人教版数学六年级下册-《比例的应用(例5)》教学课件
人教版六年级数学下册比例的应用例课件

答:这个建筑的实际占地面积是19200平方米。
三、布置作业
作业: 1、课堂作业: 57页、第5题、第7题、; 2、 家庭作业:
第57页练习十,第6、8题和58页道交通路线示意图。地铁1号线从苹果园站至四 惠东站在图中的长度大约是7.8 cm,从苹果园站至四惠东站的 实际长度大约是多少千米?
根据 图上距离 =,比可例尺以用解比例的方
实际距离
法求出实际距离。
探究新知
想一想,还有 其他方法吗?
右面是北京轨道交通路线示意 图。地铁1号线从苹果园站至四 惠东站在图中的长度大约是7.8 cm,从苹果园站至四惠东站的 实际长度大约是多少千米?
比例
比例的应用(例2)
复习旧知
回忆一下,什么是比例尺?
一幅图的图上距离和实际距离的 比,叫做这幅图的比例尺。
复习旧知
比例尺有哪些形式? 怎样求一幅图的比例尺?
图上距离:实际距离=比例尺 图上距离 =比例尺 实际距离
数值比例尺
线段比例尺
复习旧知
说说下列比例尺的实际含义。
1:1500
1 8000
0 30 60 90 120千米
解:设从苹果园站至四惠东站的
实际长度是xcm。
7.8 = 1 x 400000
x = 7.8×400000 x=3120000
3120000cm=31.2km 答:从苹果园站至四惠东站的实
际长度是31.2km。
知识应用
知识应用
右图是用1:4000的比例尺画出的某建筑占地平 面图。这个建筑的实际占地面积是多少平方米? 33ccmm
解:设这个建筑物实际长x厘米。
4cm
4:x=1:4000
设这个建筑物实际宽y厘米。
六年级下册数学_比例的应用ppt用比例解决问题人教版(17张)精品课件

15X = 20×18
X=
20×18 15
X = 24
答:每包24本.
巩固练习
1、学校小商店有两种圆珠笔。小明带的钱刚好可以买4支单价 是1.5元的,如果他只买单价是2元的,可以买多少支?
分析:小明带的钱数一定时,单价和数量成反比例关系, 也就是说,单价和数量的乘积相等。
解:设可以买x支。
2x=1.5×4
0.3×40×8
=12×8 =96(吨)
答:每小时应收割0.4公顷。 答:这块地共产小麦96吨。
我能解决(用比例解答)
这本书,每天读10页,30天可以读完。如果每天多读5页, 多少天可以读完?
每天看的页数×天数=总页数(一定)反比例
解:设x天可以读完。
(10+5)x = 10 × 30
x=
10×30
你可以用比例解答吗?试试看吧!
当总的用电量一定时,用电时间与单位时间内的用电量成反
比例关系,也就是说,
与
的
。
解:设现在30天的用电量原来只够用x天。
100x=25×30 x=251×0030
x=7.5
答:现在30天的用电量原来只够用7.5天。
用比例解这类问题的过
(2)用反比例的意义判断题中 的两种量成反比例关系;
(3)列比例式;
(4)解比例,验算,作答。
巩固新知:用比例的方法如何解决?
这批书如果每包20本, 要捆18包.
如果每包30本,要 捆多少包?
因为书的总数一定,所以包数和每包的本数成反比例.也 就是说,每包的本数和包数的乘积相等.
用正比例还是反比 例的方法解决?.
这批书如果每包20本, 要捆18包.
如果要捆15包,每 包多少本?
人教版六年级下册比例全套ppt课件

因为: 1.4 × 10 = 14 2 × 7 = 14
比例的意义:
7∶10 = 0.7
比例的基本性质:
0.7 = 0.7
14 = 14
所以: 1.4∶2 和 7∶10 可以组成比例.
方法三:24 × = 32(人)
方法四:24 ÷ = 32(人)
答:合唱组有女生32人。
答:合唱组有女生32人。
8
15
已知路程和时间,怎样求速度?
速度 = 路程÷时间
已知总价和数量,怎样求单价?
单价 = 总价÷数量
已知工作总量和工作时间,怎样求工作效率?
工作效率 = 工作总量÷工作时间
复习
文具店有一种彩带,销售的数量与总价的关系如下表。
数量/支
总价/元
1
3.5
2
7
3
10.5
4
14
5
17.5
6
24.5
验证
16 ∶ 2 = 32 ∶4
外项
内项
内项积是:
2 × 32=64
外项积是:
16 × 4 = 64
2 × 32= 16 × 4
验证:是不是任意一个比例都有这样的规律?
3∶5
=18∶30
0.4∶0.2
=1.8∶0.9
5/8∶1/4
=7.5∶3
(1)
(2)
(3)
请任意写一个比例并验证。
表示两个比相等的式子叫做比例。
注意: 有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
得出:
你觉得比和比例一样吗?有什么区别?
归纳: 比例由两个比组成,有四个数;比是一个比,有两个数
人教版六年级下册数学《用比例解决问题》比例研讨说课复习课件巩固

100×5
x=
25
x=20
答:原来5天的用电量现在可以用20天。
用反比例知识解决问题。
(1)根据不变量,判断题中哪两种相关
联的量成反比例关系。
(2)找出两组相对应的数,并设出未知
数,列出比例。
(3)解比例。
(4)检验并写答。
现在30天的用电量原来只够用几天?
解:设现在30天的用电量原来只够用x天。
一个办公大楼原来平均每天照明用电100千瓦时。改用节能
灯以后,平均每天只用电25千瓦时。原来5天的用电量现在
可以用多少天?
每天的用电
量和用电天
数
现在和原来每天的用电量
和用电天数的乘积相等
解析:两 个
量
总用电量一定
每天的用电量和用
电天数成反比例关
系
原来每天的用电量×用电天数=原来每天的用电量×用电天数
x= 28×10
8
x=35
答:李奶奶家上个月的水费是35元。
2 李奶奶家上个月的水费是多少钱?
用户
上个月用水量
水费
张大妈家
8t
10
t
28元
?元
李奶奶家
这些量成什么数
量关系?
水费÷用水量=水的单价
一定
成正比例
教材第61页例
5
下面每题中的两种量成什么比例?
(1)路程一定,速度和时间。
成反比例
(2)单价一定,总价和数量。
新课讲解
张大妈家上个月用了8t水,水费是28元。李奶奶家用了10t水。
李奶奶家上个月的水费是多少钱?
每吨水的
水费和用
解析:两 个
价钱一样
人教版六年级数学下册第4单元--比例(比例的应用共7课时)

第4单元比例第1课时比例尺(1)【教学目标】知识目标:使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。
能力目标:会求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。
情感目标:培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
【教学重难点】重点:使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。
难点:会求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。
【教学过程】一、创境激疑, 情境导入谈话:同学们,我国历史悠久,地域辽阔,国土面积大约有960万平方千米。
但这么辽阔的地域却可以用一张并不很大的纸画下来。
出示大小不一的中国地图,并提问:想知道这些地图是怎样绘制出来的吗?今天我们就学习这方面的知识——比例尺。
板书课题:比例尺二、自主探究,理解比例尺的意义1、出示例1,在学生理解题意后提问:题目要求我们写出几个比?这两个比分别是哪两个数量的比?什么是图上距离?什么是实际距离?2、探索写图上距离和实际距离的比的方法。
提问:图上距离和实际距离单位不同,怎样写出它们的比?引导学生通过交流,明确方法:先要把图上距离和实际距离统一成相同的单位,写出比后再化简。
学生独立完成后,展示、交流写出最简的比。
3、揭示比例尺的意义以及求比例尺的方法。
谈话:像刚才写出的两个比,都是图上距离和实际距离的比。
我们把图上距离和实际距离的比,叫做这幅图的比例尺。
提问:这张长方形草坪平面图的比例尺是多少?图上距离:实际距离=比例尺120km=12000000cm24 :12000000=1 :5000000三、拓展应用教材56页1、2题四、总结这节课你学会了什么?你有哪些收获和体会?计算一幅图的比例尺时要注意什么?五、作业布置教材56页3、4题【板书设计】比例尺的意义例1 图上距离:实际距离=比例尺120km=12000000cm24 :12000000=1 :5000000【教学反思】在教学比例尺的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离。
《用比例解决问题例5、例6》教学课件

1.5×4 X= 2
X=3 答:要捆12包。
华南服装厂3天加工西装180套,照这 样计算,要生产540套西装,需要多少 天?
用同样的砖铺地,铺18平方米要用 618块。如果铺24平方米,要用多少 块砖?
解:设李奶奶家上个月的水费是X元。
X 12.8 = 10 8
8X = 12.8×10
12.8×10 X= 8
X = 16 答:李奶奶家上个月的水费是16元。
我们家上个月用了8 吨水,水费是12.8元。
我上个月的水 费是19.2元。
张大妈
王大爷
王大爷家上个月用了多少吨水?
12.8÷8=1.6(元) 每吨水的价钱:
6 4
X = 3
6×3 X= 4
4X = 6×3
X = 4.5 答:小刚要用4.5元。
可以先算出一共有多少 本书,你会算吗?
也可以用比例 的方法解决。 因为书的总数一定,所以包数和 每包的本数成反比例。也就是 说,每包的本数和包数的乘积相 等。
解:设要捆X包。
30X = 20×18
20×18 X= 30
19.2÷1.6=12(吨) 19.2元可用的水:
解:设王大爷家上个月用水X吨。
12.8 19.2 8 = X 12.8X = 19.2×8 19.2×8 X= 12.8
X = 12 答:王大爷家上个月用水12吨。
巩固提高
如果王大爷家上个月的水费是19.2元,他们 家上个月用了多少吨水?
1.小明买了4枝圆珠笔用了6元。小刚 想买3枝同样的圆珠笔,要用多少钱? 解:设小刚要用X元。
复习旧知,导入新课
1下列各题中的两个量成什么比例?为什么? (1)总价一定,单价和数量。 (2)单价一定,总价和数量。 (3)从A地到B地,摩托车的速度和所用 时间。 (4)摩托车的速度一定,所行驶的路程和 所用时间。
六年级【下】册数学比例的应用(精)用比例解决问题人教版(18张ppt)公开课课件

我上个月的水费是19.2元.
(名师示范课)六年级【下】册数学 4.3 比例的应用(第5课时)用比例解决问题 人教版 (18张ppt)公开课课件
张大妈
李奶奶
王大爷家上个月用了多少吨水?
王大爷
用比例的方法如何解决? (名师示范课)六年级【下】册数学 4.3 比例的应用(第5课时)用比例解决问题 人教版(18张ppt)公开课课件
(名师示范课)六年级【下】册数学 4.3 比例的应用(第5课时)用比例解决问题 人教版 (18张ppt)公开课课件
解:设李奶奶家上个月的水费是X元.
12.8 8
=
X 10
8X = 12.8×10
X=
12.8×10 8
X = 16
答:李奶奶家上个月的水费是16元.
变式训练1: (名师示范课)六年级【下】册数学 4.3 比例的应用(第5课时)用比例解决问题 人教版 (18张ppt)公开课课件
课堂小结:
用正比例解问题的过程可以归纳为以下几 个步骤:
(1)设要求的问题为x; (2)用正比例的意义判断题中的两种 量成正比例关系; (3)列比例式; (4)解比例,验算,作答。
(名师示范课)六年级【下】册数学 4.3 比例的应用(第5课时)用比例解决问题 人教版 (18张ppt)公开课课件
(名师示范课)六年级【下】册数学 4.3 比例的应用(第5课时)用比例解决问题 人教版 (18张ppt)公开课课件
(名师示范课)六年级【下】册数学 4.3 比例的应用(第5课时)用比例解决问题 人教版 (18张ppt)公开课课件
跟进训练
小明买了4枝圆珠笔用了6元。小刚想买3
枝同样的圆珠笔,要用多少钱?
人教版六年级数学下《比例的应用 用比例解决问题》优质课PPT课件_6

回归生活,享受课堂教学内容:人教版数学第十二册教科书第113页例5,练习二十三第113-114页第1、4、5题及相对应的补充练习。
教材说明:这节课是复习课,这部分的内容是复习用正、反比例应用题关系解答应用题,把按比例分配应用题和正比例应用题及正、反比例应用题两组题组实行比较。
用比例的知识解答应用题的关键,是判断题中的数量是不是成比例,成什么比例,然后根据题中的比例关系,找出等量关系,再把其中未知的数量用x代替,列出方程解答。
把正比例和按比例分配应用题放在一起让学生解答,能够增强知识间的联系,使学生进一步理解这些应用题的数量关系。
本班学生情况分析:本班学生对数学的学习兴趣较浓,但学习应用题的积极性不高,不愿意动脑筋,怕困难。
教师根据这情况,设计相关的练习题组让学生实行比较、区别,为了提升学生学习应用题的积极性,在设计练习题组的难易水准上,有一定的梯度,设计练习由浅入深,由形象到抽象,让学生尝试学习的成功,体验成功的喜悦,主动学习应用题,感受数学的奥秘,从而更加喜欢数学。
一、复习旧知引入。
〖设计意图:尊重学生认知基础,结合本节课教学目标找准教学的起点,调动学生探索的积极性。
所以设计这题练习目的是让学生把数量关系实行复习巩固,检查学生对数量关系熟悉的水准,以便补缺、补漏,增强对中下生的辅导。
数量关系熟练了,判断两个相关联的量成什么比例,就迎刃而解了,从而做到减低解答正、反比例应用题的难度。
〗1、填空。
(1)每小时生产个数一定,生产时间和生产零件总个数成()比例。
(2)路程一定,速度和时间成()比例。
(3)大齿轮与小齿轮齿数的比值一定,大齿轮与小齿轮的齿数成()比例。
〖实施说明:学生能熟练地掌握数量关系,并准确地判断出两个相关联的量成什么比例,课堂气氛活跃,教学效果好。
〗二、复习过程(一)例题型练习题组。
〖设计意图:问题是数学的心脏。
有了问题,思维才有方向,思维才有动力;有了问题,思维才有创新。
教师因势利导,充分利用和挖掘教材中例题与习题的内在潜力,教师能抓住教材例题的特点,另外编一道正比例应用题与例题实行比较、区别,指导学生对问题以敏锐的观察、急速地思考、快速的判断、对问题作简约的紧缩、推理,尽快找到了解题捷径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设这棵树高xm。 2.4 = 4 1.5 x 2.4x=4×1.5
x=2.5
答:这棵树高2.5m。 你知道吗?影长与身高的比是一 个定值!试着用比例解决吧!
四、布置作业
作业: 第63页练习十一,第4题; 第64页练习十一,第6题、第7题。
二、探究新知
李奶奶家上个月的水费是多少钱?
我们家上个月用了8t 水,水费是28元。
我们家用了10t水。
分析与解答
张大妈
李奶奶
解:设李奶奶家上个月的水费是x元。
28 = x 8 10 8x=28×10
x=
28×10 8
x=35
二、探究新知
我们家上个月用了8t 水,水费是28元。
回顾与反思
李奶奶家上个月的水费是多少钱?
比例
比例的应用(例5)
一、复习旧知
判断下面每题中两种量是否成比例?成 什么比例?并说明理由。
总价一定,单价和数量
单价×数量=总价(一定),总价 一定,单价和数量成反比例。
一、复习旧知
判断下面每题中两种量是否成比例?成 什么比例?并说明理由。
速度一定,路程和时间
时路间程=速度(一定),速度一定, 路程和时间成正比例。
一、复习旧知
判断下面每题中两种量是否成比例?成 什么比例?并说明理由。
总钱数一定,用去的钱数和剩下的钱数
用去的钱数+剩下的钱数=总钱数(一定), 这两种量不成比例。
二、探究新知
李奶奶家上个月的水费是多少钱?
我们家上个月用了8t 水,水费是28元。
我们家用了10t水。
阅读与理解
张大妈
李奶奶
要解决水费的问题,就要 知道水的单价和用水量。
张大妈
我们家用了10t水。
李奶奶
解这个问题的关键是 找到不变的量。
只要两个量的比值一 定,就可以用正比例 关系解答。
答:李奶奶家上个月的水费是35元。
二、探究新知
王大爷上个月的水费是42元, 上个月用了多少吨水?
我们家上个月用了8t 水,水费是28元。
我们家用了10t水。
张大妈
李奶奶
解:设王大爷上个月用了x吨水。
28 8
=
42 x
28x=8×42
x
=
8×42 28
x = 12
答:王大爷上个月用了12吨水。
三、知识应用
小明买4支圆珠笔用了6元,小刚想买3支同样的圆珠笔, 要用多少钱?
解:设要用x元。 6=x 43 4x=18 x=4.5
答:要用4.5元。 你知道哪种量不变吗?你能试 着用比例解决吗?
三、知识应用
水的单价虽然不知道, 但它是一定的。
二、探究新知
李奶奶家上个月的水费是多少钱?
我们家上个月用了8t 水,水费是28元。
我们家用了10t水。我先算出每吨水的价钱, 再算10t水多少钱。
也可以用比例的方法解决!
因为每吨水的价钱一定,所以水费和用水的吨数成正比 例关系。也就是说,两家的水费和用水吨数的比值相等。