悬架设计计算
麦弗逊悬架计算说明书

悬架系统计算说明书1.整车有关参数1.1 轴距:L=2610mm1.2 轮距:前轮B1=1530mm后轮B2=1510mm1.3 轴荷(kg)1.4 前后轮空满载轮心坐标(Z向)1.4 前、后悬架的非簧载质量(kg):G u1=108kg G u2=92kg1.5 悬架单边簧载质量(kg)悬架单边簧载质量计算结果如下:=(795-108)/2=343.5kg 前悬架:空载单边车轮簧载质量为M01=(872-108)/2=382kg半载单边车轮簧载质量为 M03满载单边车轮簧载质量为M02=(891-108)/2=391.5kg=(625-92)/2=266.5kg 后悬架:空载单边车轮簧载质量为M1半载单边车轮簧载质量为M=(773-92)/2=340.5kg3满载单边车轮簧载质量为M2=(904-92)/2=406kg2、前悬架布置前悬架布置图见图1图1 T21前悬架布置简图3、前悬架设计计算3.1 前悬架定位参数:3.2 前悬架采用麦弗逊式独立悬架,带稳定杆,单横臂,螺旋弹簧,双向双作用筒式减震器。
(1) 空满载时缓冲块的位置和受力情况 空载时,缓冲块起作用,不受力 满载时,缓冲块压缩量为13.8mm ,(由DMU 模拟得知,DMU 数据引自T21 M2数据)。
根据缓冲块的特性曲线,当缓冲块压缩13.8mm 时,所受的力为:125N (2) 悬架刚度计算螺旋弹簧行程杠杆比:1.06悬架刚度为K 1= ((391.5-343.5)*9.8-125/1.06)/(5-(-15))= 17.62N/mm(3)前螺旋弹簧①截锥螺旋弹簧②螺旋弹簧行程杠杆比:1.06③刚度C1=K1*(1.06)2*0.9=17.62*(1.06)2*0.9=17.81N/mm(4)静挠度和空满载偏频计算空载时挠度 f 1= N 1/K 1=( M 01*9.8)/K 1=(343.5*9.8)/17.81=18.9cm 静挠度 f 01= f 1 +(5-(-15))/10=20.9 偏频n:空载为 Hz f n 15.19.18/5/511===满载为 Hz f n 09.19.20/5/50101===结论:前悬架偏频在1.00~1.45Hz 之间,满足设计要求。
悬架高度的计算公式

悬架高度的计算公式悬架高度是指车辆底盘与地面之间的垂直距离,它直接影响着车辆的通过性、行驶稳定性和舒适性。
在汽车工程中,悬架高度的计算是一个非常重要的问题,它需要考虑到车辆的重量、悬架系统的特性以及路面的情况等多个因素。
本文将介绍悬架高度的计算公式及其影响因素。
悬架高度的计算公式可以分为静态悬架高度和动态悬架高度两种情况。
静态悬架高度是指车辆在静止状态下的悬架高度,而动态悬架高度是指车辆在行驶过程中的悬架高度。
这两种情况下的计算公式略有不同。
首先我们来看静态悬架高度的计算公式。
静态悬架高度的计算需要考虑到车辆的重量、悬架系统的特性以及车辆的设计要求等因素。
一般来说,静态悬架高度可以通过以下公式来计算:H = H0 + ΔH。
其中,H表示静态悬架高度,H0表示悬架系统的设计高度,ΔH表示悬架系统的变形量。
悬架系统的设计高度是指车辆在设计状态下所设定的悬架高度,它是一个固定的数值。
而悬架系统的变形量则是指车辆在静态状态下由于自重和载荷的作用而导致的悬架变形,它是一个动态的数值,需要通过实际测试或者计算来得到。
在实际工程中,悬架系统的变形量可以通过有限元分析等方法来计算得到。
有限元分析是一种工程计算方法,它可以通过对车辆结构进行离散化,然后利用数值计算的方法来求解结构的变形和应力分布。
通过有限元分析,可以得到车辆在不同载荷下的悬架变形量,从而得到静态悬架高度。
除了静态悬架高度,动态悬架高度也是一个非常重要的参数。
动态悬架高度的计算需要考虑到车辆在行驶过程中的悬架变形、路面的不平度以及车辆的运动状态等因素。
一般来说,动态悬架高度可以通过以下公式来计算:Hd = H0 + ΔHd。
其中,Hd表示动态悬架高度,H0表示悬架系统的设计高度,ΔHd表示悬架系统的动态变形量。
与静态悬架高度类似,悬架系统的设计高度是一个固定的数值,而悬架系统的动态变形量则是一个动态的数值,需要通过实际测试或者计算来得到。
在实际工程中,动态悬架高度的计算需要考虑到车辆在行驶过程中的各种动态载荷,以及路面的不平度等因素。
悬架高度的计算公式为

悬架高度的计算公式为悬架高度的计算公式。
悬架高度是指车辆悬架系统中的悬架元件(例如弹簧、减震器等)离地面的距离。
它对车辆的行驶性能、驾驶舒适性和通过性都有着重要的影响。
因此,了解悬架高度的计算公式对于车辆的调校和改装具有重要意义。
悬架高度的计算公式可以根据车辆的悬架系统和车身结构来进行推导。
一般来说,悬架高度可以通过以下公式来计算:悬架高度 = 车身高度轮胎直径/2 轮胎气压弹簧压缩量。
其中,车身高度是指车辆车身底部到地面的垂直距离,轮胎直径是指轮胎外径的一半,轮胎气压是指轮胎内部的气压,弹簧压缩量是指悬架系统中弹簧的压缩量。
在这个公式中,车身高度是一个固定的数值,通常由车辆制造商在设计阶段确定。
轮胎直径和轮胎气压可以通过轮胎规格和实际使用情况来获取。
而弹簧压缩量则需要根据车辆的悬架系统和悬架元件的特性来进行计算。
弹簧压缩量的计算可以通过以下公式来进行:弹簧压缩量 = 车辆重量重心高度 / 弹簧刚度。
其中,车辆重量是指车辆整备质量,重心高度是指车辆重心到地面的垂直距离,弹簧刚度是指悬架系统中弹簧的刚度系数。
通过以上公式,我们可以看到悬架高度的计算涉及到车身高度、轮胎参数、弹簧压缩量等多个因素。
这些因素的准确获取和计算对于悬架高度的精确计算具有重要意义。
在实际应用中,悬架高度的计算可以帮助车辆制造商和改装爱好者进行车辆的调校和改装。
通过调整悬架高度,可以改变车辆的行驶性能和驾驶舒适性。
例如,降低悬架高度可以降低车辆的重心,提高车辆的操控性能;而提高悬架高度则可以增加车辆的通过性和通过性。
除此之外,悬架高度的计算还可以帮助车辆制造商进行车辆的设计和调校。
通过合理的悬架高度设计,可以使车辆在不同路况下都能够保持良好的行驶性能和驾驶舒适性。
总之,悬架高度的计算公式是车辆悬架系统中的重要参数,它对车辆的行驶性能、驾驶舒适性和通过性都有着重要的影响。
通过合理的悬架高度设计和调校,可以使车辆在不同路况下都能够表现出色的性能。
复合式悬架计算与设计

复合式悬架计算与设计悬架系统是车辆运行中必不可少的组成部分之一,它主要用于支撑车辆重量、缓冲悬挂和减震,同时保证车辆行驶平稳。
因此,如何正确计算和设计复合式悬架系统是非常关键的。
复合式悬架系统一般由减振器、弹簧、支架组成。
其中,弹簧用于支撑车辆的重量,减振器用于减小车辆震动。
支架既可以是刚性的材料,也可以是弯曲杆,带有减振功能。
首先,我们需要计算所需的弹簧刚度。
弹簧刚度的大小取决于车辆的重量和悬架系统的性质。
一般来说,需要考虑弹簧的自由长度和金属线材特性等因素。
此外,还需要考虑阻尼器和支架的质量和材料,以确定最佳的弹簧刚度。
其次,我们需要计算所需的减振器阻尼系数。
减振器阻尼系数直接影响车辆震动的消除速度。
一般来说,减振器阻尼系数越大,车辆的减震效果越好,但对车辆操控性能的影响也越明显。
因此,需要综合考虑车辆的使用场景和减振器的质量和类型,确定最佳的阻尼系数。
最后,我们需要设计悬架系统的支架。
支架材料的选择和设计对车辆的悬挂性能和使用寿命等方面都有着非常重要的影响。
一般来说,支架应该具有足够的刚度和强度,以确保车辆的稳定性和安全性。
同时,支架的结构也需要充分考虑车辆减震的特点,以确保其完整性和耐用性。
总之,正确的计算与设计复合式悬架系统对车辆的性能和安全起着至关重要的作用。
通过合理的悬挂系统设计和细致的计算分析,可以确保车辆能够在各种路况下行驶平稳,同时承载重量和减震效果能力也能得到稳定的提升。
除了上述的弹簧、减振器和支架之外,复合式悬架系统的设计还需要考虑其他因素,如悬挂系统的结构形式、车轮和轮胎的尺寸和性能等等。
对于悬挂系统的结构形式,有主动式和被动式两种。
主动式悬挂系统通过电子和液压等装置主动调节车轮的压力,从而使车辆在行驶过程中保持稳定和平顺。
被动式悬挂系统则是被动地反应路面的不平整,通过弹簧和减振器进行缓冲震动,这种悬挂系统的结构更加简单,生产成本更低。
除了悬挂系统本身的设计外,车轮和轮胎的尺寸和性能对悬挂系统的性能和安全也有着很大的影响。
悬架偏频计算公式

悬架偏频计算公式
一、悬架偏频计算公式:
n=(√k/m)/2π,k为悬架刚度,m为簧上质量;偏频为评判整车平顺性能的一个重要参数,在汽车设计初期就要先定义偏频的范围.
普通轿车前悬架偏频要求1.0--1.45HZ,后悬架偏频要求1.17--1.58HZ。
级别越高的轿车,偏频越小越好。
高级桥车前悬架偏频0.80--1.15HZ,后悬架偏频0.98--1.30。
货车满载前悬架偏频1.5--2.10HZ,后悬架偏频1.70--2.17HZ。
二、悬架偏频:
悬架固有频率,偏频低,悬架软--提升轮胎抓地力,汽车平顺性好;偏频高,悬架硬--响应速度快,提升操纵稳定性;若调低后偏频,调硬前偏频,则后轮抓地力提升,前轮抓地力降低,增加不足转向,有良好的转向特性。
悬架的参数计算公式

悬架的参数计算公式悬架系统是汽车重要的组成部分,它直接影响着汽车的操控性、舒适性和安全性。
悬架系统的设计需要考虑多个参数,其中包括弹簧刚度、阻尼系数、悬架几何参数等。
本文将重点介绍悬架的参数计算公式,帮助读者更好地理解悬架系统的设计原理。
1. 弹簧刚度计算公式。
弹簧刚度是指单位位移下所受的弹簧力,通常用N/mm或N/m来表示。
弹簧刚度的计算公式如下:K = F / δ。
其中,K表示弹簧刚度,F表示弹簧所受的力,δ表示弹簧的变形量。
在实际设计中,弹簧刚度需要根据车辆的质量、悬架的类型和使用环境来确定。
2. 阻尼系数计算公式。
阻尼系数是指单位速度下所受的阻尼力,通常用N/(m/s)来表示。
阻尼系数的计算公式如下:C = F / v。
其中,C表示阻尼系数,F表示阻尼器所受的力,v表示阻尼器的速度。
阻尼系数的大小直接影响着悬架系统的舒适性和稳定性,需要根据车辆的使用环境和悬架的类型来确定。
3. 悬架几何参数计算公式。
悬架几何参数包括悬架的几何结构、悬架的位置和角度等。
这些参数的设计需要考虑车辆的操控性和稳定性。
常见的悬架几何参数包括悬架的下摆臂长度、上摆臂长度、悬架的前后距离等。
这些参数的计算需要结合车辆的设计要求和悬架的类型来确定。
4. 悬架系统的动力学模型。
悬架系统的动力学模型包括悬架的质量、弹簧、阻尼器等参数,可以用来描述悬架系统的运动规律。
常见的悬架系统动力学模型包括单自由度模型、双自由度模型等。
这些模型可以用来分析悬架系统的振动特性和响应特性,对悬架系统的设计和优化具有重要的意义。
5. 悬架系统的优化设计。
悬架系统的优化设计需要考虑多个参数的综合影响,包括弹簧刚度、阻尼系数、悬架几何参数等。
优化设计的目标通常包括提高车辆的操控性、舒适性和安全性。
在实际设计中,可以利用计算机辅助设计软件来进行悬架系统的优化设计,通过多次模拟和分析来确定最佳的参数组合。
总结。
悬架系统的设计需要考虑多个参数,包括弹簧刚度、阻尼系数、悬架几何参数等。
悬架各工况受力计算公式表

悬架各工况受力计算公式表悬架各工况受力计算公式表是汽车设计师们必备的一份文档,因为悬架是汽车上最重要的零部件之一,它直接关系到汽车的运行性能和安全性。
本文将详细介绍悬架各工况受力的计算公式表,以帮助读者更好地理解。
首先,悬架是一个复杂的系统,由若干个部件组成,包括弹簧、减震器、传动轴、控制臂、节流阀等。
在实际工作过程中,悬架各部件都会承受不同的受力状态,如纵向加速、横向转向、制动、加速、刹车等。
而悬架各部件所承受的受力状态也是不同的,因此,针对不同的受力状态,悬架各部件的受力计算公式也是不同的。
以下是悬架各工况受力计算公式表:1. 纵向加速时,控制臂承受的力矩计算公式为:M = ma / FZ,其中m是汽车质量,a是车辆纵向加速度,FZ是轮胎垂直载荷。
2. 横向转向时,控制臂承受的力矩计算公式为:M = Fy * h,其中Fy是横向力,h是控制臂与地面垂直距离。
3. 制动时,制动力矩的计算公式为:M = W * (R - r) / 2,其中W是车辆重量,R是轮胎半径,r是制动器半径。
4. 加速时,驱动轴承受的力矩计算公式为:M = T /i * η * r,其中T是发动机输出扭矩,i是变速器传动比,η是传动效率,r是驱动轴半径。
5. 刹车时,制动器受到的压缩应力计算公式为:σ =F / A,其中F是制动力,A是制动器面积。
6. 路面颠簸时,减震器吸收的能量计算公式为:E = 1 / 2 * k * δ^2,其中k是减震器弹簧刚度,δ是减震器伸缩位移。
以上是悬架各工况受力计算公式表的部分内容,这些公式可以帮助汽车设计师了解悬架各部件在不同工况下所承受的受力情况,从而优化设计方案,提高汽车的性能和安全性。
总之,悬架各工况受力计算公式表是非常重要的一个文档,它涉及到汽车设计的方方面面,设计师们应该积极学习和掌握这些公式,以更好地提高汽车的性能和安全性。
悬架系统设计计算报告

悬架系统设计计算报告一、引言悬架系统作为汽车底盘的重要组成部分,对车辆的行驶稳定性、乘坐舒适性和操控性能等方面有着重要影响。
因此,在汽车设计和制造过程中,悬架系统的设计十分关键。
本报告将介绍悬架系统设计过程中的计算方法和依据,并对其进行详细说明。
二、悬架系统设计计算方法1.载荷计算:首先需要计算车辆在不同行驶条件下的载荷。
通过分析车辆的使用环境和客户需求,确定悬架系统的额定载荷。
然后,根据车辆自重、乘员重量、行李重量、荷载等因素,计算出车辆的总载荷。
2.载荷分配计算:在计算悬架系统的载荷分配时,需要考虑车辆的静态和动态载荷。
静载荷主要指车辆停靠时的重力,而动载荷主要指车辆行驶过程中因加速度、制动力和路面不平均性等引起的载荷。
通过对车辆不同部位的载荷进行测量和分析,确定每个车轮的载荷。
3.悬架系统刚度计算:悬架系统的刚度对车辆的操控性和乘坐舒适性有着直接影响。
悬架系统的刚度可以分为纵向刚度、横向刚度和垂向刚度等。
在设计悬架系统的过程中,需要根据车辆的使用环境和性能需求,计算悬架系统的刚度。
4.悬架系统减振器计算:悬架系统的减振器的设计和选型是悬架系统设计的重要环节。
减振器可以减少车辆在行驶过程中的震动,提高乘坐舒适性和行驶稳定性。
根据悬架系统的刚度和载荷等因素,计算减振器的选择和设计参数。
5.悬架系统运动学计算:悬架系统的运动学计算是为了确定悬架系统在不同行驶状态下的主要参数,以便进行悬架系统的设计和调整。
通过对车辆的几何尺寸、运动学参数和悬架结构的分析和计算,确定悬架系统的工作范围和参数。
三、计算依据在悬架系统设计计算中,需要依据以下相关标准和原则进行设计:2.汽车悬架系统设计手册:根据汽车制造商提供的相关手册和技术资料,对悬架系统设计进行指导和计算。
3.数学和工程力学原理:在悬架系统设计计算过程中,需要运用数学和工程力学的相关原理和方法,如力学平衡、弹性力学、振动理论等,进行悬架系统的计算。
4.仿真和试验数据:通过对悬架系统的仿真分析和试验测试,获取悬架系统的相关参数和性能数据,为悬架系统的设计计算提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前轮距1200mm 后轮距1150mm
前悬架
等效单横臂长度
l=217.7mm
上横臂2
l=328mm
下横臂1
车轮定位参数
主销内倾角β=6 .16deg
主销后倾角λ=2 deg
上横臂两杆夹角为56 deg 每个杆长度为246.6mm 下横臂两杆夹角为45 deg 每个杆长度为355mm 上下横臂间球头销间距离c=250mm
悬架的定位角
纵向平面内上下横臂的布置
上-5 deg 下 5 deg
横向平面内的布置
上横臂与水平轴的夹角为10.8 deg
水平面内的布置横臂轴与纵轴线平行
h=58.87mm
侧倾中心高w
横向稳定器
支杆长度310mm
支杆底点距纵轴线的长度305mm
横向稳定杆长度225mm
支杆底点与横向稳定杆端点间的距离100mm
减震器导向杆长度293.3mm
后悬架
等效单横臂长度
l=271.6mm
上横臂3
l=328mm
下横臂4
上横臂两杆间夹角为60 deg 每根杆的长度313.6mm 下横臂A形杆的夹角为40 deg 每根杆的长度349mm 下横臂另一杆长为333.4mm
它和纵轴线的夹角为79.6 deg
双横臂结构如图示
上下横臂在车轮上连接点间的距离为260mm
双横臂的布置
水平面内上下横臂摆动轴线的布置
摆动轴与纵轴线平行
纵向平面内的布置
上2 deg 下-5 deg
横向平面内的布置
上横臂与水平轴的夹角为11.66 deg
h=62.68mm
侧倾中心高wr
减震器导向杆长度为306.8mm
横向稳定器
支杆长度310mm
支杆底点距纵轴线的长度255mm
横向稳定杆长度175mm
支杆底点与横向稳定杆端点间的距离100mm。