小学数学55种定义大集合

合集下载

小学数学必背定义和性质

小学数学必背定义和性质

小学数学必背定义和性质一、分数乘法概念总结1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

例如:×5的意义是:表示求5个的和是多少。

2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(为了计算简便,能约分的要先约分,然后再乘。

)3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。

例如:5× 的意义是:表示求5的是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

(为了计算简便,可以先约分再乘。

)5.乘积是1的两个数互为倒数。

6.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

(1的倒数是1。

0没有倒数。

)真分数的倒数大于1;假分数的倒数小于或等于1;注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

7.一个数(0除外)乘以一个真分数,所得的积小于它本身。

8.一个数(0除外)乘以一个假分数,所得的积大于或等于它本身。

9.如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

例如:a×= b× = c× (a、b、c都不为0)因为 < < ,所以b > a > c。

-二、分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2.分数除法口诀:被除数不变,除号变乘号,除数变倒数3.两个数相除又叫做两个数的比。

比的前项除以后项所得的商,叫做比值。

4.比值通常用分数、小数和整数表示。

5.比的后项不能为0。

(分母不能为0,除数不能为0)6.比同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;7.和分数比较,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

8.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

小学数学概念大全

小学数学概念大全

小学数学概念大全数学是一门充满奥秘和乐趣的学科,而小学阶段是为未来的数学学习打下坚实基础的重要时期。

在小学数学中,有许多重要的概念,让我们一起来了解一下吧!一、数的认识1、自然数用来表示物体个数的 1、2、3、4、5……叫做自然数。

0 也是自然数,最小的自然数是 0,没有最大的自然数。

2、整数像……-3、-2、-1、0、1、2、3……这样的数称为整数。

整数包括正整数、0 和负整数。

3、分数把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

例如,把一个苹果平均分成 4 份,其中的 1 份就是 1/4。

4、小数把整数“1”平均分成 10 份、100 份、1000 份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数表示。

5、百分数表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。

百分数通常用“%”来表示。

二、数的运算1、加法把两个(或几个)数合并成一个数的运算,叫做加法。

2、减法已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。

3、乘法求几个相同加数的和的简便运算,叫做乘法。

4、除法已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

三、常见的量1、长度单位常见的长度单位有千米(km)、米(m)、分米(dm)、厘米(cm)、毫米(mm)。

2、面积单位常用的面积单位有平方千米(km²)、公顷、平方米(m²)、平方分米(dm²)、平方厘米(cm²)。

3、体积单位体积单位有立方米(m³)、立方分米(dm³)、立方厘米(cm³)。

4、质量单位常见的质量单位有吨(t)、千克(kg)、克(g)。

5、时间单位时间单位有时(h)、分(min)、秒(s)。

6、货币单位人民币的单位有元、角、分。

四、图形与几何1、点、线、面、体点动成线,线动成面,面动成体。

2、直线、射线、线段直线没有端点,可以向两端无限延伸;射线有一个端点,可以向一端无限延伸;线段有两个端点,不能延伸。

数学定义定理公式大全

数学定义定理公式大全

数学定义、定理、公式大全1. 数学定义1.1 数集•有限集:指元素个数有限的集合,记作A={a₁,a₂,…,an}。

•无限集:指元素个数无限的集合,记作A={a₁,a₂,…,an,…}。

•空集:不含任何元素的集合,记作∅或{}。

•子集:若集合A中的每个元素都是集合B中的元素,则称A为B的子集,记作A⊆B。

1.2 常用数系•自然数:正整数,记作N={1,2,3,4,…}。

•整数:正整数、负整数和0的集合,记作Z={…, -2,-1,0,1,2,…}。

•有理数:可以写成两个整数的比的数,记作Q。

•实数:包含有理数和无理数的数,记作R。

1.3 函数•函数:指定了集合A到集合B的一种关联规则,记作f:A→B。

•定义域:函数f中所有可能输入的集合,记作D(f)或Dom(f)。

•值域:函数f中所有可能输出的集合,记作R(f)或Ran(f)。

•逆函数:对于函数f:A→B,如果任意b∈B,都有唯一的a∈A,使得f(a)=b,则函数g:B→A称为f的逆函数,记作g=f⁻¹。

2. 数学定理2.1 代数定理•因式分解定理:每个整数都可以唯一地表示为素数的乘积。

•二次根定理:若在实数域上,对于方程ax²+bx+c=0,当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。

2.2 几何定理•勾股定理:对于直角三角形,斜边的平方等于两直角边的平方和。

•正弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:a/sinA=b/sinB=c/sinC。

•余弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:c²=a²+b²-2abcosC。

2.3 微积分定理•基本定理:若函数f在区间[a,b]上连续,并且F是f的任意一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)。

小学数学定义(全部)

小学数学定义(全部)

小学数学定义(全部)小学数学定义数学,作为一门科学,是人类探索和研究数量、结构、空间以及变化等概念的学科。

在小学阶段,学生接触到的数学内容主要包括数的认知、计算、数据分析和几何等方面。

下面将逐一介绍小学数学的主要定义。

1. 数字(Number):数字是用来表示数量的基本符号,也可称为数。

数字包括0、1、2、3、4、5、6、7、8、9十个阿拉伯数字和无穷大等。

2. 自然数(Natural Numbers):自然数是由1开始,依次递增的整数,如1、2、3、4、5等。

自然数常用于计数和排序。

3. 整数(Integers):整数是包括正整数、零和负整数的集合,用来描述数量关系,如-3、-2、-1、0、1、2、3等。

4. 分数(Fractions):分数是用来表示整数间的关系的数,由一个整数的分子和分母组成,分母不为零。

例如,1/2、2/3、3/4等。

5. 小数(Decimals):小数是除法结果的数学表示形式,包括整数部分和小数部分,小数部分用十进制表示,如1.5、3.14等。

6. 正数(Positive Numbers):正数是大于零的数,如1、2、3、4等。

正数可用于计数、表示增加或增长等概念。

7. 负数(Negative Numbers):负数是小于零的数,如-1、-2、-3、-4等。

负数可用于表示减少或下降等概念。

8. 算术(Arithmetic):算术是数学中研究数的四则运算(加法、减法、乘法和除法)的一门学科。

9. 加法(Addition):加法是一种基本的运算方式,用来将两个或多个数值相加,得到它们的和。

10. 减法(Subtraction):减法是一种基本的运算方式,用来从一个数中减去另一个数,得到它们的差值。

11. 乘法(Multiplication):乘法是一种基本的运算方式,用来将两个或多个数相乘,得到它们的积。

12. 除法(Division):除法是一种基本的运算方式,用来将一个数分成若干等份或将一个数分配给若干个部分,得到它们的商。

小学数学常用常考的55种定义及公式大全

小学数学常用常考的55种定义及公式大全
(2)从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、三角形的定义:
(1)有三条线段围成的图形叫三角形。
(2)围成三角形的每条线段叫三角形的边。
(3)每两条线段的交点叫三角形的顶点。
(4)三个角都是锐角的三角形叫锐角三角形。
(5)有一个角是直角的三角形叫直角三角形。
(6)有一个角是钝角的三角形叫钝角三角形。
45、几个数公有的约数叫公约数。其中最大的一个叫最大公约数。
46、公约数只有1的两个数叫互质数。
47、几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。
48、分数的相关定义:
(1)把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)在分数里中间的横线叫分数线。
(3)分数线下面的部分叫分母。
(6)在梯形里,不平等的一组对边叫梯形的腰。
(7)从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)两腰相等的梯形叫做等腰梯形。
11、用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。
(5)分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(6)把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(7)分子、分母是互质数的分数叫最简分数。
50、比相关定义:
(1)两个数相除又叫两个数的比。
(2)比号前面的数叫比的前项。

180条小学数学基础概念总结

180条小学数学基础概念总结

180条小学数学基础概念总结整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。

一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。

【整数】在小学阶段,整数通常指自然数。

【数字】表示数目的符号叫做数字,通常把数字叫做数码。

【加法】把两个数合并成一个数的运算,叫做加法。

【加数】在加法中相加的两个数,叫做加数。

【和】在加法中两个加数相加得到的数叫做和。

【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。

【被减数】在减法中,已知的和叫做被减数。

【减数】在减法中,减去的已知加数叫做减数。

【差】在减法中,求出的未知加数叫做差。

【乘法】求几个相同加数的和的简便运算,叫做乘法。

【因数】在乘法中,相乘的两个数都叫做积的因数。

【积】在乘法中,乘得的结果叫做积。

【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。

【被除数】在除法中已知的积叫做被除数。

【除数】在除法中,已知的一个因数叫做除数。

【商】在除法中,未知的因数叫做商。

【计数单位】一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。

【十进制计数法】每相邻的两个计数单位间的进率是十。

这种计数方法叫做十进制计数法。

【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

一个数字所在的数位不同,表示的数的大小也不同。

第一个数位称为个位,依次是十位,百位,千位,万位,十万位......【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。

余数比除数小。

【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。

【第一级运算】在四则运算中,加法和减法叫做第一级运算。

【第二级运算】在四则运算中,乘法和除法叫做第二级运算。

【整除】两个整数相除,如果用字母表示可以这样说:整数a除以整数b(b不等于0)除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。

小学数学的所有概念大全

小学数学的所有概念大全

小学数学的所有概念大全一、代数知识:整数:1、质数一个数除了1和它本身,不再有其它的约数(因数),这个数叫做质数(质数也叫做素数)。

2、合数一个数除了1和它本身,还有别的约数(因数),这个数叫做合数注意:1只有一个约数(因数),就是它本身,1既不是质数,也不是合数。

最小的质数是2,也是质数中唯一的一个偶数(偶数解释见下),其余的质数均为奇数(奇数解释见下)。

3、偶数偶数就是可以被2整除的自然数(包括)也叫做双数。

偶数通常用“2k”表示。

4、奇数奇数就是不能被2整除的自然数,也叫做单数。

奇数通常用2k+1表示注:偶数除了2以外都是合数。

偶数:能被2整除的数。

(也包括)奇数:不能被2整除的数。

5、自然数:表示物体的数量的数,最小的自然数是“0”自然数也是整数。

是正整数与负整数的分界线。

6、合数:除了“1”和它本身以外还有别的约数(因数)的数。

最小的合数“4”。

7、质数:只有“1”和它本身两个约数(因数)的数。

最小的质数是“2”。

8、“1”既不是合数也不是质数9、互质数:只有公约数(因数)“1”的两个数。

10、公约数(因数):两个数公有的约数(因数)。

11、公倍数:两个数私有的倍数。

12、质因数:把一个合数分解成几个质数相乘的形式,这几个质数叫作这个合数的质因数。

13、分解质因数:把一个合数分解成几个质数相乘的形式,这个过程叫做分解质因数。

14、能被2、3、5整除数的特性:能被2整除数的特性:个位上的数字是,2,4,6,8能被3整除数的特征:各位上的数字之和是3的倍数能被5整除数的特征:个位上的数字是,5能被9整除数的特征:各位上的数字之和是9的倍数.能被4或25整除数的特性:末两位上的数是4或25的倍数.能被8或125整除数的特征:末三位数是8或125的倍数.15、小数:小数的根本性质:在小数开端添上”0”或去掉”0”,小数的大小稳定.无限小数:小数部分的为数是无限的。

无限循环小数:小数局部的数位有纪律的.无限不循环小数:小数部分没规律(又叫无理数)纯循环小数:从小数部分第一位开始循环`混循环小数:不是从小数部分第一位开始循环循环节:从小数部分的某一位起.开是依次不断重复一个或几个数字.这些数字叫做循环节.16、分数分数的意义:把单位”1”平均分成若干份,取其中的一份或几份的数叫做分数.分数的基本性质:分数的分子和分母同时乘或除以一个数(除外).分数的大小不变.真分数<1.假分数≥1将一个分数的份子与分母同时同时除以他们的最大公因数,这个过程叫约分.而获得的这个分数叫最简分数.最简分数:分母与分子互质的时候.这个分数就叫最简分数.将几个异分母的分数使用分数的根本性质将分母变成一样.这个过程叫通分.在分数大小的比力中会遍及遇到通分.二、几何知识:一个封闭式图形,将他的周围围上1圈,这个圈的长度是他的周长.一个物体所占空间的大小叫做这个物体的体积.一个物体所能包容别的物体的体积叫做这个物体的容积一个物体表面的面积叫表面积三角形的内角和是180度.四边形的内角和是360度.N边形的内角和是(边长-2)×180度.外角:1条边的反向延长线与相邻的一条边所夹的角叫做外角.三角形的外角是不相邻的两个内角之和,任何关闭式的图形的外角和都是360度1、线:直线:没有端点,没有长度,无限延长射线:有一个端点,没有长度,无限延长线段:有两个端点,有长度.由一个点引出的两条射线,这两条射线所夹的这个局部叫做角,而XXX叫做极点.角分为几种角:锐角(大于度小于90度),直角(等于90度),钝角(大于90度小于180度),平角(等于180度),周角(等于360度)由1点做一条线段的垂线,这个点叫做垂足.当两条直线永久不订交时,就说明这两条直线相互平行.2、平面图形:三角形:三角形中最大的角是钝角的话这个三角形叫钝角三角形.三角形中最大的角是直角的话这个三角形叫直角三角形三角形中最大的角是锐角的话这个三角形叫锐角三角形从极点做与他对边的垂线段.这个垂线段的长度叫做这个三角形的高.1个三角形有三条高.当三角形有两条边的长度相等时,这个三角形叫等腰三角形,等腰三角形长度相等的两个边叫做腰,而剩下的叫底.当三角形3条边相等时,这个三角形叫等边三角形,等边三角形是非凡的等腰三角形.他的3个角都是60度.四边形:一个四边形的四个角都是直角.且任意不相邻的两条边互相平行时,这个四边形叫长方形.当四条边都相等时,且每个角是90度时,这是个正方形.正方形是特殊的长方形.当四边形的任意两条边互相平行时,这个图形是平行四边形(长方形是特殊的平行四边形).平行四边形有无数条高.当4条边长度相等时.这个图形叫菱形(菱形是特殊的平行四边形).只有一组对边相互平行时,这个图形叫梯形.梯形上面那条边叫上底.上面那条边叫下底.而梯形的左右两条边叫梯形的腰.当左右两条边的长度相等时.这个梯形叫等腰梯形.圆的周长与直径的比值始终是定值。

小学1-6年级数学定义大全

小学1-6年级数学定义大全

小学1-6年级数学定义大全一、整数和小数1.最小的一位数是1,最小的自然数是02.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

3.小数点左边是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……4.小数的分类:有限小数小数无限循环小数无限小数无限不循环小数5.整数和小数都是按照十进制计数法写出的数。

6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……二、数的整除1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。

质数都有2个约数。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

合数至少有3个约数。

最小的质数是2,最小的合数是41~20以内的质数有:2、3、5、7、11、13、17、191~20以内的合数有:4、6、8、9、10、12、14、15、16、186.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学口决定义归类1、什么是图形的周长?围成一个图形所有边长的总和就是这个图形的周长。

2、什么是面积?物体的表面或围成的平面图形的大小叫做他们的面积。

3、加法各部分的关系?一个加数=和-另一个加数4、减法各部分的关系?减数=被减数-差被减数=减数+差5、乘法各部分之间的关系?一个因数=积÷另一个因数6、除法各部分之间的关系?除数=被除数÷商被除数=商×除数7、角的定义:(1)什么是角?从一点引出两条射线所组成的图形叫做角。

(2)什么是角的顶点?围成角的端点叫顶点。

(3)什么是角的边?围成角的射线叫角的边。

(4)什么是直角?度数为90°的角是直角。

(5)什么是平角?角的两条边成一条直线,这样的角叫平角。

(6)什么是锐角?小于90°的角是锐角。

(7)什么是钝角?大于90°而小于180°的角是钝角。

(8)什么是周角?一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.8、垂直问题:(1)什么是互相垂直?什么是垂线?什么是垂足?两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

(2)什么是点到直线的距离?从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。

9、三角形的定义:(1)什么是三角形?有三条线段围成的图形叫三角形。

(2)什么是三角形的边?围成三角形的每条线段叫三角形的边。

(3)什么是三角形的顶点?每两条线段的交点叫三角形的顶点。

(4)什么是锐角三角形?三个角都是锐角的三角形叫锐角三角形。

(5)什么是直角三角形?有一个角是直角的三角形叫直角三角形。

(6)什么是钝角三角形?有一个角是钝角的三角形叫钝角三角形。

(7)什么是等腰三角形?两条边相等的三角形叫等腰三角形。

(8)什么是等腰三角形的腰?有等腰三角形里,相等的两个边叫做等腰三角形的腰。

(9)什么是等腰三角形的顶点?两腰的交点叫做等腰三角形的顶点。

(10)什么是等腰三角形的底?在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。

(11)什么是等腰三角形的底角?底边上两个相等的角叫等腰三角形的底角。

(12)什么是等边三角形?三条边都相等的三角形叫等边三角形,也叫正三角形。

(13)什么是三角形的高?什么叫三角形的底?从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。

(14)三角形的内角和是多少度?三角形内角和是180°.10、四边形的定义:(1)什么是四边形?有四条线段围成的图形叫四边形。

(2)什么是平等四边形?两组对边分别平行的四边形叫做平行四边形。

(3)什么是平行四边形的高?从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

(4)什么是梯形?只有一组对边平行的四边形叫做梯形。

(5)什么是梯形的底?在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。

(6)什么是梯形的腰?在梯形里,不平等的一组对边叫梯形的腰。

(7)什么是梯形的高?从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

(8)什么是等腰梯形?两腰相等的梯形叫做等腰梯形。

11、什么是自然数?用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。

12、什么是四舍五入法?求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。

这种求近似数的方法,叫做四舍五入法。

(歇一歇,注意眼睛哦)13、加法意义和运算定律:(1)什么是加法?把两个数合并成一个数的运算叫加法。

(2)什么是加数?相加的两个数叫加数。

(3)什么是和?加数相加的结果叫和。

(4)什么是加法交换律?两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

14、什么是减法?已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。

15、什么是被减数?什么是减数?什么叫差?在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。

16、加法各部分间的关系:和=加数+加数加数=和-另一加数17、减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=减数+差18、乘法的相关定义:(1)什么是乘法?求几个相同加数的和的简便运算叫乘法。

(2)什么是因数?相乘的两个数叫因数。

(3)什么是积?因数相乘所得的数叫积。

(4)什么是乘法交换律?两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。

(5)什么是乘法结合律?三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

19、除法的相关定义:(1)什么是除法?已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

(2)什么是被除数?在除法中,已知的积叫被除数。

(3)什么是除数?在除法中,已知的一个因数叫除数。

(4)什么是商?在除法中,求出的未知因数叫商。

20、乘法各部分的关系?积=因数×因数一个因数=积÷另一个因数21、除法的相关定义:(1)除法各部分间的关系?商=被除数÷除数除数=被除数÷商(2)有余数的除法各部分间的关系?被除数=商×除数+余数22、什么是名数?通常量得的数和单位名称合起来的数叫名数。

23、什么是单名数?只带有一个单位名称的数叫单名数。

24、什么是复名数?有两个或两个以上单位名称的数叫复名数。

25、什么是小数?仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。

26、什么是小数的基本性质?小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。

27、什么是有限小数?小数部分的位数是有限的小数叫有限小数。

28、什么是无限小数?小数部分的位数是无限的小数叫无限小数。

29、什么是循环节?一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。

30、什么是纯循环小数?循环节从小数第一位开始的叫纯循环小数。

31、什么是混循环小数?循环节不是从小数部分第一位开始的叫做混循环小数。

32、什么是四则运算?我们把学过的加、减、乘、除四种运算统称四则运算。

33、什么是方程?含有未知数的等式叫方程。

34、什么是解方程?求方程解的过程叫解方程。

35、什么是倍数?什么叫约数?如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。

36、什么样的数能被2整除?个位上是0、2、4、6、8的数都能被2整除。

37、什么是偶数?能被2整除的数叫偶数。

38、什么是奇数?不能被2整除的数叫奇数。

(歇一歇,注意眼睛哦)39、什么样的数能被5整除?个位上是0或5的数能被5整除。

40、什么样的数能被3整除?一个数的各位上的和能被3整除,这个数就能被3整除。

41、什么是质数(或素数)?一个数如果只有1和它本身两个约数,这样的数叫质数。

42、什么是合数?一个数除了1和它本身还有别的约数,这样的数叫合数。

43、什么是质因数?每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数。

44、什么是分解质因数?把一个合数用质因数相乘的形式表示出来叫做分解质因数。

45、什么是公约数?什么叫最大公约数?几个数公有的约数叫公约数。

其中最大的一个叫最大公约数。

46、什么是互质数?公约数只有1的两个数叫互质数。

47、什么是公倍数?什么是最小公倍数?几个数公有的倍数叫这几个数的公倍数。

其中最小的一个叫这几个数的最小公倍数。

48、分数的相关定义:(1)什么是分数?把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。

(2)什么是分数线?在分数里中间的横线叫分数线。

(3)什么是分母?分数线下面的部分叫分母。

(4)什么是分子?分数线上面的部分叫分子。

(5)什么是分数单位?把单位“1”平均分成若干份,表示其中的一份叫分数单位。

49、分数的相关定义:(1)怎么比较分数大小?1、分母相同的两个分数,分子大的分数比较大。

2、分子相同的两个分数,分母小的分子比较大。

(2)什么是真分数?分子比分母小的分数叫真分数。

(3)什么是假分数?分子比分母大或者分子和分母相等的分数叫假分数。

(4)什么是带分数?由整分数和真分数合成的数通常叫带分数。

(5)什么是分数的基本性质?分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。

(6)什么是约分?把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。

(7)什么是最简分数?分子、分母是互质数的分数叫最简分数。

50、比相关定义:(1)什么是比?两个数相除又叫两个数的比。

(2)什么是比的前项?比号前面的数叫比的前项。

(3)什么是比的后项?比号后面的数叫比的后项。

(4)什么是比值?比的前项除以后项所得的商叫比值。

(5)什么是比的基本性质?比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

51、长方体和正方体的相关定义:(1)什么是棱?两个面相交的边叫棱。

(2)什么是顶点?三条棱相交的点叫顶点。

(3)什么是长方体的长、宽、高?相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。

(4)什么是正方体(立方体)?长宽高都相等的长方体叫正方体(或立方体)。

(5)什么是长方体的表面积?长方体六个面的总面积叫长方体的表面积。

(6)什么是物体体积?物体所占空间的大小叫做物体的体积。

52、圆的相关定义:(1)什么是圆心?圆中心的点叫圆心。

(2)什么是半径?连接圆心和圆上任意一点的线段叫半径。

(3)什么是直径?通过圆心、并且两端都在圆上的线段叫直径。

(4)什么是圆的周长?围成圆的曲线叫圆的周长。

(5)什么是圆周率?我们把圆的周长和直径的比值叫圆周率。

(6)什么是圆的面积?圆所围平面的大小叫圆的面积。

(7)什么是扇形?一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。

(8)什么是弧?在圆上两点之间的部分叫弧。

(9)什么是圆心角?顶点在圆心上的角叫圆心角。

(10)什么是对称图形?如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。

53、什么是百分数?表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。

54、比例的相关定义:(1)什么是比例?表示两个比相等的式子叫比例。

(2)什么是比例的项?组成比例的四个数叫比例的项。

(3)什么是比例外项?两端的两项叫比例外项。

(4)什么是比例内项?中间的两项叫比例内项。

(5)什么是比例的基本性质?在比例中两个外项的积等于两个内项的积。

相关文档
最新文档