B.(-4,3)
C.(-3,4)
D.(3,-4)
二.填空题(4分*6个=24分)
16. 一个三角形的三边的比为5:4:3,它的周长为60cm ,则它的面积是 cm 2
.
17. 一个三角形三边满足(a+b )2﹣c 2
=2ab ,则这个三角形是 三角形. 18. 计算:49- =__________.
19. 已知a 、b 互为倒数,c 、d 互为相反数,
()133
2
+++-d c ab ab 的值为 . 20. 对平面上任意一点(a ,b ),定义f ,g 两种变换:f (a ,b )=(a ,﹣b ).如f (1,2)=(1,﹣2); g (a ,b )=(b ,a ).如g (1,2)=(2,1). 据此得g (f (5,﹣9))= .
A
B C 第2题图
第3页,共6页 第4页,共6页
密 封 线 内 不 得 答 题
21. 观察下列各式: ⑴312
311=+
⑵413412=+ ⑶5
1
4513=+…… 请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来
是___________ ________. 三.解答题
22.计算下列各式(4分*6个=24分)
(1)3
2
223513459⨯÷ (2)()()
22632632--+
(3)
2
1
683-
⨯ (4)487533+-
(5)324831
2
123÷⎪⎪⎭⎫ ⎝

+- (6)2()
524532045+-
23.(9分) 在四边形ABCD 中,AB =3,BC =4,CD =12.AD =13.且BC ⊥AB ,求四边形ABCD 的面积。

24.(9分) 如图所示,牧童在A 处放羊,其家在B 处, A 、B 到河岸的距离分别为 AC =400m , BD =200m ,C.D 间的距离为800m ,牧童从A 处把羊牵到河近饮水后再回家. 试问:羊在何处饮水所走路程最短?在图中画出最短路径并求出最短路径的长度是多少.
25.(9分) 如图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,BC =10 cm , AB =8 cm ,求:(1)FC 的长;(2)EF 的长.
26.(10分) 张老师在一次“探究性学习”课中,设计了如下数表:
n 2 3 4 5 … a 22
-1 32
-1 42
-1 52
-1 … b 4 6 8 10 … c
22+1
32+1
42+1
52
+1

(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数n(n >1)的 代数式表示:a =__________,b =__________,c =__________.
第5页,共6页 第6页,共6页
密 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
(2)以a ,b ,c 为边长的三角形是不是直角三角形?为什么?
27.(10分) 如图1-21所示,在△ABC 中,AB =15,BC =14.AC =13,求△ABC 的面积
某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程
28. (10分)如图,平面直角坐标系中,△ABC 三个顶点的坐标分别是A(4,8),B(2,4),C(8,3).
(1)画出△ABC 关于x 轴的对称△A 1B 1C 1 ,并写出三个顶点A 1,B 1,C 1的坐标.
(2)再画出△A 1B 1C 1关于y 轴的对称△A 2B 2C 2,先写出三个顶点A 2,B 2,C 2的坐标,再求出△A 2B 2C 2面积.。

相关文档
最新文档