《激光原理及技术》1-4习题答案

合集下载

激光原理与激光技术习题问题详解

激光原理与激光技术习题问题详解

激光原理与激光技术习题答案习题一 (1)为使氦氖激光器的相干长度达到1m ,它的单色性/应为多大?解: 10101032861000106328--⨯=⨯=λ=λλ∆=.L R c(2) =5000Å的光子单色性/=10-7,求此光子的位置不确定量x解: λ=h p λ∆λ=∆2h p h p x =∆∆ m Rph x 5101050007102=⨯=λ=λ∆λ=∆=∆--(3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。

求由衍射损耗及输出损耗分别引起的、c 、Q 、c (设n=1)解: 衍射损耗: 1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ 686810113107511061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q cMHz .Hz ...c c 19101910751143212168=⨯=⨯⨯⨯=πτ=ν∆- 输出损耗: 1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ 686810964107821061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q c MHz .Hz ...c c 75107510782143212168=⨯=⨯⨯⨯=πτ=ν∆-(4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的围所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)解: MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 11]11501500[]1[=+=+ν∆ν∆=∆q q005.0201.02===T δ s c L c 781067.6103005.01-⨯=⨯⨯==δτ MHz cc 24.01067.614.321217=⨯⨯⨯==-πτν∆(5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0.01,求此激光器的无源腔本征纵模的模式线宽。

《激光原理与技术》题集

《激光原理与技术》题集

《激光原理与技术》题集一、选择题(每题2分,共20分)1.激光的英文名称是:A. Light Amplification by Stimulated Emission ofRadiationB. Linear Accelerator BeamC. Large Area Beam EmitterD. Low Amplitude Beam2.下列哪项不是激光器的基本组成部分?A. 激光工作物质B. 激励源C. 光学谐振腔D. 光学滤镜3.激光产生的三个基本条件不包括:A. 实现粒子数反转B. 存在光学谐振腔C. 满足阈值条件D. 有强大的磁场4.在激光技术中,调Q技术主要用于:A. 提高激光功率B. 压缩激光脉宽C. 扩大激光光斑D. 改变激光颜色5.下列哪种激光器不属于气体激光器?A. He-Ne激光器B. CO2激光器C. Nd:YAG激光器D. Ar离子激光器6.激光器的阈值条件是指:A. 激光工作物质开始发光的最低能量B. 激光工作物质达到最大发光强度的能量C. 激光工作物质开始产生激光的最低泵浦功率D. 激光工作物质温度达到熔点的能量7.激光测距主要利用了激光的哪一特性?A. 单色性好B. 方向性强C. 亮度高D. 相干性好8.在激光加工中,激光切割主要利用激光的:A. 热效应B. 光电效应C. 磁效应D. 化学效应9.激光通信相比于微波通信的优势是:A. 传输距离更远B. 传输速度更快C. 抗干扰能力更强D. 所有以上选项10.全息照相技术主要利用了激光的:A. 高能量特性B. 相干性好的特性C. 方向性好的特性D. 单色性好的特性二、填空题(每题2分,共20分)1.激光器的核心部件是______,它决定了激光器的输出波长。

2.在激光产生过程中,实现粒子数反转是通过______手段来实现的。

3.激光器的输出光束质量通常由______来描述。

4.激光脉冲的持续时间越短,其峰值功率就______。

激光原理 周炳琨版课后习题答案

激光原理 周炳琨版课后习题答案
(c)当 , 时:
6.某一分子的能级 到三个较低能级 、 和 的自发跃迁几率分别是 , 和 ,试求该分子 能级的自发辐射寿命 。若 , , ,在对 连续激发并达到稳态时,试求相应能级上的粒子数比值 、 和 ,并回答这时在哪两个能级间实现了集居数反转。
解:该分子 能级的自发辐射寿命 为:
在连续激发时,对能级 、 和 分别有:
即该物质的增益系数约为 。
第二章
习题
1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:
其往返矩阵为:
由于是共焦腔,有
往返矩阵变为
若光线在腔内往返两次,有
可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
当 时, 小
当 时, 小
3. 在 波长时 ,试求在内径为 的 波导管中 模和 模的损耗 和 ,分别以 , 以及 来表示损耗的大小。当通过 长的这种波导时, 模的振幅和强度各衰减了多少(以百分数表示)?
解:由

, 。
当 时, ,
4.试计算用于 波长的矩形波导的 值,以 及 表示,波导由 制成, , ,计算由 制成的同样的波导的 值,计算中取 。

10m
1m
10cm
0
2.00cm
2.08cm
2.01cm
2.00cm
2.40
22.5
55.3
56.2
从上面的结果可以看出,由于f远大于F,所以此时透镜一定具有一定的聚焦作用,并且不论入射光束的束腰在何处,出射光束的束腰都在透镜的焦平面上。
17. 激光器输出光 , =3mm,用一F=2cm的凸透镜距角,求欲得到 及 时透镜应放在什么位置。

激光原理部分课后习题答案

激光原理部分课后习题答案

µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e

激光原理与技术 课后习题答案试题

激光原理与技术 课后习题答案试题

1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λλ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm 8 一质地均匀的材料对光的吸收系数为101.0-mm ,光通过10cm 长的该材料后,出射光强为入射光强的百分之几?如果一束光通过长度为1M 地均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。

解答:设进入材料前的光强为0I ,经过z 距离后的光强为()z I ,根据损耗系数()()z I dz z dI 1⨯-=α的定义,可以得到: ()()z I z I α-=ex p 0则出射光强与入射光强的百分比为:()()()%8.36%100%100ex p %10010001.001=⨯=⨯-=⨯=⨯--mm mm z e z I z I k α 根据小信号增益系数的概念:()()z I dz z dI g 1⨯=,在小信号增益的情况下, 上式可通过积分得到()()()()14000000001093.610002ln lnln exp exp --⨯====⇒=⇒=⇒=mm z I z I g I z I z g I z I z g z g I z I1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,有12R R L ==往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。

于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。

激光原理与技术习题一

激光原理与技术习题一

激光原理与技术习题一《激光原理与技术》习题一班级序号姓名等级一、选择题1、波数也常用作能量的单位,波数与能量之间的换算关系为1cm -1 = eV 。

(A )1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D)1.24×10-42、若掺Er 光纤激光器的中心波长为波长为1.530μm ,则产生该波长的两能级之间的能量间隔约为 cm -1。

(A )6000 (B) 6500 (C) 7000 (D) 100003、波长为λ=632.8nm 的He-Ne 激光器,谱线线宽为Δν=1.7×109Hz 。

谐振腔长度为50cm 。

假设该腔被半径为2a=3mm 的圆柱面所封闭。

则激光线宽内的模式数为个。

(A )6 (B) 100 (C) 10000 (D) 1.2×1094、属于同一状态的光子或同一模式的光波是 .(A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的二、填空题1、光子学是一门关于、、光子的科学。

2、光子具有自旋,并且其自旋量子数为整数,大量光子的集合,服从统计分布。

3、设掺Er 磷酸盐玻璃中,Er 离子在激光上能级上的寿命为10ms ,则其谱线宽度为。

三、计算与证明题1.中心频率为5×108MHz 的某光源,相干长度为1m ,求此光源的单色性参数及线宽。

2.某光源面积为10cm 2,波长为500nm ,求距光源0.5m 处的相干面积。

3.证明每个模式上的平均光子数为1)/ex p(1kT hv 。

《激光原理与技术》习题二班级姓名等级一、选择题1、在某个实验中,光功率计测得光信号的功率为-30dBm ,等于W 。

(A )1×10-6 (B) 1×10-3 (C) 30 (D) -302、激光器一般工作在状态.(A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态二、填空题1、如果激光器在=10μm λ输出1W 连续功率,则每秒从激光上能级向下能级跃迁的粒子数是。

激光原理试题及答案

激光原理试题及答案

激光原理试题及答案一、选择题(每题2分,共20分)1. 激光的产生原理是基于以下哪种效应?A. 光电效应B. 康普顿效应C. 受激辐射D. 多普勒效应答案:C2. 激光器中,用于提供能量的介质被称为什么?A. 增益介质B. 反射介质C. 吸收介质D. 传输介质答案:A3. 激光器中,用于将光束聚焦的元件是:A. 透镜B. 棱镜C. 反射镜D. 滤光片答案:A4. 激光的波长范围通常在:A. 红外线B. 可见光C. 紫外线D. 所有选项5. 以下哪种激光器是固态激光器?A. CO2激光器B. 氩离子激光器C. 钕玻璃激光器D. 所有选项答案:C6. 激光的相干性意味着:A. 波长一致B. 相位一致C. 频率一致D. 所有选项答案:D7. 激光器的输出功率通常用以下哪种单位表示?A. 瓦特B. 焦耳C. 牛顿D. 伏特答案:A8. 激光切割机利用激光的哪种特性进行切割?A. 高亮度B. 高方向性C. 高单色性D. 高相干性答案:A9. 激光冷却技术主要应用于:B. 工业C. 物理学研究D. 军事答案:C10. 激光二极管通常使用的半导体材料是:A. 硅B. 锗C. 砷化镓D. 碳化硅答案:C二、填空题(每题2分,共20分)1. 激光的英文全称是________。

答案:Light Amplification by Stimulated Emission of Radiation2. 激光器的三个主要组成部分是________、________和________。

答案:工作物质、激励源、光学谐振腔3. 激光器中,________用于提供能量,________用于产生激光。

答案:激励源、工作物质4. 激光的________特性使其在通信领域有广泛应用。

答案:高相干性5. 激光器的________特性使其在医疗手术中具有高精度。

答案:高方向性6. 激光冷却技术中,激光与原子相互作用的效应被称为________。

《激光原理及技术》1-4习题答案

《激光原理及技术》1-4习题答案

激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少?解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk chb λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=解: Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λ νλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk chb λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α(2) 01010*********I .e I e I e I I .z ====-⨯-α 即经过厚度为0.1m 时光能通过%10. 解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。

初始光强为I 0在无源腔内往返一次后光强衰减为I 1,则:121012011281818861111111ln ln 0.119220.985*0.8100 2.78*100.12*3*10/3*10/222*2.78*10 4.94*1010.6R R R R I I e r r I r r Lcm s c m scm sQ s mδδτδπυτπτπλμ---==⇒==========(2)衍射损耗:腔的菲涅耳数222282862224144*100*10.60.188(1.5)1 1.77*100.188*3*10/2222 3.15*10d R d R R d da D N L L L cm m N D cm L m s c m s cc L L Q c λλλμδτδπυτπτππλλδλδ--==============6. 解:1)321(*)1(01)1(*)1(021<-+<→<--<L L R L R L 所以:m L 2321<<7、Hz L c q 88'10*75.34.0*210*3*2V ===∆9. He-Ne 激光器的中心频率0ν=×1410Hz ,荧光线宽ν∆=×910Hz ,腔长L=1m 。

问可能输出的纵模数为多少为获得单纵模输出,腔长最长为多少解:(1)q ν∆=L 2cη=2Lc =121038⨯⨯=×810Hz输出纵模数为N=[qνν∆∆]+1=[89101.5101.5⨯⨯]+1=11 (2)νν∆>∆q ,即q ν∆=L 2cη=2L c =L21038⨯⨯=×810/L>×910则L<0.1m, 腔长最长不能超过0.1m10。

有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,输出镜反射系数r=。

求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其他损耗)解:(1)q ν∆=L 2cη=2Lc =121038⨯⨯=×810Hz输出纵模数为N=[qνν∆∆]+1=[86101.5101500⨯⨯]+1=11所以输出纵模数为11.(2)透射损耗2/01.0)]1()1[(21r ln 21-2121=-+-≈=r r r δ=5-810151103005.0/1c L/⨯=⨯⨯==δτ 线宽Hz v 551039.2102152/1⨯=⨯==∆ππτ13从镜面上的光斑大小来分析,当它超过镜子的线度时,这样的横模就不可能存在。

试估算L=30cm,2a= 的He-Ne激光方形镜腔中所可能出现的最高阶模的阶次是多少15、对称双凹球面腔腔长为L,反射镜曲率半径R=2.5L,光波长为 ,求镜面上的基模光斑半径。

解:因为为对称球面腔,所以假设Z1<0,Z2>0,并且z2=-z1=z,f为等价共焦腔焦距所以⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==+=+===+=+===2z z1-z2L /z f z /z1f z1R(z2)R R2/z)f -(z /z1)f -(z1R(z1)-R R12222⎭⎬⎫⎩⎨⎧==⇒L L/2z f 等价共焦腔腔长L'=2f=2L 。

所以镜面上基模光斑半径为πλϖ'L 0s ==πλ2L17有一平面腔,凹面镜曲率半径R=5m ,腔长L=1m ,光波长λ=。

求: (1)两镜面上的基模光斑半径;(2)基模高斯光束的腰斑半径及束腰位置; (3)基模高斯光束的远场发散角。

解:(1) 41512=-⨯=-=)()L R (L f 等价共焦腔腔长L'=2f=4m ,λ=0.5m20)/(1z)(f z +=ϖϖ , m L 56.02/'0==πλϖ⎭⎬⎫⎩⎨⎧=+=====∴m z m z m z z 63.0)2/1(1)2(1256.0)1(01200ϖϖϖϖ时,时, (2)腰斑半径m 56.02/'L 0==πλϖ,束腰在z=0处,与平面镜重合。

(3)rad 0.564/2/f 200===πϖλπλθ19. 某共焦腔He-Ne 激光器,波长λ=m μ,若镜面上基模光斑尺寸为0.5mm ,试求共焦腔腔长,若腔长保持不变,而波长λ=m μ,此时镜面上光斑尺寸为多大解:(1)因为镜面上光斑尺寸为:πλϖ'L 0s =,所以等价共焦腔腔长λπϖ/L'20s =当λ=m μ,0s ϖ=0.5mm 时, λπϖ/L'20s ==1.24m (2)当λ=m μ时,πλϖ'L 0s ==1.16m第四章1.一对称共焦腔的腔长L=0.4m ,激光波长λ=m μ,求束腰半径和离腰56cm 处光斑半径。

解:束腰半径0.2mm 2/0==πλϖL ,f=L/2=0.2m2)/(1z)(f z +=ϖϖ ,所以当z=56cm 时: mm mm cm z 59.0)2.0/56.0(12.0)56(2=+==ϖ2.某高斯光束束腰半径为0ϖ=1.14cm ,λ=m μ.求与束腰距离30cm 、10m 、1000m 远处的光斑半径ϖ及波前曲率半径R 。

解:220020)/(1)/(1z)(πϖλϖϖϖz f z +=+=;R=z[2)/(1z f+]=z[1+220)/(λπϖz ]m .f 523820=λπω= (1)z=30cm 时:w=1.14cm ;R=4946m=4.946km (2)z=10m 时:w=1.18cm ;R=158.357m (3)z=1000m 时:w=29.62cm ;R=1001.48mm f )()L R (L f 111212=⇒=-⨯=-=9如图4-20所示,波长λ=m μ的如玻璃激光器的全反射镜的曲率半径R=1m ,距全反射镜L 1=0.44m 处放置长为L 2=0.1m 的如玻璃棒,其折射率为n=.棒的一端直接镀上半反射膜作为腔的输出端。

(2)判断该腔的稳定性; (3)求输出光斑的大小;(4)若输出端刚好位于F=0.1m 的透镜的焦平面上,求经透镜聚焦后的光腰大小和位置。

解:(1)设R 1=1m ,R 2=∞,L=L 1+L 2/n=0.5m.15.0)2/1)(1/1(0<=--<R l R l ,∴该腔为稳定腔。

(2)m .f .).(.)L R (L f 50250501502=⇒=-⨯=-=光斑大小m 101.4/w -402⨯===πλf w s(3)因为输入在前焦点,所以输出在后焦点上, 因此 mm F w 082.0'0w 0==πλ4.12.一高斯光束的光腰半径w0=2cm ,波长1um ,从距离长为d 的地方垂直入射到焦距为f=4cm 的透镜上。

求(1)d=0(2)d=1m 时,出射光束的光腰位置和光束发散角解: 222222)/0()(00'λπw l F w F w +-=2222)/0()()('l λπw F l F F l F +--+=,(1)l=d=0带入可得rad .,m .01701056305-0=θ⨯=ω' (2)l=d=1m,带入可得w0'=×m10-7,l'=4cm ,rad w 0.1'0/20==πλθ。

相关文档
最新文档