二次函数课件.ppt

合集下载

《二次函数》课件

《二次函数》课件

一二
元次
二函
次数
方与

抛物线 y=ax2+bx+c(a≠0)与x轴的公共点的横坐
标即一元二次方程ax2+bx+c =0的根
抛物线
与x轴
的公共
点情况
有两个公共点⇔∆> 0
有一个公共点⇔∆= 0
没有公共点⇔∆< 0
利用图象法求一元二次方程的根
抛物线
拓 与直线
展 的公共
点个数
二次函数 y=ax2+bx+c的图象与 x 轴公共点的坐标
羊圈的面积S=x(40-2x)=-2x2+40x
=-2(x-10)2+200(0<x<20).
∴当x=10时,S有最大值,此时S=200.
∵200>187.5,∴张大伯的设计不合理.
应当设计羊圈与墙垂直的两边长为10 m,
与墙平行的一边长为20m.
3.一家电脑公司推出一款新型电脑,投放市场以来3个
2
2
1 2 1
3 2
2
x - (2x-30) = − x +60x-450.
2
2
2
3.如图,在梯形ABCD中,AB∥DC,∠ABC=90°,
∠A=45°,AB=30,BC=x,其中15<x<30.作
DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F
处,DF交BC于点G.
(3) 当x为何值时,S有最大值?并求出这个最大值.
(1) 请你求出矩形羊圈的面积;
解:(1)由题意,得羊圈的长为25 m,
宽为(40-25)÷2=7.5(m).
故羊圈的面积为25×7.5=187.5(m2)

二次函数ppt课件

二次函数ppt课件
想一想 自变量的取值范围是 x>6 .
典 例3 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形 例 菜园ABCD,设AB边长为x米,求菜园的面积y(单位:平方米)与x(单位:米) 精 的函数关系式.
析 解:∵AB边长为x米.
D
C
A
B
在根据实际问题列二次函数关系式时,要注意自变量的取值范围.
第二十二章 二次函数
22.1.1二次函数
视 频
观察都匀 绿博园音
引 乐喷泉视
入 频有时会
形成一条
条曲
线.这些
曲线能否
用函数关
系式表示?
复 1.什么是函数? 习 一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x 巩 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是 固 自变量,y是x的函数.
典 例4 某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产 例 品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但 精 一天产量减少5件.若生产第x档次的产品一天的总利润为y元(其中x为正整数, 析 且1≤x≤10),求出y关于x的函数关系式.
解:∵第一档次的产品一天能生产95件,每件利润6元,每提高一 个档次,每件利润加2元,但一天产量减少5件,
课 堂 小 结
作业设计
必做:课本41页1、2题
选做: 若函数
是二次函数,求:
(1)求a的值. (2)求函数关系式. (3)当x=-2时,y的值是多少?
共勉:
走进名家,乐享数学
一切问题都可以转化为数学问题,
一切数学问题都可以转化为代数问题,
而一切代数问题又可以转化为函数问题,
因此,一旦解决了函数问题,

二次函数的应用课件ppt课件ppt课件ppt

二次函数的应用课件ppt课件ppt课件ppt
要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。

22.1.1 二次函数 课件(共15张PPT)

22.1.1 二次函数  课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.

《二次函数》优质PPT课件(共65页ppt)

《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14

y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500

高中二次函数 课件ppt课件ppt课件ppt

高中二次函数 课件ppt课件ppt课件ppt
翻折变换是指将二次函数的图像在x轴或y轴上进行翻转。
当函数图像关于x轴进行翻折时,对应的函数表达式变为$y = -f(x)$;关 于y轴进行翻折时,对应的函数表达式变为$y = f(-x)$。
在翻折变换过程中,函数的值域和定义域会发生改变,但函数的奇偶性 不变。
伸缩变换
伸缩变换是指将二次函数的图像在x轴或y轴上进行缩放。
详细描述
二次函数在代数中可以用来解决方程的根的问题,在几何 中可以用来研究图形的性质和关系,在概率统计中可以用 来描述随机变量的分布等。
THANK YOU
当函数图像在x轴方向上缩小a倍时,对应的函数表达式变为$y = f(frac{1}{a}x)$; 在x轴方向上扩大a倍时,对应的函数表达式变为$y = f(ax)$。
在伸缩变换过程中,函数的值域和定义域会发生改变,但函数的奇偶性和周期性不 变。
04
二次函数的解法
配方法
总结词
通过配方将二次函数转化为完全平方形式,从而简化求解过程。
顶点式二次函数解析式
总结词
顶点式二次函数解析式是 $y = a(x h)^2 + k$,其中 $(h, k)$ 是抛物线 的顶点。
详细描述
顶点式二次函数解析式表示一个以 $(h, k)$ 为顶点的开口抛物线,其开 口方向同样由系数 $a$ 决定。顶点坐 标 $(h, k)$ 可以用来确定抛物线的位 置和形状。
详细描述
公式法适用于求解一般形式的二次方程 $ax^2 + bx + c = 0$。根据判别式 $Delta = b^2 - 4ac$ 的值,可以 将二次方程的解表示为 $x_1, x_2 = frac{-b pm sqrt{Delta}}{2a}$。当 $Delta > 0$ 时,方程有两个实根;当 $Delta = 0$ 时,方程有两个相同的实根;当 $Delta < 0$ 时,方程没有实根。

二次函数的图像和性质PPT课件(共21张PPT)

二次函数的图像和性质PPT课件(共21张PPT)

相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.

二次函数ppt课件

二次函数ppt课件
22.1.1 二次函数
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾

观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×

×


例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y = 20(1 + x)2
即: y = 20x2 + 40x + 20
问题3:
多边形的对角线总数d与边数n有什么关系?
由图可以想出,如果多边形有n条边,那么它有 n 个顶点,
从一个顶点出发,连接与这点不相邻的各顶点,可以作
(n-3)条对角线
d = 1 n(n - 3)
M
N
2
即 d = 1 n2 - 3 n 22
(1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是反比例函数?
(3) m取什么值时,此函数是二次函数?
解:(1)当m2-7=1且m+3≠0即m=± 2 2 时是正
比例函数。
(2)当m2-7=-1且m+3≠0即m=± 6 时是反比例函
数。 (3)当m2-7=2且m+3≠0即m=3时是二次函数。
观察思考:
以上问题中的各式有什么共同点?
y=6x2
d
=
1 2
n2
-
3 2
n
y = 20x2 +40x+20
归纳总结:
概念: 一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0) 的函数叫做二次函数。其中x是自变量。
ax²叫做二次项,a为二次项系数,
bx叫做一次项,b为一次项系数,
c为常数项。
26.1.1 二次函数(1)
基础回顾 什么叫函数?
在某变化过程中的两个变量x、y,当变量x 在某个范围内取一个确定的值,y总有唯一的 值与它对应。
这样的两个变量之间的关系我们把它叫 做函数关系。
对于上述变量x 、y,我们把y叫x的函数。 x叫自变量, y叫应变量。
目前,我们已经学习了那几种类型的函数?
(1) Байду номын сангаас=-x2+58x-112
(2)y=πx2 (3) y=x(1+x) (4)s=3-2t² (5) y=3(x-1)²+1
知识运用
1、m取何值时,函数y=(m+1)xm2 - 2m-1
+ m(m - 3)x + m 是二次函数?
解:由题意得
m2—2m-1=2 m+1 ≠0
∴m=3
2、y=(m+3)x m2-7
注意: y=ax²+bx+c(a≠0)
(1)等号左边是变量y,右边是关于自变量 x的整式。
(2)a,b,c为常数,且a 0
(3 )x最高次数为2次,可以 没有一次项和常数项,但不能没有二次项。
二次函数的一般形式: y=a x ²+b x +c (其中a、b、c是常数,a≠0)
二次函数的特殊形式: 当c=0时, y=a x ²+bx 当b=0时, y=ax²+c 当b=0,c=0时, y=ax²
其中包括正比例函数 y=kx(k≠0), 反比例函数y= k (k≠0) ,
x 二次函数y=ax2+bx+c(a≠0)。 可以发现,这些函数的名称都形象地反映了函 数表达式与自变量的关系。
辨一辨
1.下列函数中,哪些是二次函数?
(1) y=3(x-1)2+1 (是) (2) y = 1 - x(不是)
x2
(3) s = 3-2t2(是) (4) y=(x+3)2-x2(不是)
(5) y = 3x3 + 2x(2 不是) (6) y = x-2 + x(2 不是)
说出下列二次函数的二次项系数、一次项系 数、常数项。
1.一个圆柱的高等于底面半径,写出它 的表面积 s 与半径 r 之间的关系式.
S=2πr2 +2πr2 即S=4πr2
2. n支球队参加比赛,每两队之间进行
一场比赛,写出比赛的场次数 m与球队
数 n 之间的关系式.
m = 1 n(n -1)
2

m = 1 n2 - 1 n 22
现在我们学习过的函数有: 一次函数y=kx+b (k ≠0),
变 量 之 间函 的数 关 系
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx (k≠0) y= k (k≠0)
x
二次函数
游戏准备
如图,正方形的棱长为x, 它的表面积y可以表
示为 y=6x2
问题2:
某工厂一种产品现在的年产量是20万件, 计划今后两年增加产量。如果每年比上一 年产量的增长率都为x ,那么两年后这种 产品的产量为y万件,请表示y与x之间的 关系。
相关文档
最新文档