高速PCB设计的传输线及其特性阻抗

合集下载

PCB阻抗原理深度剖析及实际应用

PCB阻抗原理深度剖析及实际应用

PCB阻抗原理深度剖析及实际应用PCN阻抗原理及知识应用01深度好文,建议分享收藏!我们做电子设计,遇到高速电路时会遇到很多问题,也会有很多新名词,比如:过冲,下冲,时延,阻抗,反射等,经过我的反复思考与研究,得到一些心得,跟大家一起分享。

随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。

印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音低的传输信号。

在高速数字电路的PCB设计上,我们设计的产品不管是用到DDR2,还是DDR3内存,不管是PCIE差分还是SATA传输,都用到了高速PCB设计技术,而我们所设计的PCB用了阻抗控制技术后,基本上没有出现是PCB问题跑不通的情况。

要理解高速信号的设计知识,先要从一些基础电子知识说起。

01基础知识导体中的自由电子在电场的作用下定向移动形成电流。

电流方向只是物理学中约定俗成的一个规定,物理上规定电流的方向是正电荷的定向移动的方向或者负电荷的定向移动的反方向。

电流的速度不是电子运动速度,而是电场的速度。

图1:PA6000功率分析仪的电磁抗扰度测试图2:定向移动的电子02电场的传播速度与介质有关电信号的传播速度是与导体周围的介质介电常数有关的,电信号在真空中(指导体周围比较大的范围内都是真空)的传播速度是光速3*10^8 m/s,换算为30 cm/ns 。

在其它的介质中,它的传输速度是不一样的,如果相对介电系数是 Er ,则传播速度为 30/Er^0.5。

例如,在水中,水的相对介电系数是80,所以,传播速度约是真空中的1/9 ,即:30/80^0.5 = 3.35 cm/ns。

在PCB中,FR4的相对介电系数约为4,所以,传播速度是真空中的一半,即:30/4^0.5 = 15 cm/ns。

03传输线的特征阻抗是什么传输线的特征阻抗,又称为特性阻抗,是我们在进行高速电路设计的时候经常会提到的一个概念。

高速PCB设计中的阻抗控制

高速PCB设计中的阻抗控制

高速数字电路PCB设计中的阻抗控制(转载)随着半导体工艺的飞速发展,IC器件集成度和工作时钟频率不断提高。

以往在一块比较复杂的PCB上的高速网线只有几根或几十根,现在则是在一块PCB上只有几根或几十根网线不是高速信号线;以往认为数字电路设计只要把握逻辑正确,物理连线似乎只要连接上就能使电路正常工作;而现在越来越多的电子产品设计体现出高速、高性能、高密度和高复杂度的特点,尤其在通讯、计算机、航空航天以及图象处理等领域。

系统的主频越来越高,更加严重的挑战来自半导体工艺技术的进步,日渐精细的工艺技术使得晶体管尺寸越来越小,因而器件的信号跳变沿也就越来越快,从而导致更加严重的高速数字电路系统设计领域的信号完整性问题:传输线效应(反射、时延、振铃、及信号的过冲与欠冲)、信号问串扰等。

为此,电子系统设计师必须从传统的设计方法向现代的电子系统设计方法转变,这既是形势需要,也是发展的必然趋势。

1 高速数字电路概念1.1 什么是高速数字电路PCB上的高速电路设计,主要是以器件和连接器件的印制线为主要分析对象的。

以往在器件的时钟频率不是很高、时钟的上升或下降沿变化不是很陡的情形下,可以用集总参数的形式来表示印制线,而当器件的时钟频率变得很高时(比如:超过50MHz),时钟的上升或下降沿很小时(一般地在1ns~5ns之间),这时就不能将印制线用集总参数来表示,必须引入分布参数来表示印制线特性,这就是传输线的概念(图1)。

关于传输线的分析是高速PCB 设计当中最基本也是最核心的部分,下面简要介绍传输线的定义和高速电路设计相关的一些概念。

国际上通常对PCB上的传输线没有确切的具体定义,现在被大家普遍接受的约定如下:即当信号从驱动端到接收端的印制线上的延时大于等于上升或下降沿的l/ 时(即Tpd≥0.5Trist(Tfdl))。

这时就必须将此印制线当成传输线来分析,更为保守一点的定义是信号在走线上传播延时或。

1.2 PGB的板层材料和板层结构图2所示是一个标准6层PCB的断面层结构示意图,其它多层PCB的层设置与此相似。

高速pcb设计

高速pcb设计

振铃产生原因: 信号如果在传输线上来回反射,就会产生振铃。
17
高速PCB设计-信号完整性分析
串扰 串扰表现: 串扰表现为在一根信号线上有信号通过时,在PCB板上与之 相邻的信号线上就会感应出相关的信号。 易产生串扰的信号: 异步信号 时钟信号 串扰解决方法: 信号线距离地线越近,线间距越大,产生的串扰信号就越 小。因此解决串扰的方法是移开发生串扰的信号或屏蔽被严重干扰 的信号(包地)。
10
高速PCB设计-基本概念
地电平面反弹噪声(简称为地弹,Ground bounce) 地弹是指由较大的电流涌动引起的、在地平面上产生的电压波动和变化。 地弹产生原因: 当较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的 电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压的波动和 变化,这就是地电平面反弹噪声。 地弹的后果: 地电平面反弹噪声会影响其它元器件的动作。 影响地弹的因素: 负载电容的增大、负载电阻的减小、地电感的增大、同时开关器件数目 的增加均会导致地弹的增大。
过冲与下冲 过冲与下冲 虽然大多数元件接收端都有输入保护二极管保护, 但有时这些过冲电平会远远超过元件电源电压范围,损坏 元器件。 过冲与下冲产生的原因: 过长的走线; 信号变化太快;
16
高速PCB设计-信号完整性分析
振铃(Ringing) 振铃(Ringing) 信号的振荡发生在逻辑电平门限附近,多次跨越逻辑电平门 限从而导致逻辑功能紊乱。
12
高速PCB设计-基本概念
传输速率 由电磁波理论中的Maxwell’s理论可知,正弦波信号在介质中传播速度 (Vp)与光速成正比,与其介质常数(εr)平方根成反比。 电磁波在空气中的传输速度

高速数字电路PCB设计中的阻抗控制

高速数字电路PCB设计中的阻抗控制

环测威官网:/阻抗控制技术在高速数字电路设计中非常重要,其中必须采用有效的方法来确保高速PCB 的优异性能。

PCB上高速电路传输线的阻抗计算及阻抗控制•传输线上的等效模型图1显示了传输线对PCB的等效影响,这是一种包括串联和多电容,电阻和电感(RLGC 模型)的结构。

串联电阻的典型值在0.25至0.55欧姆/英尺的范围内,并且多个电阻器的电阻值通常保持相当高。

随着PCB传输线中增加的寄生电阻,电容和电感,传输线上的总阻抗被称为特征阻抗(Z 0)。

在线直径大,线接近电源/接地或介电常数高的条件下,特征阻抗值相对较小。

图3示出了具有长度dz的传输线的等效模型,基于该模型,传输线的特征阻抗可以推导为公式:。

在这个公式中,L“传感线”是指传输线上每个单位长度的电感,而C是指传输线上每个单位长度的电容。

环测威官网:/在上面的公式中,Z 0表示阻抗(欧姆),W表示线的宽度(英寸),T表示线的粗细(英寸),H表示到地面的距离(英寸),是指衬底的相对介电常数,t PD是指延迟时间(ps / inch)。

•传输线的阻抗控制布局规则基于上述分析,阻抗和信号的单位延迟与信号频率无关,但与电路板结构,电路板材料的相对介电常数和布线的物理属性有关。

这一结论对于理解高速PCB和高速PCB设计非常重要。

而且,外层信号传输线的传输速度比内层传输速度快得多,因此关键线布局的排列必须考虑这些因素。

阻抗控制是实现信号传输的重要前提。

但是,根据传输线的电路板结构和阻抗计算公式,阻抗仅取决于PCB材料和PCB层结构,同一线路的线宽和布线特性不变。

因此,线路的阻抗在PCB的不同层上不会改变,这在高速电路设计中是不允许的。

本文设计了一种高密度高速PCB,板上大多数信号都有阻抗要求。

例如,CPCI信号线的阻抗应为650欧姆,差分信号为100欧姆,其他信号均为50欧姆。

根据PCB布线空间,必须使用至少十层布线,并确定16层PCB设计方案。

由于电路板的整体厚度不能超过2mm,因此在堆叠方面存在一些困难,需要考虑以下问题:1)。

高速线路PCB设计:传输线效应

高速线路PCB设计:传输线效应

高速线路PCB设计:传输线效应在高速线路中,由于传输线阻抗变化的问题,会有一部分的信号能量被反射,假设信号是一个跑步的人,人从A端想要跑到B端,在人经过线路每一块的导体时都会改变其电压值,一开始他在阻抗为50Ω的线路上跑,碰到过孔时阻抗的变化会产生让其速度变慢并产生一定的反弹,一直到终端为1MΩ时,此时几乎带着100%的能量被反弹回A端,反弹到A端时,由于A端为25Ω,会有一部分能量被留住,一部分能量被反弹,反弹的能量约为初始值的1/3。

而这1/3的信号再次到达B端后,又会被反射,以此类推。

在示波器上可以看到信号的上升沿和下降沿产生振荡直至能量减弱信号幅度随之减小。

基于上述模型,传输线会对整个电路设计带来一下效应:反射信号、延时和时序错误、多次跨越逻辑电平门限错误、过冲与下冲、串扰、电磁辐射信号轮廓失真信号在接收端将被反射,信号轮廓将失真。

失真变形的信号对噪声的敏感性、EMI若显著增加,这可能会造成整改系统的失效。

反射信号产生的主要原因:过长的布线、未进行阻抗匹配的接收端、未进行阻抗匹配的传输线(由于过量电容、电感的阻抗失配)信号延时信号在逻辑电平的高、低门限之间变化时,信号迟滞不跳变。

过多的信号延时可能导致时序错误和元器件功能混乱,通常在多个接收端时会出现问题。

信号延时产生的主要原因:驱动过载、布线过长信号电平错误信号的振荡发生在逻辑电平门限附近,在跳变的过程中可能多次跨越逻辑电平门限,导致逻辑功能紊乱。

信号过冲与下冲布线太长或信号变化太快都可以导致过冲与下冲发生,虽然大多数芯片器件接收端有输入保护二极管,但有时这些过冲电平会远远超过器件的电压范围,导致器件损坏。

信号串扰在一根信号线上有信号通过时,与之相邻的信号线上会感应出相关信号,异步信号和时钟信号更容易产生串扰。

解决串扰的方法:移开发生串扰的信号或屏蔽被严重干扰的信号。

信号距离地平面越近,或者加大线间距,都可以减少串扰的发生。

电磁辐射电流流过导体会产生磁场。

高速电路设计中的阻抗匹配技术研究

高速电路设计中的阻抗匹配技术研究

高速电路设计中的阻抗匹配技术研究近年来,随着电子技术的高速发展,高速电路的设计变得越来越重要。

在高速电路设计中,阻抗匹配技术扮演着至关重要的角色。

阻抗匹配能够在电路中提供最优的信号传输,减少信号的反射和损耗,从而增加电路的性能和稳定性。

本文将探讨高速电路设计中的阻抗匹配技术的研究进展和应用。

一、阻抗匹配技术的基础原理阻抗是指电流和电压之间的比值,用于描述电路对信号的响应。

在高速电路设计中,阻抗匹配技术可以通过调整传输线和装配件的阻抗来使其与信号源和负载的阻抗匹配,以减少信号的反射和损耗。

阻抗匹配技术的基础原理包括特性阻抗、传输线理论和阻抗转换。

特性阻抗是指传输线上单位长度的电阻和电抗的比值,用来描述传输线的特性。

在高速电路设计中,特性阻抗的选择对信号传输有着重要的影响。

传输线理论是指通过传输线的波动传播现象,例如电压波和电流波在传输线上的行为。

通过合理地选择传输线的特性阻抗,可以使信号在传输线上传播时最大限度地减少反射和损耗。

阻抗转换是指在不同特性阻抗之间进行阻抗匹配的过程,例如通过使用阻抗匹配装配件或变压器。

二、阻抗匹配技术的研究进展随着高速电路设计的要求日益严格,阻抗匹配技术也在不断发展和改进。

以下是几个阻抗匹配技术的研究进展:1. 传输线的特性阻抗选择在高速电路设计中,选择适当的传输线特性阻抗尤为重要。

一种常用的特性阻抗是50欧姆,适用于许多应用场景。

然而,在一些特殊应用中,如射频(RF)电路设计,特性阻抗可以选择为其他值,例如75欧姆或100欧姆。

选择适当的特性阻抗可以优化信号的传输效果。

2. 差分传输线技术差分传输线技术是一种常用的阻抗匹配技术,适用于高速信号传输。

差分传输线技术通过使用两条相互平行的传输线,将信号和其互补(反相)信号一起传输。

差分信号传输可以提高抗干扰能力,减少信号的互相干扰。

3. 阻抗匹配装配件阻抗匹配装配件是用于在不同特性阻抗之间实现阻抗匹配的器件,例如阻抗匹配器。

高速PCB设计中的阻抗匹配

高速PCB设计中的阻抗匹配

阻抗匹配阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。

反之则在传输中有能量损失。

在高速PCB设计中,阻抗的匹配与否关系到信号的质量优劣。

PCB走线什么时候需要做阻抗匹配?不主要看频率,而关键是看信号的边沿陡峭程度,即信号的上升/下降时间,一般认为如果信号的上升/下降时间(按10%~90%计)小于6倍导线延时,就是高速信号,必须注意阻抗匹配的问题。

导线延时一般取值为150ps/inch。

特征阻抗信号沿传输线传播过程当中,如果传输线上各处具有一致的信号传播速度,并且单位长度上的电容也一样,那么信号在传播过程中总是看到完全一致的瞬间阻抗。

由于在整个传输线上阻抗维持恒定不变,我们给出一个特定的名称,来表示特定的传输线的这种特征或者是特性,称之为该传输线的特征阻抗。

特征阻抗是指信号沿传输线传播时,信号看到的瞬间阻抗的值。

特征阻抗与PCB导线所在的板层、PCB所用的材质(介电常数)、走线宽度、导线与平面的距离等因素有关,与走线长度无关。

特征阻抗可以使用软件计算。

高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆,这是个大约的数字。

一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为100欧姆。

常见阻抗匹配的方式1、串联终端匹配在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。

匹配电阻选择原则:匹配电阻值与驱动器的输出阻抗之和等于传输线的特征阻抗。

常见的CMOS和TTL驱动器,其输出阻抗会随信号的电平大小变化而变化。

因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。

链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。

串联匹配是最常用的终端匹配方法。

它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗,而且只需要一个电阻元件。

3第3章高频电路板的传输线设计

3第3章高频电路板的传输线设计

走线和下面的参考 层示意图:俯视图
横截面图:
返回电流: 沿着阻抗最小的路径 c 返回 注意:每一个信号,都有一个电流返回路径
走线和参考层中返回电流的分布:
参考层是地层的情况: 返回电流:从地层返回
参考层是电源层的情况:
Ref 1:电源层 Ref 2:地层
信号路径上的电流会在参考面电源层Ref1的上表面感应出涡流 参考面地层Ref2上的返回电流会在参考面电源层Ref1的下表面感应 出涡流 这两个涡流会联通
上冲后,反过来又低于高电平电压值的部分
在低电平处: 上冲后,反过来又高于低电平电压值的部分
过大的过冲电压和下冲电压: 长时间冲击,会损坏元器件
振铃Ring:指信号发生连续的过冲和反冲形成的震荡现象
振铃现象的特点: 震荡信号的幅度越来越小,最后趋于0
振铃现象的影响: 增加信号稳定的时间,影响系统的时序
如果不发生反射:铜模导线必须是绝对均匀,各处 的特征阻抗都相等 类似于:光的反射现象 引起特征阻抗发生改变的因素:
线宽变化、拐角、分支、线交叉、过孔、元器件的 管脚等。
2、高速信号反射分析模型
Vs:信号源的电压 入射电压Vinput:信号源 实际的施加电压
这里,做了近似:
VL:负载的电压 Zs:信号源的内阻 Z0:传输线的特征阻抗 ZL:负载的阻抗
2)根据法拉第感应定律,闭合回路中的磁通量发生变 化时,会产生感应电流和感应电动势。
回路越大,产生的磁场越大,同时受到外部磁场的影 响越大,就会产生电磁干扰。
电流到底沿着哪条路径返回??? 电流总是从阻抗最小的路径上流过
各种情况下的电流返回路径: (1)只有一个电源和一个负载
电流从电源的正极出发,经过负载后,回到电源 的负极 (2)单层、双层电路板
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速PCB设计的传输线及其特性阻抗
一. 什么是传输线
我们经常会用到传输线这一术语,可是讲到其具体定义时,很多工程师都是欲言又止,似懂非懂……
我们知道,传输线用于将信号从一端传输到另一端,下图说明了所有传输线的一般特征
所以,可以这样理解:传输线由两条一定长度导线组成,一条是信号传播路径,另一条是信号返回路径。

1. 分析传输线,一定要联系返回路径,单根的导体并不能成为传输线
2.和电阻,电容,电感一样,传输线也是一种理想的电路元件,但是其特性却大不相同,用于仿真效果较好,但电路概念却比较复杂
3.传输线有两个非常重要的特征:特性阻抗和时延
二. 传输线分类
经常用到的双绞线,同轴电缆都是传输线
对于PCB来说,常有微带线和带状线两种
微带线通常指PCB外层的走线,并且只有一个参考平面
带状线是指介于两个参考平面之间的内层走线
下图为微带线和带状线示意图及其阻抗计算公式,可以从这个公式中看出,阻抗和那些因素有关,但是实际工程应用中,都是用一些专业软件进行阻抗计算,比如Polar
三. 传输线阻抗
先来澄清几个概念,经常会看到阻抗,特性阻抗,瞬时阻抗,严格来讲,他们是有区别的,但是万变不离其宗,它们仍然是阻抗的基本定义.
将传输线始端的输入阻抗简称为阻抗
将信号随时遇到的及时阻抗称为瞬时阻抗
如果传输线具有恒定不变的瞬时阻抗,就称之为传输线的特性阻抗
特性阻抗描述了信号沿传输线传播时所受到的瞬态阻抗,这是影响传输线电路中信号完整性的一个主要因素
如果没有特殊说明,一般用特性阻抗来统称传输线阻抗
简单的来说,传输线阻抗可以用上面的公式来说明,但如果往深里说,我们就要分析信号在传输线中的行为,Eric Bogatin 博士在他的著作《Signal Integrity :Simplified》里面有很详细的说明,读者可以找原著来进行细究,这里只做一个简述:
*以下分析收自与网络资料网际星空网站oldfriend 老师的作品*
当讯号沿着一条具有同样横截面的传输线移动时,假定把1V的阶梯波(step function)加到这条传输线中(如把1V的电池连接到传输线的发送端,电压跨在发送线和回路之间),一旦连接,这个电压阶梯波沿着该线以光速传播,它的速度通常约为6英寸/ns。

这个信号是发送线路和回路之间的电压差,它可以从发送线路的任何一点和回路的相临点来衡量。

讯号能量在第一个0.01n s前进了0.06英寸,这时发送线路有多余的正电荷(由电池提供),而回路有多余的负电荷,正是这两种电荷差维持着这两个导体之间的1V电压差,且这两个导体间也形成了一个电容器。

在下一个0.01n s中,又要将下一段0.06英寸传输线的电压从0
调整到1V,这必须再加一些正电荷到发送线路,与加一些负电荷到接收线路。

每移动0.06英寸,必须把更多的正电荷加到发送线路,而把更多的负电荷加到回路。

每隔0.01n s,必须对传输线路的另外一段进行充电,然后信号开始沿着这一段传播。

电荷来自传输线前端的电池,当讯号沿着这条线移动时,就给传输线的连续部份充电,因而在发送线路和回路之间形成了1V的电压差。

每前进0.01ns,就从电池中获得一些电荷(±Q),恒定的时间间隔(±t)内从电池中流出的恒定电量(±Q)就是一种恒定电流。

流入回路的负电流实际上与流出的正电流相等,而且正好在信号波的前端,交流电流藉由上、下线路组成的电容,结束整个循环过程。

讯号传递时,会在传输线内建立一个电场,而这讯号传递的速度取决于在讯号与回路周围金属材质的电荷充放电与磁场生成速度。

对电池来说,当信号沿着传输线传播,并且每隔0.01n s对连续0.06英寸传输线段进行充电。

从电源获得恒定的电流时,传输线看起来像一个阻抗器,并且它的阻抗值恒定,这可称为传输线路的浪涌阻抗(surge impedance)。

同样地,当信号沿着线路传播时,在下一步之前(0.01ns 之内),把这一步的电压提高到1V所需供应的能量(电流),这就涉及到瞬时阻抗的概念。

如果信号以稳定的速度沿着传输线传播,并且传输线具有相同的横截面,那么在0.01ns 中每前进一步需要相同的电荷量,以产生相同的信号电压。

此时,信号着这条线前进时,会遭遇同样的瞬时阻抗,这被视为传输线的一种特性,被称为特性阻抗。

如果信号在传递过程的每一步的特性阻抗相同,那么该传输线可认为是可控阻抗(controlled impedance)传输线。

瞬时阻抗或特性阻抗,对信号传递质量而言非常重要。

在传递过程中,如果下一步的阻抗和上一步的阻抗相等,工作可顺利进行,但若阻抗发生变化(阻抗不匹配),那会出现一些问题。

为了达到最佳信号质量,设计目标是在信号传递过程中尽量保持阻抗稳定,首先必须保持传输线特性阻抗的稳定,因此,可控阻抗板的生产变得越来越重要。

另外,其它的方法,如余线(stub)长度最短化、末端去除和整线使用,也用来保持信号传递中瞬时阻抗的稳定。

四. 传输线阻抗的计算
设计一个预定的特性阻抗,需要不断调整线宽、介质厚度和介电常数。

如果知道传输线长度和材料的介电常数,就可以计算出特性阻抗以及其它参数
求解特性阻抗的途径有三种:
1. 经验法则;
2. 解析近似;
3. 采用数值仿真的场求解器。

这里只看看经验法则,其中两种还是交给专业的软件或者PCB人员吧:)
对于50ohm 微带线:w=2h, 对于50Ohm 带状线:b=2w
经验法则:FR4上50Ω微带线的线宽w等于介质厚度h的两倍。

50Ω带状线,两平面间总介质厚度b等于线宽w的两倍。

相关文档
最新文档